

Gas Turbine Systems for Cleaner Energy

- Air Pollution and GHG Emissions
- Emission Guidelines and Standards
- Balancing Emission Prevention & System Efficiency
- Clean Energy Considerations

Manfred Klein

MA Klein & Associates maklein@rogers.com

Presented at the Gas Turbines Energy Network (GTEN) 2023 Symposium Banff, Alberta, Canada

Typical Industrial Gas Turbine Energy Systems

- Simple Cycle, Standby power
- New Gas Combined Cycle
- Combined Cycle Repowering
- Utility Coal Gasification
- Large Industrial Cogen
- Oilsands Gasification
- Pipeline Compression
- Small Industrial Cogeneration
- Municipal District Energy
- Micro-T Distributed Power/Heat
- Waste Heat Recovery
- Process Off-Gases, Biofuels

About 30 000 MWe installed in Canada (~ 470 plants, 1200 units)

Air Emissions

(Smog, Acid Rain, Climate Change, Toxics)

Health & Ecosystems

Extreme, Unpredictable Weather

Air Pollution

- Sulphur Dioxide SO₂
- Nitrogen Oxides NO₂
- Volatile Organics VOC
- Carbon Monoxide CO
- Fine Particulate PM
- Mercury & Heavy Metals
- Ammonia

Greenhouse Gases

- Carbon Dioxide CO₂
- Methane CH₄
- Nitrous Oxide N₂0
- SF₆ et al

Ozone Depletion

CFCs

What are Cleaner Energy Choices?

- Aggressive Energy Conservation and Efficiency
- Small Renewable Energies, Biomass Fuels
- High Efficiency Nat. Gas Systems (GTCC, GTCHP)
- Large Hydro & Nuclear Facilities
- Waste Energy Recovery, Hydrogen systems

GT systems can do 25-30% of these reductions

- Air Pollution
- GHG Emissions
- Air Toxics
- Water Impacts
- Energy Security, Diversity
- Phaseout of Coal Steam Plants
- Support for Renewable Energy
- Hydrogen and CCS

Comparing Emissions;

"Cannot produce Air Pollution without making CO₂"

Gas Turbine systems on NG fuel have replaced/avoided many high emission systems, and have supported Renewable Energy

Brayton & Rankine Cycle for Gas Turbine Systems

Gas turbine based on airflow (gas = air = N_2 , CO_2 , O_2 , H_2O) Steam turbine based on steam flow

Air Pollution - NOx Emissions

$$O + N_2$$
 $NO + N$
 $N + O_2$ \longrightarrow $NO + O$

3 Compounds of Concern:

 $NO, NO_2 \text{ smog }, N_2O \text{ ghg}$

Thermal NOx:

High Temperature Combustion

Fuel NOx:

From N₂ Content of Oil, Coal

Nitrous Oxide is N₂O, a GHG

Balancing of NOx, CO and reliability

Cogeneration or Combined Heat & Power (CHP)

Producing 2-3 forms of energy from the same fuel, in same process

Factors Affecting NOx and CO₂ Emissions in Gas Turbines

- Unit efficiency (<u>AIR</u> mass flow, Pressure Ratio, Turbine Inlet Temp)
- Engine type (Aero or Frame)
- Fuels (CH₄, H₂ & syngas, liquids)
- Dry Low NOx combustor
- Part load, Operating Range, starts
- Cold and hot weather, humidity
- Compressor spools, N₁/N₂ speeds
- Specific Power (kW per lb/sec air)
- Waste heat recovery
- NOx Concentration vs Mass Flow
- Tradeoffs w/ other emission types

Are there PM_{2.5} particulate emissions from gas-fired turbines?

(AP42 - 0.07 lb/MWhr?)

Modern turbine air filter systems clean the incoming air with PM₂ by 99 %

Small amounts of PM can escape, but must go through DLE combustor

Clean Air for New Gas Turbine Systems

Emissions of fine particulates?

Likely not – the incoming Airflow can be filtered down to $PM_{0.2}$ by 80%

GT system mass balance?

Importance of Environmental Criteria, Units

<u>A.</u>

- ppmv at Exhaust
- ppb at fence line
- mg/m³
- kg per Fuel Input

<u>B.</u>

- mass per time (t/yr)
- kg per MW_e-hour output
- kg per MW_{th}-hour

Concentration-based units, in ppmv and mg/m³, require O2 content (15%)

- some of these inherently include system efficiency

(CO₂ emissions at 35 000 ppmv?)

'Clean Energy' and climate solutions may be better handled with 'B'

Examples of International Standards

(for GT Units Larger than ~ 10 MWe, gas fuel)

United States 2 - 42 ppm

United Kingdom 60 mg/m³

Germany 75 mg/m³

France 50 mg/m³*

Japan 15 - 70 ppm

Canada 85 - 140 g/GJ_{out} *

Australia 70 mg/m³

EU LCPD 50 - 75 mg/m³*

World Bank 125 mg/m³

- Facility Cogeneration Incentives (Values Subject to Change)
- New US EPA rules, 2006

Emissions Criteria

Traditional concentration (ppm, mg/m³) and fuel input (g/Gj_{in} lb/MMBTU) criteria;

- difficult to interpret
- do not give appropriate design signal
- do not encourage system efficiency
- do not encourage Pollution Prevention
- Aviation uses 'LTO' Operations Cycle
- Recip engines have kg/MWhr rules

ICAO - aircraft (kg_{NOx} /thrust)

Output-based Rules;

Mass per Product Output; kg/tonne, kg/MWhr, g/GJ_{out} tonnes/year

\$/tonne

\$/MWhr

Lbs / Hphr

Gas Turbine NOx Emissions (ppmv at 15% O₂)

$$ppmv_{15} = ppmv_{meas} \frac{(20.9 - O2_{15})}{(20.9 - O2_{meas})}$$

Uncontrolled; Older Units: 100-200 ppmv Newer Units 200-300 ppmv

F-factor (m³ per GJ) exhaust flow to convert ppmv into grams per GJ heat Natural gas; **240** m³ per GJ Hydrogen blends < 200

Mass Rate/Energy Output NOx Estimate; need mass airflow in kg/hr

$$\frac{\text{ppmv x MassFlow (kg/hr) x m.wt.}}{\text{Power (MW)}} = \underline{\text{Kg}}_{NOx} / \text{MWhr}$$

Example (30 MWe unit, air = 100 kg/sec)

$$\frac{25 \text{ ppmv}}{10^6}$$
 x $\frac{360 \ 000 \text{ kg}}{30 \ \text{MW}}$ x $\frac{46}{29}$ = **0.48 kg/MWhr**

(for CHP, can include the 'MWth' for a lower emission factor)

Canadian Gas Turbine Emission Guidelines (1992)

- National Consensus, NOx <u>Prevention</u>
- Output-Based Standard for System Efficiency (140 g/GJ_{out} Power + 40 g/GJ Heat)
- Engine Sizing Considerations
- Balance Air Pollution with Greenhouse Gases
- Promotes Cogeneration, WHR and low CO₂
- Added NOx margin for GHG tradeoffs
- Operating Margin for Peaking Flexibility
- Flexible Emissions Monitoring

 Mass & Energy criteria for system efficiency, rather than volume & ppmv (for hydrogen)

CCME - Canadian Council of Ministers of Environment, 1992

Canadian Gas Turbine Guideline (1992)

Energy Output-based Guideline allows higher NOx for smaller units, which tend to have higher system CHP efficiency

1992 Emission Guideline based on;

ASME and IAGT events (1989/91), industry consultation, and

TCPL Nipigon Waste Heat Recovery, 1991

Rolls Royce RB211 DLE

TransAlta Ottawa Hospital Cogen, 1991

GE LM6000 steam injection

New US EPA Rules for Gas Turbines (2006)

Can choose Output-based, or Concentration-Based Rules (EPA OAR-2004-0490)

Size, Heat Ir	nput (MMBTU/hr)	ppmv	lb/MWhr
(New Units, N	latural Gas Fuel)		_
< 50 (elec	tricity, 3.5 MWe)	42	2.3
(mechanical, 3.5 MW)		100	5.5
50 to 850	(3 – 110 MW)	25	1.2
Over 850	(> 110 MW)	15	0.43
Units in Arc	tic, Offshore		
	< 30 MW	150	8.7
	> 30 MW	96	4.7

- MW could include MWth for waste heat in CHP
- Efficiency based, SCR likely not required
- Flexible Emissions Monitoring

Part III

Environmental Protection Agency

40 CFR Part 60

Standards of Performance for Stationary Combustion Turbines: Final Rule

Revised Federal Rules for Canada

Guidelines for the Reduction of Nitrogen
Oxide Emissions from Natural Gas-Fuelled
Stationary Combustion Turbines

:

NO_x Emission

bine Power	NO _x Emission Limits	limits (ppmv)@ 15% O₂
iting (MW)	(g/GJ _(power output))	_
1 and < 4	500	75
1 and < 4	290	42
1 and < 4	exempt	exempt
4 - 70	140	25
> 70	85	15
> 70	140	25
	1 and < 4 1 and < 4 1 and < 4 4 - 70 > 70	ting (MW) (g/GJ _(power output)) 1 and < 4 290 1 and < 4 exempt 4 - 70 140 > 70 85

EU Large Plant Combustion Directive (LCPD)

- Emission Limit Values for SO₂, NO_x, PM for most industrial plants with over 50 MWth Heat Input
- Combines plant permits with trading allowances for existing and new facilities (now under review with EU ETS)
- Refers to GHG trading for plants > 20 MWth
- EU BAT Reference Guide (BREFs) July 2017 Decision
 √

• 50 mg/m³ (simple) or 75 mg/m³ (cogen w/ 75% eff'y)

Combined Cycle: 50 x eff'y / 35

Mechanical drives: 75 mg/m³

Liquid and other gaseous fuels: 120 mg/m³

US EPA CLEAN AIR ACT REGULATION OF GHG EMISSIONS (May 2023)

PROPOSED EMISSION LEVELS FOR NEW COMBUSTION TURBINES

Best system of emission reduction (BSER) standards

	Phase 1	Phase 2 2032-2035	
In	termediate Load (Capacity Fa	ctor 20% - 50%)	
Efficient Simple cycle Generation	1150 lb CO ₂ /MWhr	With 30% low-GHG hydrogen co-firing; 1000 lb CO ₂ /MWh	
Ba	se Load Subcategory (Capaci	ty Factor >50%)	
Efficient Combined cycle Generation	770 lb CO₂/MWhr for > 2000 MMBtu/h	GTCC with 30% low-GHG hydrogen co-firing: 680 lb CO ₂ /MWh	
Efficient Combined cycle	770 – 900 lb CO₂/MWhr for < 2,000 MMBtu/h	with 90% CCS, begin 2035 90 lbCO ₂ /MWh	

Proposal for New Stationary Combustion Turbines

- Standards effective from date of publication (May 23, 2023)
- Three subcategories: base load, intermediate load, low load
- Base load units have two pathways: 90% CCS in 2035 or 96% low-GHG hydrogen in 2038

NOx Reduction Methods

Steam/Water Injection

- Prevention, 2/3 red'n to 1 kg/MWhr
- Some Combustion Component Wear
- Plant Efficiency Penalty
- Depends upon value of plant steam

(Kawasaki)

Selective Catalytic Reduction (SCR)

- NH3 injection into catalyst in HRSG
- ~ 80% NOx Reduction
- Backend Control
 - Ammonia emissions & handling (toxic)
 - fine PM emissions, N_2O ?
 - Cycling duty ammonia slip
 - Efficiency loss in HRSG
- Marginal, low \$/tonne benefit after DLN

Gas Turbine Dry Low Emissions (DLE) Combustion

- **Preventative reduction by 60-90%**
- Fuel mixes with air before flame zone
- **High Temperatures and Pressures**
- Too Low Values may lead to inoperability and combustor problems
- Mech. drives need wide operating range
- **Effects of Plant Cycling, Transients**

General Electric

- H₂ fuel blends have different properties
- need flexibility on NOx emission rules,
- plus care for safety

Volume-based emission criteria?

EA Assessments of Gas Turbine Plants

(2002 Study, for TransCanada P/L and Environment Canada)

- Companies may be required to install added ammonia-based SCR controls after DLN
- Ammonia transportation & handling is a serious local health and safety issue
- Given the capital & operating costs and collateral impacts associated with SCR systems, the environmental benefits do not justify the economic expense.

Marginal, low \$/tonne benefit after DLN

Emissions Valuation; 300 MWe GTCC Plant

2 TWhrs	With SCR System		DLN Without SCR	
2 1 1 1 1 1 1 3	tpy	\$000/yr	tpy	\$000/yr
NOx	100	200	400	800
Ammonia (5 ppm)	50	250	0	0
PM 2.5	50	250	0	0
N2O x 310	10 000	200	0	0
CO ₂	727000	14540	720000	14400
GHG (from NH ₃)	600	<u>12</u>	0	_0
		\$15450 K		\$15200 K

Air Pollution @ \$2000 & \$5000/tonne GHGs @ 20/tonne

Waste Heat and Duct Burners in CHP

- Duct Burners for auxiliary firing can double/triple steam output from HRSG ~100 % efficiency for heat)
- Duct burners can add a bit of combustion NOx, ... but they allow a smaller size of GT engine for given heat load (reduces annual fuel & emissions)
- Also increases heat transfer, lowers stack temp
- Allows for greater fuel flexibility, using waste fuels

(Coen)

Env'tl Solutions for Gas Pipeline Compression

- High Operating Pressure ($low \triangle P$)
- Efficient and Reliable DLN Gas Turbine
- Minimizing Stops and Starts
- Waste Heat Recovery
- Gas-to-Gas Exchange, Aerial Coolers
- Dry Gas Seals to reduce Methane Venting
- Leak Monitoring, Better Valves & Regulators
- Air or Hydraulic Engine Starters
- Hot-Tapping Procedures, Gas Transfer Units
- System Optimization, Reliability

Gas Compressor Dry Gas Seals

Hydrogen - a 'manufactured' form of energy carrier;

@ 0.14 GJ per kg, regardless of source, H₂ is expensive (\$ per GJ)

High Value Energy Applications

Industrial cogeneration

- Small systems for onsite use,
- or larger systems for power exports

District energy w/ CHP systems

- Hot and cold water piping, LP steam
- electricity for public transit

Utility peak power

- Support power outages
- follow intermittent renewables

High Temperature Furnaces

- Cement, steel & ethylene processes
- process feedstocks

Cogeneration Whitby ON

District Energy, CHP

GT Peaking Meadow L. SK

Cement Kiln Burner

Considerations for Hydrogen-Blend Combustion

H₂-NG blends; an important env'tl topic

Non-linear performance, difficult to generalize on combustion, performance and safe operation

- Higher volume flows, small fuel injection points
- Instabilities, Auto-Ignition, Blow-off, Flashback
- NOx emissions can be a barrier to H₂

NG fuel for startup, and designs needed for operation on various H₂ blend ranges

Mass & Energy criteria for system efficiency rather than volume and ppmv

H₂ applications need flexibility on NOx emission rules, plus care for safety

Add a NOx margin for GHG tradeoffs?

GE DLN 2.6e

Hydrogen Blending (K.Bohan, RR/Siemens)

Recent Study on Pollutant Emissions Reporting (2021)

Comparison of H₂ blends for NOx emissions based on;

- ppmv dry @ 15% O₂, and
- mass per energy & output

Hydrogen has more exhaust moisture, spec.heat, and different use of oxygen

On a ppmv basis, H₂ emissions of NOx can be 20-40 % higher than on NG

On a gr/GJ or lb/MWhr basis, they may be in the same range as NG DLE

Would mass/output-based emission stds make a difference in developing reliable low GHG combustors for H₂ blends (op range, flex %, transients?

GT2022-80971

Electric Power Research Institute, Georgia Tech. and Ecole Polytechnic

Carbon Capture and Exhaust Gas Recirculation

- EGR to reduce the cost of CO₂ capture
- Reduces system efficiency
- Reduced NOx emissions, higher CO
- Duct burning may be difficult
- Practical capture; 90 % ? or ___ kg/MWhr

Emissions Measurement

- Continuous Emissions Measurement
- Process Estimation Methods
- Surrogate & parametric methods
- Predictive Emissions Monitoring

<u>PEMs;</u>

- good predictability of GT operation
- cost-effective emissions reporting
- use of F-factors for mass emissions
- process efficiency optimization, GHGs

Measurement sampling;

Consider longer averaging times

(CEM Specialties)

EnvCan CEM van (Ont 1994)

LNG System Environmental Performance

Process and Fuel Efficiency

- Liquefaction design choices
- Feed conditions, Precooling methods
- Compressor drivers, Aero vs Frame GTs
- WHR and Cogeneration, Low methane loss
- Variable Speed Electric Drives
- TurboExpanders, Absorption Chillers
- Flaring reduction, use BOG fuel

LNG Exports to Asia or Europe

1 bcf/day = 7 mtpa

For mix of GTCHP & GTCC,

1 bcf/day → 6000 MWe → 40 million MWhr

Lifecycle GHG red'n from coal can be about

0.6 t/MWhr = 24 MT/yr red'n per bcf/d LNG

Hydrogen Fuels in Gas Turbine Systems

Maximizing System Reliability and Safety

H₂/NG readiness certificates?)

Potential for GT Distributed & Integrated Energy Systems

Electrification/Hybridization Flexibility & Resilience Support v-RE

GTCC, CHP (MWe + MW_{th}) Public Transit Heating & Cooling Services

Univ of Calgary CHP Plant

Heating & Cooling Services

Combined Cycle

EV Charging, Hybrid cars

District Energy

plus; Renewable Natural Gas, Off-peak Hydrogen, Synthetic Hydrocarbons Electricity Storage & Batteries, Thermal Hot/Cold Water Storage

Organizations for Gas Turbine Energy Systems

(Training, Networking, Research, Policy)

Gas Turbines for Energy Network (GTEN)

ASME TurboExpo
Int'l Gas Turbine Institute (IGTI)

European Turbine Network (ETN Global)

Global Power and Propulsion Society (GPPS)

Related Groups

- National Research Council Canada (NRCC)
- Electric Power Research Institute (EPRI)
- US DOE Nat'l Energy Technology Lab (NETL)

Considerations for a Clean Energy Transition

Gas turbine systems powered by air mass flow have contributed a lot to clean energy systems in many applications

- Energy Diversity, Security and Reliability are very important
- All potential solutions will be necessary
- Expensive H₂-based fuels can contribute in high value applications
- Improved standards must be developed to ensure Hydrogen systems are designed for safe and reliable operation
- Air emissions reg'ns should use energy output-based rules
- Need focused education & training (GTEN committee can help)

