

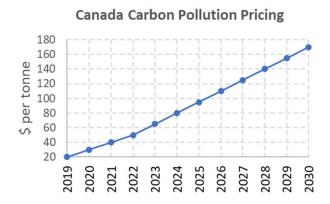
Gas Turbine Technology Enhancements for Traditional and Novel Applications: Improved Fuel Efficiency, Use of Low Carbon Fuels and Low Combustion Emissions

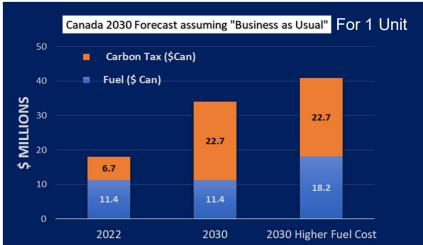
Our Speaker(s)

Donald MacDonald – Energy Transition Manager, Siemens Energy Canada

Marc Füri – Combustion Key Expert, Siemens Energy Canada

Siemens Energy covers the complete energy value chain

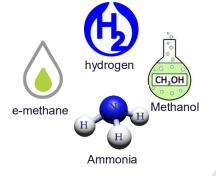

Developing Solutions for a Sustainable Future


SGT-A35 Gas Turbine Installed Base Business as Usual?

Year 2030, Baseload, 8760 hrs	Per Unit	Canada	Global
Number of Units	1	91	660
Capacity	28 - 34 MW	2.6 GW	18.9 GW
CO ₂ Emissions (annual)	133 000 t	12 millon t	87 million t
Carbon Price (per tonne)	\$ 170 / t	\$ 170 / t	\$ 80 /t (indicative)
Carbon Price (annual)	\$ 22.6 million	\$ 2.1 billion	\$ 15.2 billion

Fuel Cost \$5 to \$8 /MMBTU; CO2 cost \$50 to \$170 / tonne UNRESTRICTED

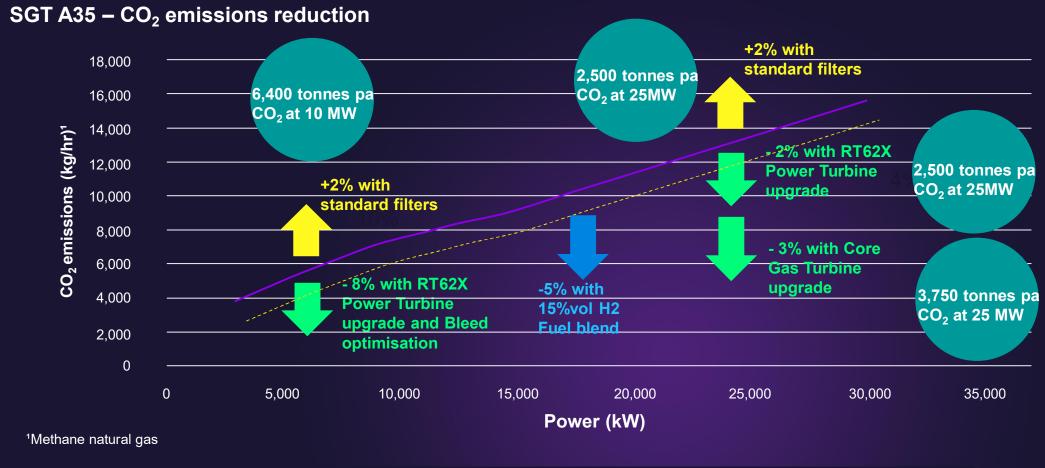
How to reduce carbon emissions



Post Combustion Capture & storage

Replace or blend the gas turbine's fuel supply with Carbon free/neutral fuels

Improve Efficiency, use less fuel



UNRESTRICTED

Product Efficiency Modifications

Immediately Available Solutions

Renewable Liquid Fuels – Known Solutions Requiring Demonstration

SIEMENS CHOCK

Bio-fuels made from biological feedstocks such as agricultural waste, municipal solid waste and sewage

Electro-fuels made using captured carbon dioxide and hydrogen produced from renewable electricity

Examples – methanol, ethanol, bio-diesel, hydrotreated vegetable oil, sustainable aviation fuel

Optimize choice of fuel based on properties, availability and price

Demonstrations with operators and developers that are considering using green fuels

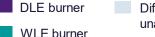
Example - Methanol

Lower carbon alternative to diesel using existing infrastructure

Bio-methanol or electro-methanol options

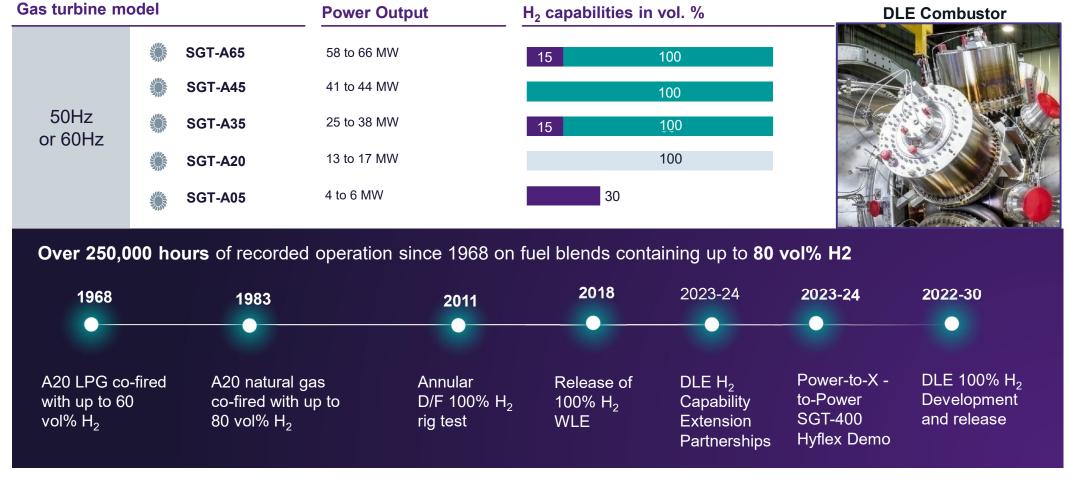
Established infrastructure, green production increasing

Fuel system & burner upgrade required, fire and gas system should be assessed


SGT-A20 demo at RWG in Aberdeen, UK

Coming in fall of 2022

Live stream of the test



Hydrogen Capability: Aeroderivatives

Diffusion burner with unabated NOx emission

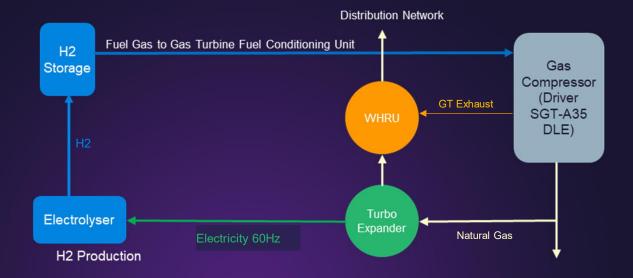
100% Hydrogen firing possible today in WLE configuration

Decarbonizing Midstream Gas CompressionFeasibility Study and Preliminary Concept Design

Siemens Energy and Enbridge Gas partnership

Self production of H2 and blending into SGT-A35 DLE fuel at an Enbridge site

H2 production by electrolysis, powered using waste energy recovered from existing gas pressure let down process



Demonstrate capability of the gas turbine with up to 40% volume H2, by combustor rig test and site engine test

Reduce CO₂ emissions by up to 17%

Hydrogen Deployment Vision for Compressor GT

SGT-A35 (34-38 MW)

SGT-A05 (4-6 MW)

Challenges	Solutions
Wide Range of Power	Scalable to 300+ MW with A35 & A05 combinations
City Location	Power dense, small footprint
Emergency Grid Backup	Very fast start (< 2 minutes) with no hot lockout Instant with batteries
Grid Capacity Limitations	Dispatchable peaker
Start & Operational Reliability	Extremely reliable with N+1 or N+2 redundancy
Fuel Flexibility	Multi fuel options with fuel changeover at power
Capable of up to 100% H2	Upgrades available 2030 or earlier
Low Operating Expenses	Low fuel and oil consumption, low maintenance

Some Combustion considerations...

Fuel Interchangeability

Wobbe index

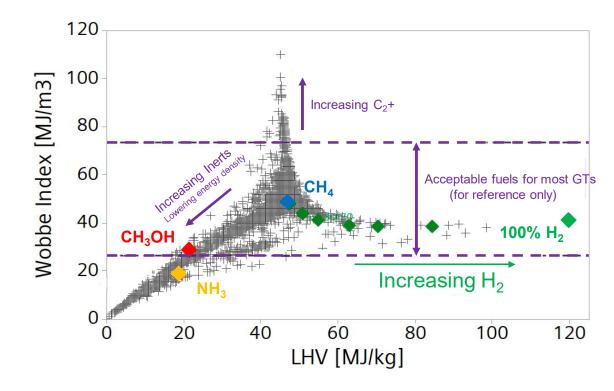
NH₃

 Uncracked NH₃ (Gaseous at SGT-A35 injection conditions) has a low WI

=> Larger Injector required (larger fuel passages)

CH₃OH

 CH₃OH (liquid) has a 2.3x smaller energy density (MJ/L)


=> Larger Injector required (larger fuel passages)

H_2

 Pure H₂ will most likely require a Larger Injector area (approx. +20%)

Note: that modifications to other systems will also be required

Fuel	NH ₃	CH₄	H ₂	СНЗОН	Diesel
Lower heating value (MJ/kg) (MJ/L)	18.6 (11.5)	50.0	120	20 (15.6)	43.4 (38.6)
Wobbe index (MJ/m3)	18.7	48.2	40.9	[-]	[-]
Maximum laminar burning velocity (m/s)	0.07	0.37	2.91	0.45****	0.33****

Wobbe-index =
$$\frac{LHV}{\sqrt{\rho_{rel}}}$$
 $(\rho_{rel} = \frac{\rho_{gas}}{\rho_{air}})$

Methanol:

Some Combustion considerations...

(Not exahustive!)

Why use Methanol as a fuel for land-based gas turbine application?

- Improved heat rate* (~+3% vs wet diesel)
- Higher power output at constant turbine inlet temperature (potentially as much as 10%)
- · Reduced NOx emissions (potentially as much as 75 %). Better NOx with Dry Methanol than Diesel with water injection*!
- No soot production no visible exhaust
- No Sulfur
- Reduced life impact because:
 - · Methanol is a cleaner liquid fuel than diesel (Hot section
 - Virtually no flame radiation (combustor components)
- · Infinite shelf life
- Power-to-X: Potential reduction of CO₂ footprint if made from renewable (30 to 90% depending on the process used to synthesize the methanol)
- Cheaper than Diesel on a \$/MJ basis**!

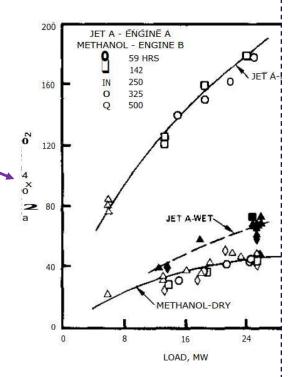
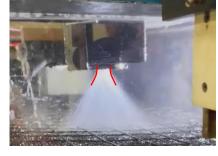
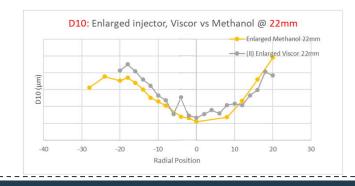


Figure 4 NOx at 15% 02 vs. Load on Methanol

A20 Case study



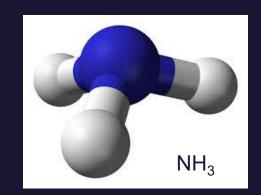
Cone Angle



Conventional Dual Fuel Swiler Burner

Increased Flow Capacity Dual Fuel Swiler Burner

Dropplet size



^{**} https://www.methanol.org/ - based on European and Chinese case studies

Ammonia:

Some real emission data...

Ammonia as a fuel for land-based gas turbine application?

Scaled SGT-A35 testing at SINTEF

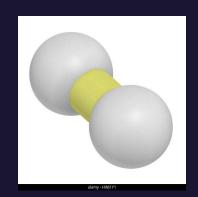
Experimental set up

How to burn NH₃ in a GT?

- [Burn NH3 directly (unlikely due to low reactivity and major modifications to key systems required)
- (Fully) "Crack & Burn" (75% H₂ 25% N₂)
- Partially "Crack & Burn" (mixture of NH₃, H₂ & N₂)

• Partially "Crack & blend" (mixture of NH3, H2, N2 & CH₄) • NH₃ - CH₄ blends Dry Low Emission (DLE) or conventional (RQL)? SGT 750 combustion system (GT2021-60057) ➤ Partially Cracked NH₃: NOx and N2O vs Primary zone Φ ▶ Pressure effect: PZ of variations for 30% NH₃ - 70% CH₄ NO_@15%O, vs PZ ER for 1 - 2 - 5 [bar] and 30% NH 2500 ◆ 5 [Bar]. 30%NH, -70%CH, NO, @15%O, (Power = 50 [kW]) ♦ N,O @15% O, Š 1000

- NH₃ as an energy carrier... OK (Energy density is better than liquified H₂!).
 - But more unlikely as an uncracked fuel...
- => Rich-Quench-Lean!!


NOx vs %NH3 in CH4

Minimum

Hydrogen:

OEM Trends and basic considerations

Hydrogen as a Gas Turbine fuel...

H2 combustion physics vs. Natural Gas

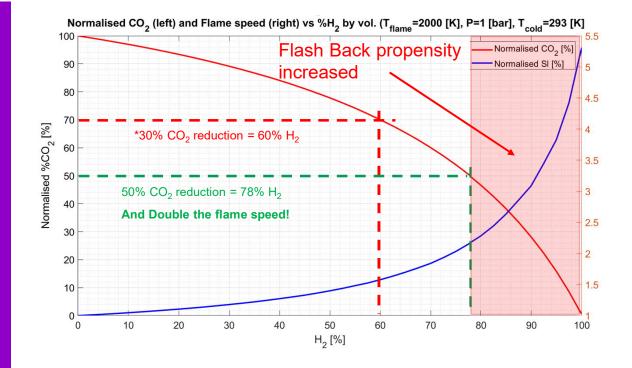
Higher reactivity and flame velocity

Increased Flashback propensity

Higher flame temperature

Increased Thermal NO_x for higher amounts of H₂

Lower energy content per unit volume


Higher volume flow in fuel systems (+ 20%)

Explosivity characteristics

- Modifications in auxiliary protection systems and flame detection systems
- Much larger flammability limits

Thermo-acoustics

- More stable or unstable??
- Frequency changes??

- ➤ The real benefit for CO₂ is for high %H₂ where flame speed increases very rapidly
- > => NEED MODIFICATIONS TO THE COMBUSTION SYSTEM!

Siemens Energy is a registered trademark licensed by Siemens AG

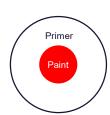
... and the combustion system needs to work as well as today for pure Natural Gas, pure H2 and all blends

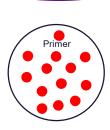
*Under the Paris Agreement, Canada has committed to reducing GHG emissions by 30% below 2005 levels by 2030

OEM trends for H₂ combustion (and why)...

H₂ has a higher flame speed, so FB is a risk for the injector's integrity...

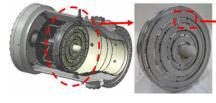
Well, what about using Non-Premixed flames?

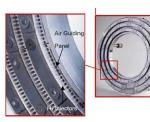

Not a bad idea, but you then need large amount of demineralised water to control NOx emissions...


Hmm... what about mixing fast in the combustor itself then (not in a premixer passage)?

But you have a lot of air and fuel to mix, which will be a challenge!

Then lets have smaller but more flames to mix less fuel and air faster...





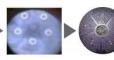
Kawsaki (KHI)

Honeywell

GE

Advanced hydrogen combustion technology development

F and HA DLN 2.6, 2.6+ combustion systems


First commercial use: 1996 Fuel nozzles: 6 H2 limits: ~5 to ~18% (by volume) US DOE High Hydrogen Turbine Program

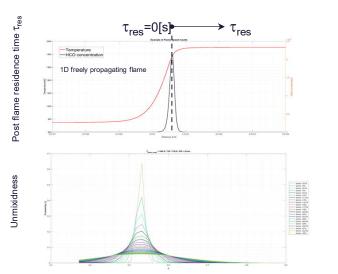
Program dates: 2005-2012

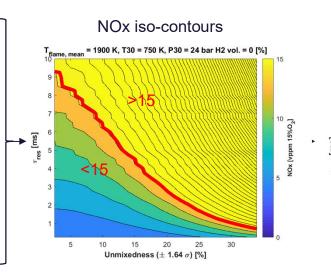
GE Gas Power developed a combustion system targeted at operation on high ${\rm H_2}$ fuels

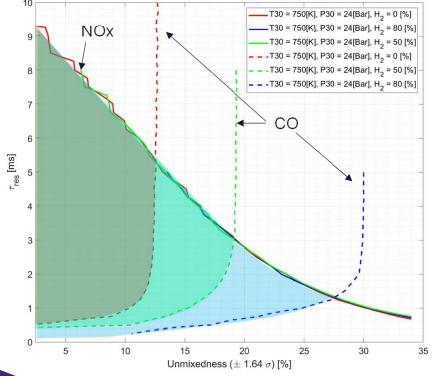
50% Hydrogen capable combustor for HA gas turbines

First commercial operation: 2021*
Fuel injectors: > 500
H2 limits: ~ 50% (by volume)

*COD expected in 2021 on 100% natural gas



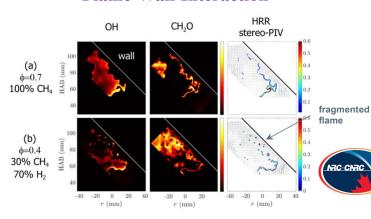

MHI

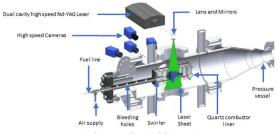

Conditions	Turbine speed (%)	Gas turbine load (%)			
	0 20 40 60 80 0	10 20 30	40 50 60 70 80 90		
Fuel	Oil		Syngas		
Mode	Mode O	Mode C	Mode A		
	Oil spray nozz	le F1 + F2-1 + F3-1	F1 + F2-1 + F2-2 + F3-1 + F3-2		
Operating burners					

Micro-mixing... OK, but what about emissions?

Some considerations: theoretical frame

NOx and CO=15 [ppm] for $T_{flame, mean}$ = 1900 [K], Inlet T=750 [K], P=24 [bar] and H₂ vol.=0, 50,

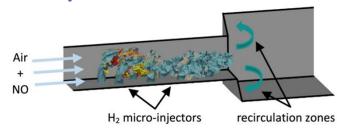

- High Methane fuels: Good mixing is required for CO, longer post-flame residence times can be tolerated for NOx
- High Hydrogen fuels: Lower mixing can be tolerated for CO, but shorter post-flame residence times are required for NOx


Collaborations with universities to address new challenges

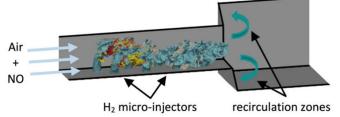
(Mission Alliance)

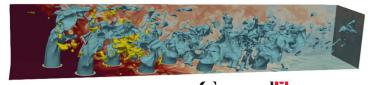
Static and dynamic stability

Flame-Wall Interaction



Flame location and shape, combustion efficiency and NOx/CO emissions




Mixing characteristics

High-fidelity simulations (DNS)

Canada