

Environmental Issues and Standards for Hydrogen

- Air Pollution and GHG Emissions
- Balancing Emission Prevention & System Efficiency
- High Value Energy Applications for Hydrogen
- Environmental Issues and Standards for H₂ combustion

Manfred Klein

MA Klein & Associates maklein@rogers.com

Typical Industrial Gas Turbine Energy Systems

- Simple Cycle, Standby power
- New Gas Combined Cycle
- Combined Cycle Repowering
- Large Industrial Cogen
- Oil Sands Gasification
- Gas Pipeline Compression
- Offshore Platforms
- Small Industrial Cogeneration
- Municipal District Energy

About 1200 units in Canada (470 plants, ~ 29 000 MW)

Many different types;

- Aeroderivatives
- Small industrials
- Large Frame Industrials
 - + Steam turbines & HRSGs

Air Emissions

(Smog, Acid Rain, Climate Change, Toxics)

Health & Ecosystems

Extreme, Unpredictable Weather

Air Pollution

- Sulphur Dioxide SO₂
- Nitrogen Oxides NO₂
- Volatile Organics VOC
- Carbon Monoxide CO
- Fine Particulate PM
- Mercury & Heavy Metals
- **Ammonia**

Effects can diminish over time Involves detailed design

Greenhouse Gases

- Carbon Dioxide CO₂
- Methane CH₄
- Nitrous Oxide N₂0
- SF₆ et al

Ozone Depletion

CFCs

Effects not reversible Requires a 'big picture' approach

What are Cleaner Energy Choices?

- Aggressive Energy Conservation and Efficiency
- Small Renewable Energies, Biomass Fuels
- High Efficiency Nat. Gas Systems (GTCC, GTCHP)
- Large Hydro & Nuclear Facilities
- Waste Energy Recovery, Hydrogen systems

GT systems can do 25-30% of these reductions

- Air Pollution
- GHG Emissions
- Air Toxics
- Water Impacts
- Energy Security, Diversity
- Phaseout of Coal Steam Plants
- Support for Renewable Energy
- Hydrogen and CCS

Natural Gas Systems and Renewable Energy

- Distributed Energy Systems
- Diversity in Unit Size, Applications
- Waste Heat Recovery, Efficiency
- Cogen and District Energy
- System Reliability, Islanding
- Fast Starts and Ramp Rates
- Cycle Innovations & Hydrogen

Comparing Emissions;

"Cannot produce Air Pollution without making CO₂"

Gas Turbine systems on NG fuel have replaced/avoided many high emission systems, and have supported Renewable Energy

Considerations in Fuel Combustion & Energy Quality

Fuels do not burn;

- as solid or liquid
- to produce electricity

Fuel always burns as vapour (gas)

- always produces heat

Gas turbines are based on air mass flow for power ('Gas' = Air)

Electricity and Thermal Heat

MWe are not equal to MWth PJe is not equal to PJ th

High Value applications 'produce' several energy forms at once

70% CHP eff'y >> than 90% for heat

High Value Energy Applications; Combined Heat & Power

All types of H₂-based fuels will be needed

For high fuel costs, CHP & DES systems can provide multiple benefits

Natural Gas is mostly Hydrogen Energy

very clean; CHP used close to demand
 200-250 kg_{CO2}/MWhr
 0.5 kg_{NOx}/MWhr

Waste Heat use is 'Zero emission' energy, similar to Renewable energy

Power Disruptions are Important;

- Onsite CHP can function through outages

Can use all exhaust heat from small GT units

Onsite CHP: Adaptation

Air Pollution - NOx Emissions

$$O + N_2 \longrightarrow NO + N$$

 $N + O_2 \longrightarrow NO + O$

3 Compounds of Concern:

 NO, NO_2 smog, N_2O ghg

High Temperature Combustion

Fuel NOx:

From N₂ Content of Oil, Coal

Nitrous Oxide is N₂O, a GHG

Factors Affecting NOx and CO₂ Emissions in Gas Turbines

- Unit efficiency (<u>AIR</u> mass flow, Pressure Ratio, Turbine Inlet Temp)
- Engine type (Aero or Frame)
- Dry Low NOx combustor
- Part load, Operating Range, starts
- Cold and hot weather, humidity
- Type of air compressor (spools)
- N₁/N₂, Output Speeds
- Specific Power (kW per lb/sec air)
- Waste heat recovery
- NOx Concentration vs Mass Flow
- Tradeoffs w/ other emission types

Importance of Environmental Units

<u>A.</u>

- ppmv at Exhaust
- ppb at fence line
- mg/m³
- kg per GJ fuel Input

<u>B.</u>

- mass per time (t/yr)
- kg per MWe output
- kg per MWth

Concentration units, in ppmv and mg/m³, require O2 content (15%)

- ppmv and kg/MWhr are linked by 'F-factor' (fuel ratio of exh. gas to GJ)
 - CO₂ emissions at 35 000 ppmv ?
 - mass/energy criteria inherently include system efficiency

Emissions Criteria

Traditional concentration (ppm, mg/m³) and fuel input (g/Gj_{in_} lb/MMBTU) criteria;

- difficult to interpret
- do not give appropriate design signal
- do not encourage system efficiency
- do not encourage Pollution Prevention
- Aviation uses 'LTO' Operations Cycle
- Recip engines have kg/MWhr rules

ICAO - aircraft (kg_{NOx}/thrust)

Output-based Rules;

Mass per Product Output; kg/tonne, kg/MWhr, g/GJ_{out} tonnes/year

\$/tonne

\$/MWhr

Canadian Gas Turbine Emission Guidelines (1992)

NOx ppm

- NOx Prevention & Clean Energy Objectives
- Output-Based Standard for Efficiency

 $(140 \text{ g/GJ}_{\text{out}} \text{ Power} + 40 \text{ g/GJ Heat})$

0.5 kg/MWhr1 lb/MWhr

- Promotes Cogeneration and low CO₂
- Higher NOx for smaller units, which have higher system CHP efficiency
- Syngas & Reliability considerations (ie CH₄)
- Added NOx margin for GHG tradeoffs
- Mass & Energy criteria for system efficiency, rather than volume & ppmv

New US EPA Rules for Gas Turbines (2006)

Can choose Output-based, or Concentration-Based Rules (EPA OAR-2004-0490)

Size, Heat Ir	nput (MMBTU/hr)	ppmv	lb/MWhr
(New Units, N	latural Gas Fuel)		
< 50 (electricity, 3.5 MWe)		42	2.3
(mechanical, 3.5 MW)		100	5.5
50 to 850	(3 – 110 MW)	25	1.2
Over 850	(> 110 MW)	15	0.43
Units in Arc	tic, Offshore		
	< 30 MW	150	8.7
	> 30 MW	96	4.7

- original 2005 draft used only lb/MWhr
- MW could include MWth for waste heat in CHP
- Efficiency based, SCR likely not required
- Flexible Emissions Monitoring

Part III

Environmental Protection Agency

40 CFR Part 60

Standards of Performance for Stationary Combustion Turbines: Final Rule

Draft Guidelines for the Reduction of Nitrogen Oxide Emissions from Natural Gas-Fuelled Stationary Combustion Turbines

,			Iimits (ppmv)@
Application	Turbine Power Rating (MW)	NO _x Emission Limits (g/GJ _(power output))	15% O₂
Non-peaking combustion turbines - Mechanical Drive	<u>></u> 1 and < 4	500	75
Non-peaking combustion turbines - Electricity Generation	<u>></u> 1 and < 4	290	42
Peaking combustion turbines – all	≥ 1 and < 4	exempt	exempt
Non-peaking combustion turbines and Peaking combustion turbines – all	4 - 70	140	25
Non-peaking combustion turbines – all	> 70	85	15
Peaking combustion turbines – all	> 70	140	25

Environment and Climate Change Canada

CEPA, Nov 2017

Gas Turbines - NOx Emissions (ppmv at 15% O₂)

Uncontrolled; 200-300 ppmv Dry Low Emissions; 15-25 ppmv

F-factor (m³ per GJ) exhaust flow to convert ppmv into grams per GJ heat

Natural gas **240 m³ per GJ**

Hydrogen blends < 200

Mass Rate/Energy Output NOx Estimate - need mass airflow in kg/hr

 $\frac{\text{ppmv x Mass Flow (kg/hr) x m.wt.}}{\text{Power (MW)}} = \underline{\text{Kg}_{NOx}} / \text{MWhr}$

Example (30 MWe unit, air = 100 kg/sec)

 $\frac{25 \text{ ppm x}}{10^6}$ $\frac{360 000 \text{ kg}}{30 \text{ MW}}$ $\frac{46}{10^9}$ \frac

(for CHP, can include the 'MWth' for a lower emission factor)

NOx Reduction Methods

Steam/Water Injection

- Prevention, 2/3 red'n to 1 kg/MWhr
- Some Combustion Component Wear
- Plant Efficiency Penalty
- Depends upon value of plant steam

(Kawasaki)

Selective Catalytic Reduction (SCR)

- NH3 injection into catalyst in HRSG
- ~ 80% NOx volume reduction

Backend Control

- Ammonia emissions & handling (toxic)
- fine PM emissions, N₂O?
- Cycling duty for V-RE ammonia slip
- Efficiency loss in HRSG
- Marginal, low \$/tonne benefit after DLN

Gas Turbine Dry Low Emissions (DLE) Combustion

- Preventative reduction by 60-90%
- Fuel mixes with air before flame zone
- High Temperatures and Pressures
- Too Low Values may lead to inoperability and combustor problems
 - (emissions of formaldehyde?)
- Mech. drives need wide operating range
- Effects of Plant Cycling, Transients

- need flexibility on NOx emission rules
- very lean combustion
- plus care for safety

General Electric

Solar Turbines

Hydrogen Production Spectrum sourced from;

Renewable Energy - and sub-surface conversion NG Reforming w/ CO₂ Capture Methane Pyrolysis **Nuclear Energy** NG Reforming (SMR) Coal-MSW Gasification w/CCS

Hydrogen is a 'manufactured' form of energy; At 0.14 GJ per kg, and regardless of source, H_2 will be expensive as '\$ per GJ' of energy

High Value Energy Applications for Hydrogen

... with Reliability, Diversity & Resilience

Industrial cogeneration

- Small systems for onsite use,
- or larger systems for power exports

District energy w/ CHP systems

- Hot and cold water piping, LP steam
- electricity for public transit

Utility peak power

- Support power outages
- Energy storage
- follow intermittent renewables

High Temperature Furnaces

- Cement, steel & ethylene processes
- process feedstocks

Cogeneration Whitby ON

District Energy, CHP

GT Peaking Meadow L. SK

Cement Kiln Burner

Hydrogen 'Fuel' Combustion

- Non-linear Volume & Heat Values
- High Flame Temp, Flame speed
- Flashback, auto-ignition, safety
- unstable flame when cycling?
- more NOx ppmv (not in kg/MWh?)
- need range-ability for NG blends
- often need NG to start & stop
- more moisture in exhaust

LHV by mass

LHV by volume

(J.Goldmeer, GE)

Balancing NOx vs GHG emissions?

LHV and 'ppmv' emissions criteria for NOx are not compatible with GHG policy

30% vol H2

60% vol H2

100% vol H₂

H₂ blended flames

(K.Bohan, Siemens)

Properties of Blended Hydrogen / Methane Gases							
H ₂ : CH ₄ (vol. %)		0 : 100 (methane)	20 : 80	50 : 50	80 : 20	100 : 0 (hydrogen)	
Mole Weight		16	13	9	5	2	
Lower Heating Value (LHV)	kBTU/lb	21.5	22.4	24.9	31.6	51.6	
	GJ/tonne	50	52	57.8	73.3	120	
	BTU/ft ³	909	782	592	400	274	
Fuel Flow Mass Ratio	LHV _{CH4} LHV	1.0	0.96	0.86	0.68	0.42	
Stoich. Ratio Air/Fuel mass	Kg/kg	17	18	19	23	34	
Wobbe Index LHV/SG ^{.5}	BTU/ft ³	1220	1157	1060	983	1040	
Flammability % Range	Lower	5 / 15	4.8 / 18	4.4 / 25	4.2 / 42	4 / 75	
	Higher						

Mass

Volume

Combustion Characteristics

50/50 blend reduces CO_2 by ~ 20% (ETN)

Specific Heat capacity of blended gases at various conditions (T & P)

Solar Turbines

Non-linear performance, difficult to generalize on combustion and GHG impacts;

Specific Gravity, Wobbe index, Heating Values (HHV vs LHV) Air/fuel ratios;

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

$$H_2 + 1/2O_2 \rightarrow H_2O$$

less air required more exhaust moisture more specific heat

Recent Study on Pollutant Emissions Reporting (2021)

Comparison of H₂ blends for NOx emissions based on;

- ppmv dry @ 15% O₂, and
- mass per energy & output

Hydrogen has more exhaust moisture, spec.heat, and different use of oxygen

On a ppmv basis, H₂ emissions of NOx can be 20-40 % higher than on NG

On a gr/GJ or lb/MWhr basis, they may be in the same range as NG DLE

Would mass/output-based emission stds make a difference in developing reliable low GHG combustors for H₂ blends (op range, flex %, transients?

GT2022-80971

Electric Power Research Institute, Georgia Tech. and Ecole Polytechnic

Special Considerations for Hydrogen-Blend Combustion

- . Identification of Technology Needs for the Advanced Hydrogen Gas

 Turbine

 (US NETL, Siemens)
- Varying H₂ Blends (20-60%) depending on GT unit, Airflow management
- Fuel/Air Dilution, Flame sensors, Dynamic Instabilities, Auto-Ignition
- Part-Load Operation, Safety and Ventilation

Research and Development;

US DOE Nat'l Energy Tech. Lab (NETL)

National Research Council Canada

Electric Power Research Inst. (EPRI)

European Turbine Network (ETN)

Carbon Capture and Exhaust Gas Recirculation

Drying & cooling 30 – 40% of HRSG exhaust gases To Amine Fuel **Process** P Economizer Less O₂ in exhaust Extra O_2 ? - moisture - double CO₂ to 6-8% MWe New mass flow and

EGR to reduce the cost of CO₂ capture

combustion O₂ conditions

- Reduces system efficiency
- Reduced NOx emissions, higher CO
- H2–NG fuel blends?
- Duct burning will be difficult

An Example of Full Fuel Cycle Emissions

Cogen/CHP and District energy have lower GHG impacts with increasing system efficiency

H₂ blend impacts are very dependent on type of source (SMR, or zero C)

+ assumptions on CCS and methane

NOx; with increasing H_2 ;

- volume ppmv may rise
- kg_{NOx}/MWhr may fall, or be
 equal (?) in DLE combustion

Hydrogen Operational Impacts

Gas Turbine Package System

- Existing Upgrades, or New Units
- Operating range, stop/starts
- Pressures and Temperatures
- GT Safety, ISO 21789
- % blend ranges, rates of change
- Electrical system protection

Compressor Building

- Possible Leak locations, HAZOP
- Welded vs Bolted flanges
- Unit Purge and Bldg Ventilation
- Leak & Flame Detection (not IR)
- Training, Supply chain, Parts

Hydrogen testing, Siemens SGT 800 turbine

Solar Turbines

Clean Air for New Gas Turbine Systems

New pre-mix DLE combustors have most incoming air going through direct combustion

Modern turbine air filter systems clean the incoming air with PM₂ by 99 %

Small amounts of PM can escape, but must go through DLE combustor

Emissions of fine particulates?

Likely not – the incoming Airflow can be filtered down to $PM_{0.2}$ by 80%

GT system mass balance?

Hydrogen Fuels in Gas Turbine Systems

Maximizing System Reliability and Safety

H₂/NG readiness certificates?)

Emissions Measurement

- Continuous Emissions Measurement
- Process Estimation Methods
- Surrogate & parametric methods
- Predictive Emissions Monitoring

PEMs;

- good predictability of GT operation
- cost-effective emissions reporting
- use of F-factors for mass emissions
- process efficiency optimization, GHGs

Measurement sampling;

Consider longer averaging times

(CEM Specialties)

EnvCan CEM van (Ont 1994)

NG Lifecycle - Gas Compression Innovations for CO₂ and Methane Improvements (1980-90s)

- Aerial gas discharge coolers
- Waste Heat Recovery (Steam, ORCs)
- Higher pipeline pressures (less △P)
- Axial Inlet compressor piping retrofits
- Replace recips with high efficiency GTs
- Efficient and Reliable DLN Gas Turbines
- Reduced station blowdowns
- Dry Gas Seals to reduce venting
- Minimizing Stops and Starts
- Fugitive methane monitoring

Norwalk Gas transfer compressor

Potential for Distributed & Integrated Energy Systems

Electrification Hybridization & H₂ Flexibility & Resilience GTCC, CHP ($MWe + MW_{th}$) Public Transit Heating & Cooling Services Univ of Calgary CHP Plant Combined Cycle EV Charging, Hybrid cars District Energy

plus; Renewable Natural Gas, Off-peak Hydrogen, Synthetic Hydrocarbons Electricity Storage & Batteries, Thermal Hot/Cold Water Storage

LNG System Environmental Performance

Process Efficiency

- Liquefaction design choices
- Feed conditions, Precooling methods
- Compressor speeds, pressure levels
- Variable Speed Electric Drives
- TurboExpanders, Absorption Chillers
- Flaring reduction, use BOG fuel

Fuel Efficiency

- Compressor drivers, Inlet Conditioning
- WHR and Cogeneration, Minimize losses
- Industrial vs Aeroderivative GT units
- Upstream fugitive methane, pipeline & comp stns
- Onsite vs GTCC/Hydro Imports, transmission
- Transient and Ambient Conditions
- High System Reliability

- < 0.2 t_{CO2} per t_{LNG}
- other impacts
- End use benefits

International Collaboration on GT Energy Issues

Establish common objectives on a clean energy transition

(Policy, R&D, Applications, Standards, Training, Reliability)

Some other groups;

- US DOE National Energy Technology Labs (NETL)
- Electric Power Research Institute (EPRI)
- Natural Gas Associations (CGA, AGA, GTI, Eurogas)
- Global Propulsion and Power Society (GPPS)
- Gas Turbine Society of Japan (GTSJ)

Considerations for a Clean H₂ Energy Transition

- Energy Diversity, Security and Reliability are very important
- All potential solutions will be necessary, including GT systems
- Expensive H₂-based fuels can contribute in high value applications
 - gas turbines in cogeneration, district energy, distributed energy
- Air emissions regulations should use energy output-based rules
- Improved standards must be developed to ensure Hydrogen systems are designed for safe and reliable operation
- Need focused education & training, International Collaboration

