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Abstract 

A hybrid approach employing neural networks coupled with a physics-based model 
has been applied for fault detection for common gas turbine types used in Pipeline 
Compression. This work has been tested against common, data-driven approaches 
employed within industry for fault detection and shows promising ability to detect 
faults that would otherwise be missed by current methods. The method has been 
successfully back tested using multiple compression sites to detect various failures 
modes (blade failures, combustion system fouling, and efficiency degradation, to 
name a few). This paper will discuss physical modeling details and requirements, 
methodology for using neural networks to calibrate the model to site data, and 
options for modeling and implementation at an enterprise level and live monitoring. 
Current models have been successfully tested to work within TC Energy’s Canada 
Gas Compression fleet. The modeling techniques and architecture are scalable and 
easily used for other categories of compression equipment. This approach provides a 
path for broader physics-based model integration. 
Introduction 

This work developed a hybrid physics-based model of a gas turbine with the goal of 
detecting faults and failures for monitoring applications. This hybrid approach trains 
artificial neural networks to parametric physical models to enable embedding within a 
centralized enterprise monitoring center environment. This paper is focused on gas 
turbines; however, the process described is applicable to any physics-based model 
and the practice is shared to provide examples of integrating high-fidelity models for 
real time monitoring. 

A 3-phase process was employed as shown in Figure 1. In Phase I, the team created 
a physics basedmodel representation of a reference gas turbine using the Numerical 
Propulsion System Simulation (NPSS) software. This process requires personnel 
with model creation expertise; however, the model setup is performed in such a way 
that only one reference model needs to be created for each unit variant. In other 
words, the first phase is a one-time investment for each unit variant. 

Once the reference model has been created in Phase I, Phase II performs two steps. 
First, an artificial neural network is created from the NPSS reference model. This is 
done for two reasons. First, NPSS executes relatively quickly, but still takes some 
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time to process data. For example, a year’s worth of process data at 5-minute 
intervals is roughly 80,000 data points. Evaluating each of the 80,000 points within 
NPSS as a batch run takes approximately 10 hours to execute on modern desktop 
PC hardware. Evaluating the same 80,000 points using a neural network regression 
model is almost instantaneous. This incredible speed-up in execution time enables 
additional parametric studies and sensitivities to be performed near real-time that 
would be difficult using the physics based model directly. Portability is the second 
reason to use an artificial neural network. The regression essentially learns the 
physics from the underlying physical model and enables a substitution of the neural 
network anywhere the NPSS physical model would traditionally be used. 
Furthermore, the neutral network is represented as a series of closed-form equations 
which can be implemented into any software package capable of using custom 
functions including Excel, PI Asset Framework, or almost any commonly used 
monitoring and diagnostic (M&D) package with custom calculation engines. 

 
FIGURE 1: PHYSICAL MODEL CREATION PHASES 

Once the neural network representation is created the model can be executed to 
compare predictions to measured site process data. Calibration to site can also be 
performed in this step. Calibration is the process of changing model settings to match 
site specific performance data. For example, the stage 1 gas generator turbine 
nozzle area has a large influence on performance and will vary site to site. It is not 
known in real time and must be estimated. 

Phase III is focused on model use and deployment. Briefly, the calibrated and 
validated NPSS model can be used in multiple ways including processing of site 
process data to generate virtual sensors and health parameters, performing 
sensitivity studies to understand how faults will manifest themselves in measured 
process data under varying site operational conditions (e.g., outside temperature or 
load), and prediction of gas generator performance in the future based on the known 
state and degradation rates. 
Phase I – Creation of the NPSS Reference Model 

Model Description and Validation 

The Numerical Propulsion System Simulation (NPSS) provides a framework to build 
any thermodynamic process model through an object-oriented framework. NPSS 
stands as an advanced software framework developed for the in-depth modelling, 
simulation, and analysis of intricate thermodynamic systems, notably in aerospace 
contexts. Its core strength lies in its modular architecture, enabling users to efficiently 
integrate and deploy distinct modules tailored for specific simulation tasks, leading to 
model reusability and operational efficiency. Renowned aerospace entities, including 
NASA and prominent aerospace corporations, leverage NPSS for its comprehensive 
propulsion system analysis capabilities. Beyond its primary focus on propulsion, 
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NPSS exhibits a broader applicability, extending to any system governed by fluid 
dynamics and thermodynamics. A defining feature of NPSS is its open architecture, 
granting users the autonomy to customize and scale the software to match 
particularized requirements.1 

The NPSS framework enables easy matching to any dataset assuming the model 
has been set up correctly. NPSS does not have any preference or enforced labels for 
file names or directory structure organization. Calibration of the gas turbine reference 
model was performed using a TC Energy Turbines engine test report. Data plotted for 
comparison has been extracted directly from this report. To do the initial calibration 
and comparison, the NPSS model has been set up to run a heat balance. The shop 
test visit ran a load sweep at a relatively fixed condition. Plots of major parameters 
are shown below plotted against corrected power output. In Figure 2, Figure 3, and 
Figure 4, the red line shows the TC Energy shop test data, and the blue line shows 
the prediction from the NPSS model using the heat balance setup. 

  
FIGURE 2: COMPARISON BETWEEN NPSS MODEL AND SHOP TEST DATA - STATOR OUTLET TEMPERATURE 

CORRECTED (STOC) VS. ENGINE GAS HORSEPOWER ISO CORRECTED (EGHPC) 

 
1 Southwest Research Institute, “Numerical Propulsion System Simulation (NPSS).” 
swri.org. https://www.swri.org/consortia/numerical-propulsion-system-simulation-npss 
(accessed Sept. 6, 2023). 
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FIGURE 3: COMPARISON BETWEEN NPSS MODEL AND SHOP TEST DATA – ISO CORRECTED HEAT RATE VS. 
EGHPC 

 
FIGURE 4: COMPARISON BETWEEN NPSS MODEL AND SHOP TEST DATA – ISO CORRECTED EXHAUST GAS 

TEMPERATURE (EGT) VS. EGHPC 

Addition of Health Parameters to Physics-Based Model 

Health parameters represent the intrinsic health state of the components within the 
gas generator. The health parameters can be directly set as inputs or solved for to 
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match existing process data. They represent an unbiased estimate of component 
health removing effects of ambient conditions, operating load, and the health state of 
other components within the machine. The health parameter definitions are shown in  

Table 1. 

 

TABLE 1: HEALTH PARAMETER DEFINITIONS 

 
Artificial Neural Network Creation 

After the basic model validation has been performed, the NPSS model is re-executed 
to create a neural network representation capable of auto-calibration. This neural 
network creation is performed to make a general representation of the gas turbine 
that should be adaptable through calibration to any specific unit. This neural network 
training and regression process should only need to be repeated if the NPSS model 
is changed due to increases in model fidelity or if a new variant of gas turbine is to be 
modelled. 

The neural network is trained from a design of experiments that is executed through 
NPSS. The design of experiments executes the reference NPSS model over a range 
of ambient conditions and health parameters. The inputs and ranges used to 
generate the design of experiments are shown in Table 2. The ambient condition 
inputs should be self-explanatory to those familiar with gas turbines; however, the 
health parameters are unique to this model as explained above. 

TABLE 2: DESIGN OF EXPERIMENTS FOR NPSS NEURAL NETWORK CREATION 

Health Parameter 

Compressor_Health – Indicator of Gas Generator (GG) Compressor Health [0-
1] 

Burner_DPHealth – Indicator of Burner Pressure Drop [Scalar w.r.t Baseline] 

Turbine_effHealth – Indicator of Turbine Efficiency [Scalar w.r.t. Baseline] 

Turbine_FlowHealth – Indicator of Turbine Flow Area (Nozzle) [Scalar w.r.t. 
Baseline] 

Input Minimum Maximum 

T1 – GG Inlet Temperature [deg F] -35 100 

P0 – GG Inlet Pressure [psia] 13 15 

WAR – GG Inlet Water to Dry Air Ratio [g/kg] 0 0.0219 

Fuel LHV – Lower Heating Value [BTU/lbm] 20567 21499 

Enthalpy of Fuel – Based on Fuel Composition and 
Temperature [BTU/lbm] 

215 230 

N1c – LP GG Compressor Corrected Speed [RPM] 6000 6800 

Health Parameters as Described Above Min Max 
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The Compressor Health parameters have been created to tie together shifts in 
compressor flow, efficiency, and pressure ratio that accompany degradation. This 
reduces the number of independent variables and increases model accuracy when 
used for fault detection. The parameters were derived by examining performance 
data from the unit to understand ranges of degradation and the impact on the 
compressor operating line. The equations set compressor performance as a function 
of corrected speed and health. A health parameter setting of 1 indicates a healthy 
compressor. A setting of 0 indicates a fouled or degraded compressor. 

Using the ranges from Table 2, a design of experiments is constructed. 1200 space 
filling points generated from a Latin Hypercube design with an additional 25 edge and 
center points are executed through NPSS. NPSS does not natively contain ability to 
run a table of input data, therefore a Python script was developed to execute the 
design of experiments shown in Table 2. The design of experiments is 
dimensionalized using the ranges in Table 2, or other ranges as appropriate. The 
table is then executed, one case at a time, through NPSS and the results are 
collected. A python script was created to run the DOE (design of experiments) 
through NPSS. 

The neural network structure is shown in Figure 5. There are 12 inputs and 12 
outputs. Six of the inputs come from site data (T1, P0, WAR, LHV, Enthalpy, and 
N1c) and represent the external state and power setting of the gas generator (GG). 
The other six inputs represent the health parameters which are inputs to NPSS. The 
outputs are estimated pressures and temperatures throughout the GG along with 
estimates of total gas fuel flow and BHP of the unit. These calculations can then be 
used to calculate fault data by comparing the ‘calc’ estimates vs. site data. 

 
FIGURE 5: NEURAL NETWORK STRUCTURE 

Calibrating the neural network to a specific site requires estimating the average 
health parameters over the site data set extracted from the TC Energy historian. The 
team evaluated different techniques and determined that for this specific application a 
filtered Monte Carlo provides the right balance of accuracy, speed, and portability. 
The calibration and estimation of these parameters is performed at initial model 
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calibration and after any major unit upgrades or repairs. It is possible that calibration 
may only be required once per unit; however, longer term evaluation across multiple 
sites will be required to know for sure. 
 
Case Studies 

Case Study 1: Blade Damage 

Figure 6 shows the calculation of faults for each measurement station using the 
calibrated neural network (measured minus model prediction). This is a way to 
normalize the data and identify anomalous operation. This allows easy alignment with 
the troubleshooting chart in Figure 8. Not all fault signals are shown for clarity of plot, 
but all were examined. The GG Turbine End Vibration Measurement was also added 
as it helps with the diagnosis. A clear spike in vibration and exhaust temperature is 
seen at the end of the period and indicated by the red circle. 
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FIGURE 6: SITE B FAULT SIGNALS (MEASURED - NN PREDICTION) 

The exhaust temperature spreads are shown in Figure 7. The light black area 
represents normal operation. The darker black area shows spreads two days prior to 
the failure event. This alone may not have been sufficient for unit shutdown, but may 
have prompted additional monitoring. The red dots show post failure spreads. 
Individual thermocouples were not trended, but if a shift in typical operation occurs 
they may be used to identify the location of the fault circumferentially within the 
turbine or combustion system. 
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FIGURE 7: SITE B EXHAUST TEMPERATURE SPREADS 

Diagnosis 

Based on the fault signatures from the model coupled with evaluation of other 
process data it is concluded that a turbine blade or nozzle failure occurred. The 
symptoms matched on the troubleshooting chart are shown in Figure 8. The unit 
continued to run for 2 days after the failure occurred. It appears elevated vibration 
alone was not sufficient to shut down the unit. Additional information to confirm 
damage could have prevented additional damage from running the machine post 
failure. 
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FIGURE 8: SITE B FINAL DIAGNOSIS 

Case Study 2: Turbine Nozzle Damage 

Figure 9 shows the calculation of faults for each measurement station using the 
calibrated artificial neural network (measured minus model prediction). This allows 
easy alignment with the troubleshooting chart in Figure 11. Not all fault signals are 
shown for clarity of plot, but all were examined. The GG Turbine End Vibration 
Measurement was also added as it helps with the diagnosis. There is an excursion in 
exhaust gas temperature and vibration near the end, marked in red, that then 
reduces in magnitude. While the vibration returns to normal levels, this is a false 
indicator of normal performance as the exhaust gas temperature swings lower than 
expected indicating potential hardware damage. 
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FIGURE 9: SITE A FAULT SIGNALS (MEASURED - NN PREDICTION) 

The exhaust temperature spreads are shown in Figure 10. The light black area 
represents normal operation. The darker black area shows spreads following the high 
vibration excursion event. Red shows spreads during the high vibration period. This 
alone may not have been sufficient for unit shutdown, but may have prompted 
additional monitoring. Post failure shows a large drop in spreads which is atypical for 
the unit. 
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FIGURE 10: SITE A EXHAUST TEMPERATURE SPREADS 

Diagnosis 

Based on the fault signatures from the model coupled with evaluation of other 
process data it is concluded that a combustor or turbine nozzle failure may have 
occurred. The symptoms matched on the troubleshooting chart are shown in Figure 
11. The unit continued to run for 2 days after the failure occurred. It appears elevated 
vibration alone was not sufficient to shut down the unit. Additional information to 
confirm damage could have prevented additional damage from running the machine 
post failure. The machine was run for more than five days following the signs of 
hardware distress which could have caused additional damage. 
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FIGURE 11: SITE A FINAL DIAGNOSIS 

Conclusions 

A condition monitoring approach using neural networks to implement a physics-
based gas turbine model has been developed to the end of the proof-of-concept 
phase. It has been successfully demonstrated to show how it can supplement 
monitoring of ‘raw’ historian data to identify potential hardware damage through 
changes in thermodynamic performance of the gas turbine. In two cases the 
developed approach is capable of identifying anomalous behavior which corresponds 
to known part failures. The process of creating a neural network for any physics-
based model can be adapted to any system for real time monitoring.  


