

Effect of air quality in and around schools on cognitive performance in primary school children

The University of Manchester

Philips Foundation

Background

- Increasing evidence that air pollution impacts brain health, both at young and older age
- GAP/Philips Foundation collaboration to investigate impact of air quality on educational attainment of primary school children in Greater Manchester
- Can air purifiers and other intervention improve educational attainment

What we did I: literature review

- We started by summarising the existing literature on the links between air pollution in and around schools and executive functioning in primary school aged children
- Executive functioning has been shown to be an important determinant of educational attainment
 - However, quantifying the exact magnitude of the effect is difficult as very context dependent

Executive functioning

Collective term for a range of cognitive processes that manage and control thoughts, emotions and actions aimed at achieving an objective or goal

Working memory impulse inhibition cognitive flexibility planning

What we did I: literature review

- Literature searches carried out in February 2020
- Looked for studies which included:
 - At least one continuous and quantitative measure of cognitive or academic achievement
 - At least one continuous and quantitative measure of cognitive or academic achievement
- Studies were excluded if they:
 - Only reported pollution exposure estimates outside of a school setting
 - Only reported measurements of pollutants from non-traffic sources

Nine previous studies had investigated this:

- From a range of continents and countries
 - 1. Europe: 5 studies (Spain, UK, Austria, the Netherlands, Belgium)
 - 2. North America: 3 studies (USA)
 - 3. South America: 1 study (Chile)

Nine previous studies had investigated this:

- Measured different traffic-related air pollutants
 - PM_{2.5}, PM₁₀, NO₂, Elemental carbon [EC], Black carbon [BC], NO_x, O₃, CO, PAHs, and UFP
- Measured pollution in different ways
- Direct sampling at school site indoors (2 papers), outdoors (1) or both (3)
- 2. Estimated pollutant exposure using geographically modelled pollution levels (7 papers)

Nine previous studies had investigated this:

- Measured outcomes in different ways
 - 1. School attainment:
 - Standardised test scores (maths, reading, reading comprehension scores)
 - Grade point average
 - 2. Psychological tests:
 - Working memory
 - Attention

BREATHE Study (Barcelona)

39 schools in Barcelona (Sunyer et al., 2015):

- Exposed to high and low traffic-related air pollution (NO₂)
- Paired by school socioeconomic index
- 2,715 children, aged 7-10 years

Pollution measurement:

- Measured over 1 week, two times 6 months apart, during class hours (9.00-17.00)
- Indoor air (single classroom) AND outdoor air (courtyard)
- Long-term school air pollution levels obtained by averaging the two 1 week measures
- Pollutants: EC, UFP (10-700nm), and NO₂

BREATHE Study (Barcelona)

Outcome measures:

- INATTENTIVENESS computerised Attentional Network Test
- WORKING MEMORY computerised n-back task; 2-back numbers and words d'
- SUPERIOR WORKING MEMORY computerised n-back task; 3back numbers and words d'

Inattentiveness and working memory assessed on 4 occasions over the course of 1 year.

- 1 year trajectories modelled
- Controlled for age, sex, maternal education, residential neighbourhood SES, air pollution exposure at home

BREATHE Study (Barcelona)

Findings (Sunyer et al., 2015):

- Children attending schools with higher levels of EC, NO₂, and UFP both indoors and outdoors experienced substantially smaller growth in all the cognitive measurements
 - Only exception: NO₂ did **not** have a significant association with attentiveness

Persistence of this finding supported by Forns et al. (2017):

Per one interquartile range increase in exposure, **reductions** in annual working memory development were equivalent to:

- Outdoor NO₂: 20% (95%CI, 30.1, 10.7)
- Indoor UFP: 19.9% (95%Cl, 31.5, 8.4)

Prevailing finding:

Increased pollution is associated with decreased executive functioning

PM demonstrates a negative relation with working memory, attention and other cognitive outcomes.

NO₂ may have a specific effect on working memory and may not affect other facets of executive function.

What are the implications?

TRAPS appear to hamper the developmental trajectory of working memory

- Levels of working memory are significantly associated with achievement at school (Cortés Pascual et al., 2018)
- Predictive relationship between executive function and working memory in particular in early childhood and performance through the rest of the educational system (Ahmed et al., 2019; Morgan et al., 2019)

What we did II: modelling

- We then used estimates from the existing literature to predict what could happen to working memory (a key component of executive functioning) following changes in pollution
- We focus on two pollutants:
 - Outdoor air pollution, measured by NO₂
 - Indoor air pollution, measured in PM_{2.5}

Effect of outdoor NO₂ on working memory

Outdoor Pollution (NO₂)

Summary of results

- Decreases in air pollution could lead to considerable increases in working memory:
 - A 20% reduction in outdoor NO₂ could improve the growth in working memory by about 6%, around 3 weeks worth of growth per-year
 - A 50% reduction in outdoor NO₂ could improve the growth in working memory by about 15%, around 7 to 9 weeks worth of growth per-year
- Similar results when we consider indoor air pollution (PM_{2.5})

Key takeaways

- Reductions in air pollution in and around primary schools could improve the working memory of children
- This is important as it is predictive of educational attainment

