The Well-mixed Model The well-mixed model assumes a uniform distribution of parameters in the room (e.g. Temperature & CO_2). This is often the starting point for thinking about ventilation. ## Carbon dioxide conservation $$V \frac{dC}{dt} = Q(C_o - C) + NG$$ Ventilation CO₂ from breath ## **Energy conservation** ## Ventilation $$Q = \sum_{\mathbf{k}_{\mathbf{w}}} \mathbf{k}_{\mathbf{w}}(\boldsymbol{\theta}) \sqrt{|\mathbf{T} - \mathbf{T}_{o}|} + k_{l} A_{s} \sqrt{|\mathbf{T} - \mathbf{T}_{o}|}$$ Flow through windows Natural leak rate C: CO₂ concentration *T*: room temperature **Q**: ventilation rate C_o : outdoor CO_2 concentration T_o : outside temperature V: room volume A_s : room surface area **N**: number of people (occupancy) G: per person CO2 generation rate ρ_a : air density c_p : air specific heat capacity *I*: thermal inertia of room objects λ : effective conductivity of walls W_p : per person heat output W_h : heating input k_w : window flow constant A_w : window area (function of opening angle) k_l : leak rate constant