

20 12

October 18 & 19, 2012 Delta Toronto Airport West

Air Emissions Prevention

- Air Pollution and GHG Emissions
- Balancing Objectives for Clean Energy Systems
- Technologies for Low NOx & System Efficiency
- Tradeoffs and Synergies

Rolls Royce RB211 DLE

Manfred Klein

Coordinator, Energy & Environment NRCC Gas Turbine Labs

613-949-9686 manfred.klein@nrc-cnrc.gc.ca

DOW/TransAlta, Ft. Sask GTCHP

Nexen, Long Lake AB

Typical Industrial Gas Turbine Energy Systems

IAGT

- Simple Cycle, Standby power
- New Gas Combined Cycle
- Combined Cycle Repowering
- Large Industrial Cogen
- Oilsands Gasification
- Pipeline Compression
- Small Industrial Cogeneration
- Municipal District Energy

About 25 000 MW in Canada

Many different types of gas turbine units;

- Aeroderivatives
- Small industrials
- Large Frame Industrials
- + Steam turbines & HRSGs

Air Pollution

- Sulphur Dioxide SO₂
- Nitrogen Oxides NO₂
- Volatile Organics VOC
- Fine Particulates PM
- Ammonia NH₃
- Carbon Monoxide CO
- Ozone Depleting CFCs

Greenhouse Gases

- Carbon Dioxide CO₂
- Methane CH₄
- Nitrous Oxide N₂0
- SF₆ et al

Air Emissions

"Cannot produce Air Pollution without making CO₂"

Air Pollution: NOx Emissions

$$\begin{array}{ccc} O + N_2 & & NO + N \\ N + O_2 & & NO + O \end{array}$$

3 Compounds of Concern:

 NO, NO_2 smog, N_2O ghg

Thermal NOx:

High Temperature Combustion

NOx increases with $T^{1.5}$ and $P^{0.5}$

Fuel NOx:

From N₂ Content of Oil, Coal

Nitrous Oxide is N₂O, a GHG

Air Pollution from Thermal Energy

Greenhouse Gases; CO₂ Emission Rates

(Heat Rate_{HHV} x Fuel CO₂ factor)

Coal **85-95 kg/GJ**

Heavy Oil 74 kg/GJ

Natural Gas 50 kg/GJ

Examples

New Coal Boiler

10 GJ/MWhr x 90 kg_{CO2}/GJ

 $= 900 \text{ kg}_{\text{CO}2}/\text{MWhr}$

Gas Turbine Combined Cycle

8 GJ/MWhr x 50 kg_{CO2}/GJ

 $= 400 \text{ kg}_{\text{CO2}}/\text{MWhr}$

Gas Cogen (FCP)

5 GJ/MWhr x 50 kg_{CO2}/GJ

 $= 250 \text{ kg}_{\text{CO}2}/\text{MWhr}$

Clean Energy Balancing Act

CLEANER ENERGY

New GTCHP and Combined Cycle systems with natural gas fuel have likely accounted for about 30% of Canada's GHG avoidance since 1995, plus 250 KT of air pollution reductions. About 70 TWhrs now generated from;

- 6000 MWe of GTCHP (+150 PJ heat)
- 7000 MWe of GTCC
- 2000 MWe of peak power

2012

'Cleaner Energy'

Emissions in Gas Turbine Engines

Factors Affecting NOx Emissions

- Unit efficiency (PR, mass flow, Turbine Inlet Temp)
- Engine type (Aero or Frame)
- Dry Low NOx combustor
- Full & Part load operation, starts
- Cold and hot weather
- Type of air compressor (spools)
- N₁/N₂, Output Speeds
- Specific Power (kW, per lb/sec air)
- NOx Concentration vs Mass Flow

Sample Emissions Unit Conversions for NOx

Percent O₂ conversions for ppmv

from 25 ppmv at 15% O_2 to value for 16% $O_2 = 21$ ppmv $3\% O_2 = 76$ ppmv

NOx ppmv to mg/Nm³ with the same % O₂ basis

from $50 \text{ mg/m}^3 = 24 \text{ ppmv}$

Natural Gas at 15% O₂ (LHV Basis, fuel input)

25 ppmv NOx = 0.1 lb/MMBTU (= 43 g/GJ) 1 lb_{NOx}/MMBTU = 252 ppmv

Diesel fuel at 15% O₂ (LHV Basis, fuel input)

25 ppmv NOx = $0.\overline{10}$ lb/MMBTU (= 43.5 g/GJ)

From **Solar Turbines** (mysolar.cat.com)
See "Customer Support" Toolbox

Gas Turbines - NOx Emissions (ppm at 15% O₂)

Uncontrolled; Older Units: 100-200 ppm
 Newer Units (High Firing Temp.) 200-300 ppm

Mass Rate/Energy Output NOx Estimate

- need mass airflow in kg/hr

$$\frac{\text{ppm x MassFlow (kg/hr) x m.wt.}}{\text{Power (MW)}} = \underline{\text{Kg}}_{NOx} / \text{MWhr}$$

Example (30 MWe unit, air = 100 kg/sec)

$$\frac{25 \text{ ppm}}{10^6}$$
 x $\frac{360 000}{30 \text{ MW}}$ kg x $\frac{46}{29}$ = **0.48 kg/MWhr**

(for CHP, can include the 'MWth' for a lower emission factor)

NOx Reduction Methods

Steam/Water Injection

- Prevention, 2/3 red'n to 1 kg/MWhr
- Some Combustion Component Wear
- Plant Efficiency Penalty
- Depends upon value of plant steam

(Kawasaki)

Selective Catalytic Reduction (SCR)

- NH3 injection into HRSG catalyst (~ 80% NOx red'n)
- Backend Control
 - Ammonia emissions & handling (toxic)
 - fine PM, N₂O?
 - Cold Weather, Cycling duty ammonia slip
 - Efficiency losses in HRSG
 - Full Fuel Cycle impact Prod'n, Delivery etc

IST Aecon

Dry Low Emissions Combustion

- Preventative reduction by 60-90%
- Maintains High Efficiency
- Larger Combustor Volume, more airflow
- Good experience with large industrial units
- Some Reliability Issues for Aeroderivatives
- Too Low Values may lead to inoperability and combustor problems
- How important are CO emissions?
- Effects of Plant Cycling
- Applied to Syngas combustion?

(Solar Turbines)

Aero-Derived DLN Systems

General Electric LM6000 DLE Triple Annular Dome

Rolls Royce RB211 DLE

(Series staged)

Large Frame Unit DLN

GE Frame 7 DLN2

DLN Combustor Dynamics

Acoustic Oscillations Under Transient Conditions, caused by;

- Ultra-Low NOx ppm Design
- CO and turndown req'ts
- Cold weather conditions
- Ambient Temp, Pressure Ratio, Fuel properties (Nat Gas, LNG, Syngas ...)
- Natural Frequencies, Resonance, Vibration,
 Trips & Shutdown

Cyclic Loading

GTCC Unit with reheat steam turbines

Potential brown plumes during long startups

(turbinetech.com)

Fine Particulate Emissions

(AP42 - 0.07 lb/MWhr?)

Does dry NG combustion produce PM_{2.5} emissions?

2 million t/yr Air

Air Filter 95 - 99.5%

Ambient air properties & Filter efficiency?

What is the Inlet-Exhaust mass balance?

Are there any Air Toxics?

DLN combustor have most incoming air going through direct combustion

Modern gas turbine air filter system is cleaning the air by over 99 %

Small amount of PM escapes, but must go through DLE combustor

Critical Elements for CHP Systems

Producing 2-3 forms of energy from the same fuel, in same process

- Awareness of Opportunities
- Nearby Site, Business Case
- Plant Sizing to Match Thermal Load
- Heat to Power ratio
- Seasonal Heat/Cooling Design
- Utility Interconnection, T&D savings
- Availability of Gas, Bio, H₂ fuels
- Low Air Pollution, Local Impacts
- GHG Allocation (Fuel Chargeable to Power)
- Output-based Emission Rules
- Energy Quality (Exergy)

Quality of Energy

- Electricity & Shaft Power
- Industrial Process Heat
- Cooling
- High Pressure Steam
- Hot Water
- Space Heating
- All of these can be made with same fuel
- Need to Use Energy at Best Level
- Environmental Standards could Encourage this
- 80% efficiency? GHG emissions allocation?

Low

Quality of Energy - Examples of Exergy Factors

Energy Form	Exergy Factor
Mechanical energy	1.0
Electrical energy	1.0
HP steam (600 psi and T=740 °C)	0.72
HP steam (600 psi and T _{sat} =250 °C)	0.47
LP steam (15 psi and T _{sat} =100 °C)	0.24
Hot water (T _{sat} =90 °C)	0.22

The 'exergy' of an energy form or a substance is;

- a measure of its usefulness or quality,
- the maximum work which can be produced by a system or flow of energy

Waste Heat and Duct Burners in CHP

- Waste Heat & Steam Turbines = Emissions Prevention
- Duct Burners for auxiliary firing can double/triple steam output from HRSG ~100 % efficiency for heat)
- Duct burners can add a bit of combustion NOx ... but they allow a smaller size of GT engine for given heat load (reduces annual fuel & emissions)
- Also increases heat transfer, lowers stack temp
- Allows for greater fuel flexibility, using waste fuels

Duct Firing

Creates higher Heat:Power ratio which can enhance system efficiency and plant operating flexibility.

To meet periodic high steam demands;

 Lowers stack exhaust temperature, improving heat recovery and efficiency

C. Meyer-Homji, Bechtel Corp.

- Allows for a smaller Gas Turbine engine choice, or avoids an additional Boiler
- Important for Heat Recovery Allowance

Emissions Measurement

- Compliance and Emission Inventories
- Emissions Trading NOx, SO₂, CO₂
- Continuous Emissions Measurement
- Process Estimation Methods
- Surrogate & parametric methods
- Predictive Emissions Monitoring

PEMs

- good predictability of GT operation
- cost-effective emissions reporting
- process efficiency optimization

Emissions Averaging Time is Important

CEM Specialties

Env Can CEM van at TCPL in Ont. 1995

Env'tl Solutions for Gas Pipeline Compression

- Efficient and Reliable Gas Turbine, with DLN Combustion
- Minimizing Stops and Starts
- Waste Heat Recovery
- Gas-to-Gas Exchange, Aerial Coolers
- Dry Gas Seals to reduce methane leakage, and reduced Venting
- Air or Hydraulic Engine Starters
- System Optimization

Fuel Flexibility - Combustion Characteristics of SynGas Fuels

Hydrogen

- High Volume and Heat Value
- High Flame Temp. and Speed
- Flashback, auto-ignition
- Higher NOx ?

Carbon Monoxide

- High Flame Temp.
- High Density
- Low flame speed
- Toxicity

Nexen Long Lake,

7EAs with syngas

Fuel Properties	CH₄	H ₂	со
LHV [MJ/kg]	50.3	119.9	10.1
[MJ/m ³]	33.9	10.2	12.6
Flame speed in air [cm/s]	43	350	20
Stoich. comb. temp. [K]	2227	2370	2374
Density [kg/m³ _{STP}]	0.72	0.09	1.25
Specific heat [kJ/kg K]	2.18	14.24	1.05
Flammability limits [vol %] (Hani	5 - 15 nemann	4 - 75 et al, Siei	12.5 - 74 mens)

L. Cowell, Solar Turbines

Full Fuel Cycle Emission Example (3 TWhrs)

(Production, Processing, Delivery, End-use)

Canadian GT Emission Guidelines (1992)

- Guideline Reflects National Consensus
- Balanced NOx Prevention Technology
- Output-Based Standard for Efficiency (140 g/GJ_{out} Power + 40 g/GJ Heat)
- Engine Sizing Considerations
- Promotes Cogeneration and low CO₂
- Peaking units (<1500 hrs/yr)
- Over Entire load range
- Flexible Emissions Monitoring
- Cold Weather considerations

Gas Turbine Emission Prevention & Control (NOx, GHGs)

GE Power Systems

Concluding Remarks

- Gas Turbine Systems have very low Air Emissions (GHGs, NOx/CO, toxics)
- All types of Emissions can be prevented with System Integration
- Many Synergies and Tradeoffs Balancing of priorities?
- **BAT** = Waste Heat, DLN Combustion, Syngas fuels, CHP & Polygeneration
- System Efficiency and Combustion Reliability are important
- Tech Issues; Specific Power, Duct Burners, Plant Cycling, SCR controls?
- Advantages of 'Output-based' emission rules
- Need Training and Site Visits

TCPL Cornwall, 1982

GTAA Plant Tour, 2006

TCPL Carseland, 2012