

Case Studies – Electrical Drives

Zoher Meratla, Principal, CDS Research Ltd.

IAGT LNG Technical Workshop Vancouver, BC

May 15, 2014

Introduction

Case Study 1: Bish Cove - all electric

Case Study 2: Snøhvit - aero-derivative with waste heat recovery and electrical drive

Case Study 3: Conceptual arrangement for combined cycle at Kitimat with electric drive

Projects with Electric Drives in North America Have a Common Thread:

Freeport LNG, Oregon LNG and Kitimat LNG all started as import terminals

- Embrace of all-electric liquefaction plants supplied from a grid has been driven solely by the need to have minimal impact on import terminal environment permit
- Power supply from the grid requires careful assessment of the supply specifics:
 - Measurement of availability
 - Source of power supply (hydro, thermal, combination, others)
 - Location of power generators
 - Impact of the plant operation on the grid
 - Impact of the grid on LNG plant operation
 - Cost of new transmission line between grid and LNG facility
 - Cost of transmission line re-enforcement and power factor correction
 - Cost of new transmission line and generation upgrades
 - Schedule alignment
 - Grid supply tolerances (voltage, frequency, harmonics, out of range fluctuations).

All-electric, BC- Key Parameters

Power supply specification:

• Voltage: +/- 10%

Frequency: +/- 5%

Harmonics: as per IEEE 519

• Power factor: ≥ 0.95

Transient out of range voltage or frequency: over a few cycles or milliseconds [1].

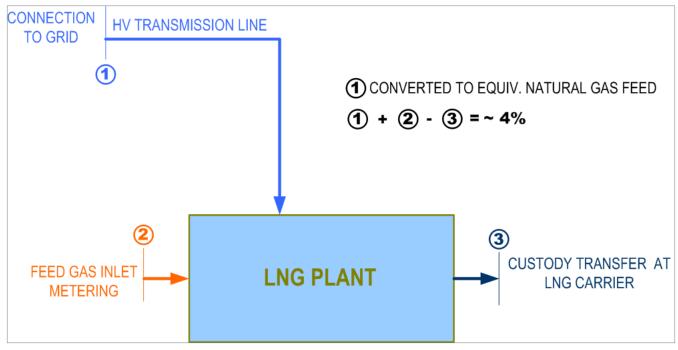
[1] VMS protects PWM or LCI

Plant impact on grid:

- No power flow into the grid
- Negligible harmonics injection from electric drive into the grid
- Current rush during start-up not to exceed steady state level
- Impact of VMS protection on grid must be tolerable.

PWM = Pure Wave Modulation; LCI = Load Commuted Inverter; VMS = Voltage Management System

All-electric, BC – Electrical Drive Selection Process Specifics


- Reference process: C3-MCR by APCI
- Motor line-up: C3, LPMR, MPMR, HPMR (*)
- Motor rating: > 30MW
- Motor type: synchronous
- Electrical drive: load commutated inverter (LCI) with harmonic filter

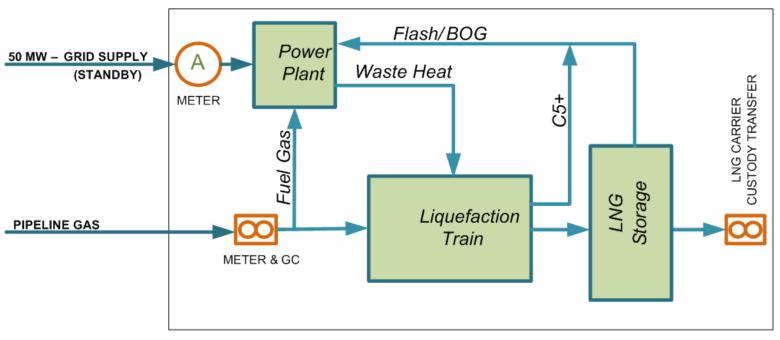
(*) Other motor line-ups or process may allow using PWM drive

All-electric, BC – Energy Consumption

Estimate by CDS

Energy Consumption Assuming Hydro Power

All-electric, BC - Factors to be Considered


- Footprint requirements for HV substation and metering
- Foot print requirements for shunt compensation
- Footprint requirements of liquefaction train (LCI and harmonic filter need to be located in non classified area)
- During plant shutdown BOG is flared
- Duration plant operation, BOG has to be recycled for liquefaction. This creates N2 enrichment and adversely affects the liquefaction power.

BOG = boil off gas

BC - Aero-derivative Genset Base Case - Train 1: 6 x LM6000 Sprint

Findings: meets power demand but only 50% of waste heat needed – liquefaction energy consumption: ~ 6.9%

STEADY STATE ENERGY CONSUMPTION: ~ 6.9%

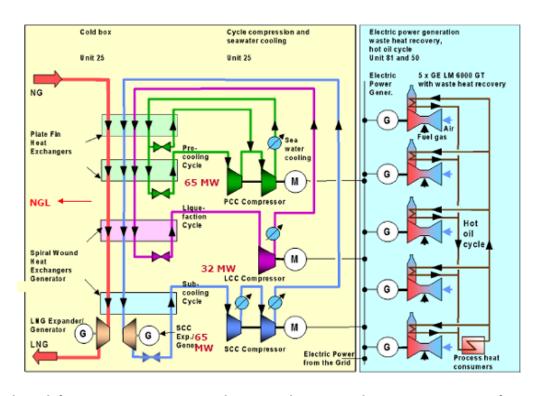
BC - Electric Drive vs Direct Drive Base Case - Train 1: 6 x LM6000 Sprint

Direct Drive:

- LM6000 not a good fit with compressor power rating for C3-MCR process
- Power generation is still required for complement of plant.

Electric Drive:

- Flexible choice to match motor to compressor
- No separate power generation is required.


Snøhvit - Electrical Drive One Train

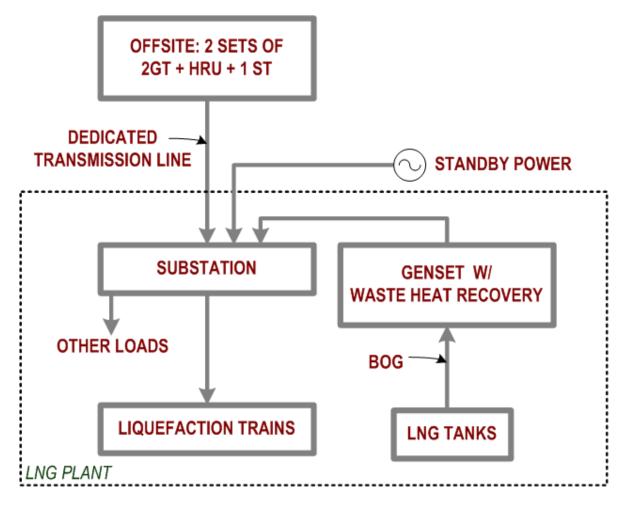
- First to adopt electrical drives and waste heat recovery
- Five LM6000 gensets + 50 MW back-up from grid
- Heavy penalties for exceeding specified power demand
- Capacity: 4.2 MMTPA LNG
- First to recycle process CO2 for sequestration.

Snøhvit - Electrical Drive

Liquefaction Energy Consumption: ~ 6%

- Well optimized for power generation and waste heat recovery for process and winterization
- Redundancy for both power and waste heat.

Kitimat – Four Train LNG Plant Air Shed Modelling to Address Health Issues in Douglas Channel


Other issues need consideration:

- Greenhouse gas emissions
- Visual impact of wet plumes in shoulder/winter seasons
- Impact of pollution in the Kitimat-Terrace corridor
- Flaring in proximity of town potentially a news maker.

Kitimat – Four Train LNG Plant

Conceptual Arrangement to Reduce Emissions and Move Air Effluents Outside the Douglas Channel Air Shed

Thank you

Zoher Meratla CDS Research Ltd PO Box 4062, Vancouver, BC V6B 3Z4 Tel: 604 932 0250 www.cdsresearch.com