Life Cycle Cost Analysis of Gas Turbines

Shane McDowell,
Bob Wellington, Mike Hildebrand
(Union Gas Limited)

IAGT Fall 2010 Course – Hamilton, Ontario

Agenda

- Considerations in unit selection
 - Capital Investment requirements
 - Operational Needs
 - Maintenance
- Case Study #1
- Case Study #2
- Case Study #3

Capital Investment

Design Outputs

- Fuel Consumption
- Load Factor
 - Efficiency
 - Multiple Units
- Starts/Stops
- Operating Hours
- Operating Conditions
- Emissions
 - Air
 - Noise

Utilities

- Power
- Water
- Fuel
- Heating
 - Domestic
 - •Fuel
- Compressed Air
 - Requirements
 - Multiple Systems

Facilities

- •Land Area
 - Current
 - Future
 - Accessibility
 - Security

Spare Inventory

- Inventory
 - •Filter Elements
 - Seal Kit
 - Bearings
 - •Ignitors
 - Combustors
- Tooling

Operating Costs

Personnel

Operation

- Operating season/lifespan
- Remote vs staffed facilities
- Operating Engineers vs Turbine Operators and Mechanics
 - Wages
 - Background
 - Training costs
 - Union Considerations

Personnel

Maintenance

 Industrial Mechanics, I&C Technicians, Electricians (crossover), Other

LTSA/FSR support

Management/Administrative

Utility Costs

Electrical Power

- Consumers
 - Air Compression
 - Motors
 - I&C Systems control panels, consoles, transmitters, fire and gas detection
 - Cooling systems
- Grid Power vs. On-Site Generation
 - Availability
 - Reliability
 - Cost (Smart Metering)

Utility Costs

Fuel

- Type depends on location/product
- Thermal and Pneumatic Loads
- Fuel Conditioning
- Fuel quality monitoring chromatography
- Piping system maintenance/inspection
- Utility Measurement Facilities

Utility Costs

Lubricating Oils

- Sampling
- Stocked quantities
 - Climate control, shelf life

Emission Monitoring

- CEMS
 - Equipment O&M Costs
- PEMS
 - Cost to maintain instrumentation for additional inputs

Scheduled Inspections

- Compressor soak wash
 - Design Consideration
 - Off line wash = equipment downtime
 - Online wash = additional capital
- Oil sampling

Scheduled Inspections

 4000 hours (igniters, borescope inspection, VIGV check mechanism)

8000 hours BOV checks, pressure switches,

electrical, HP3 air filter

Pre-start inspections

Scheduled Overhauls

- Scheduled Overhauls
 - Midlife overhaul
 - Complete overhaul
- Prolonged outage
- Options
 - Lease Engine
 - LTSA
 - Spare engine

Unscheduled

Resource considerations

- In-house maintenance crews
- Level of expertise
- LTSA
- Factors to consider
 - maintenance window
 - Redundancy in system
 - Spare unit
 - Value of downtime

Condition Monitoring/Predictive Maintenance

- Detection of early-stage problems
- Vibration analysis
- Fluid analysis
- avoid costly failures

CASE STUDY 1

Gas Compressor for Storage Pool Injection/Withdrawal Service

- Design Parameters
 - Injection May September
 - Withdrawal October March
 - Large operating range
- Located in large compression facility
- Options
 - Rolls Royce 6561
 - Rolls Royce 6761
 - Rolls Royce 6762

CASE STUDY 2

Remote Compressor for Storage Pool Injection/Withdrawal Service

- Design Parameters
 - Injection May September
 - Withdrawal October March
 - Centralized compression for multiple pools
- Remote compression facility
- Options
 - Solar Centaur 40
 - Solar Centaur 50

CASE STUDY 3

Generic Power Generating Station w/ Utility Fuel Supply

Capital Investment by Owner

- Land for metering station
- Drainage facilities for metering station
- Power for metering station
- Additional gas compression (possibly provided by utility)

Capital Investment by Utility

- Tap into pipeline/well
- Pipeline
- Metering station

Operating Costs for Utility

- Routine equipment maintenance/inspections
- Fuel to metering station
- Corrosion control and pipeline surveys

Cost Sharing

- Establish ownership of costs in detail early on.
- Storage/delivery revenues rolled in with capital investment and O&M costs determine NPV
- NPV will determine "aid to construct"