Liquefaction Plant Operations and Maintenance

Pradeep Pillai

Global Chief- Process Engineering

Bechtel Oil and Gas Inc.

IAGT LNG Workshop Vancouver, May 14-16, 2014

Improving LNG Plant Operations and Maintenance

- High Feed Gas Price
- Potential CO2 taxation
- GHG Footprint reduction
- Feed Supply Limitation

LNG Block Flow Diagram

Basic Refrigeration Process

Cooling Curves

Avg approach= 16F

Avg approach= 12F

Plant Auxiliary Systems and Utilities

An LNG Facility requires key utility systems

- Flare System
- Fuel Gas
- Hot Oil
- Power Generation
- Refrigerant Storage
- Firewater
- Water & Effluent Treatment Systems
- Plant & Instrument Air, and Nitrogen Systems

Acid Gas Removal

CO2 Absorber – Regenerator Stripper

Acid Gas Removal

Acid Gas Removal

Acid Gas Specifications

Foaming

Corrosion

Amine Losses

Amine Absorber Foaming

Amine Foam Test

Liquefaction Plant Operations and Maintenance

Amine Regenerator Reboiler Corroded

Absorption Mode:

Wet Feed Gas enters the dehydrator from the top. Moisture in the wet gas adheres to the porous surface of the adsorbent as it flows downward through the bed.

Regeneration Mode:

Hot Regen Gas enters the dehydrator from the bottom. Moisture is driven off by the hot, dry gas restoring the adsorbent capacity.

CoolingMode:

Dry, cool Regen Gas enters the dehydrator from the bottom. The bed is cooled getting is ready for the Absorption mode.

Mercury in LNG Feed

Gas Field	Amount (µg/Nm³)
Groningen	180 - 200
Arun	250 - 300
Albatross & Askeland	1.0
Niger Delta	10
North & East Coast Trinidad	12
Goodwin,N Rankin & Perseus	38
Saih Nihayda & Saih Rawl	60

- Mercury Removal Beds utilize sulfur impregnated carbon to remove mercury contaminants.
- Finally, the gas is dust filtered via the Mercury Removal After Filters before flowing into liquefaction.

Mercury Removal

Brazed Al Heat Exchanger

BAHX Corrosion

Liquefaction Plant Operations and Maintenance

ConocoPhillips Optimized Cascade Process

APCI- C3 MR Process

Temperature Profile

Average Daily Temperature Profile

Plant Production and Ambient Temperature

Figure 11. Impact of Evaporative Cooling on LNG Production and Fuel Usage.

Boundary Conditions

- No Recycle for High Ambient (HA) Case
- Margin to Surge
- Low Ambient (LA) Case
- Margin to Stonewall
- Compressor Speed
- Generally limit to 102-103%
- Operable for High-High Ambient (HHA) Case
- Operating on Surge Control

BOG Generation and Management

- Rotating Equipment Heat Gain
- Ambient Heat Leak
- BOG from Flash
- Ship Return Vapor
- Additional BOG from Piping/Existing Facility
- Multiple LNG Trains and BOG Networks

Ship Loading Vapor- BOG

Figure 6. Heat Contribution Factors Generating BOG.

LNG Tank Pressure- Ship Loading

Dynamic Simulation

0.05

150

Time (min)

100

250 300

Comparison of model predictions (blue) with plant data (red)

The response of refrigeration compressor in a trip that happens at 2 sec. The surge margins for 3 stages are shown in the left plot.

The right plot shows the speed response of the tripped compressor (blue line) and the parallel compressor that is still in operation

Liquefaction Plant Operations and Maintenance

250

200

Time (min)

Operator Training Simulator - Components

- OTS stands for Operator Training Simulator
- Instructor Station
- Model Station(s)
- DCS and Safety System
- Operator Stations

Operator Training Simulator – How it is used

Client

- Exact replica of the plant and control system
- Train new operators new skills
- Train experienced operators refresh skills
- Train for process upsets, plant start-up, shutdown and emergency response

Bechtel

- Check control strategy
- Safety system design issues
- Verify Start-up/Shutdown procedures

Operator Training Simulator – How it is used

- APC is a multi-variable control
 - One controller with many manipulated variables and many control variables
 - APC "sits" on top of DCS control
- Objective is to increase production
- smooth out LNG production as ambient temperature changes
- Maximize plant efficiency for same feed rate

