Air Inlet Filtration & Inlet Cooling Enhancements by

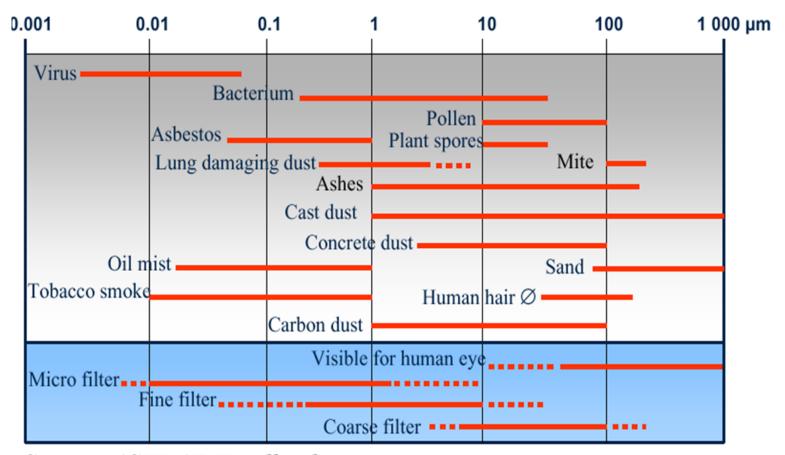
Jim Benson Camfil Farr Power System

Agenda

- Inlet Filtration
 - Why filters
 - Environments
 - Filter Testing
- Inlet Cooling
 - Benefits of Cooling
 - Overview of Cooling Technologies

Why Filter

- FOD
- Erosion
- Corrosion
- Cooling Passage Plugging
- Fouling



Environments

Aerosols

Source: ASHRAE Handbook

Filter Parameters

- Pressure Drop
 - Compressor Work
 - Initial
 - Avg. over life
- Efficiency
 - Compressor Fouling
- Service Life
 - Pressure Drop
 - Age
 - Scheduled Maintenance

Filter Parameters Test Standards

- Common Standards
 - ASHRAE 52.2
 - EN 779
 - EN 1822 (high efficiency)
- Particle count by size
 - Rated per Std.
 - ASHRAE 52.2
 - "MERV 14"
 - Minimum efficiency reporting value
 - EN 779 2012
 - Avg + min efficiency
 - "F9"
- General ventilation filter standards
 - A specific ISO air filter for Turbomachinery
 - is in a working group phase but likely some time away

Test Standards common methods

- Tested at rated airflow
- Efficiency by particle size
- Efficiency measured at several dust loading press. Drops
 - Initial
 - Final pressure drop
 - Intermediate points as % of loading to final.

Filter Parameters Efficiency EN 779 2012

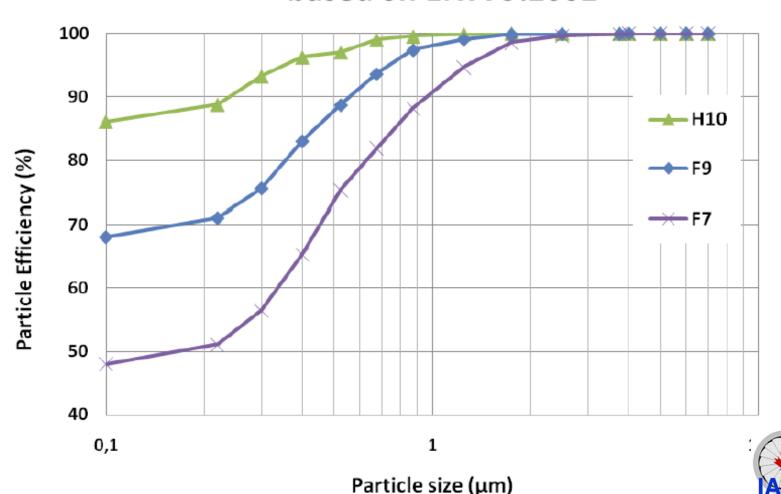
Classification of air filters ¹⁾											
Group	Class	Final pressure drop (test) Pa	Average arrestance (Am) of synthetic dust %	Average efficiency (Em) for 0.4 µm particles %	Minimum efficiency ²⁾ for 0.4 µm particles %						
Coarse	G1	250	50≤Am<65	-	-						
	G2	250	65≤Am<80	-	-						
	G3	250	80≤Am<90	-	-						
	G4	250	90≤Am	-	-						
Medium	M5	450	-	40≤Em<60	-						
	M6	450	-	60≤Em<80	-						
Fine	F7	450	-	80≤Em<90	35						
	F8	450	-	90≤Em<95	55						
	F9	450	-	95≤Em	70						

Filter Testing "HEPA"

- HEPA efficiency original definition:
 - 99.97% on 0.3 um particle

- Requirements and test instruments evolved
- Today defined as several grades when tested to EN 1822

Filter Parameters Efficiency EN 1822


Classification of EPA, HEPA (part of EN 1822 table)

@ MPPS – most penetrating particle

	Integral value			
Filter Group Filter Class	Efficiency (%)	Penetration (%)		
E10	≥ 85	≤ 15		
E11	≥95	≤ 5		
E12	99,5	≤ 0,5		
H13	≥ 99,95	≤ 0,05		
H14	≥ 99,995	≤ 0,005		

Typical particle removal efficiency for <u>clean filter</u> based on EN779:2002

Filter Comparison EN 779 F7 vs. F9 @ 0.4 um

F7 F9

Efficiency 90 % Efficiency 95 % (min)

Or Or

Inefficiency 10% Inefficiency 5%

10 out of 100 particles pass thru 5 out of 100 particles pass thru

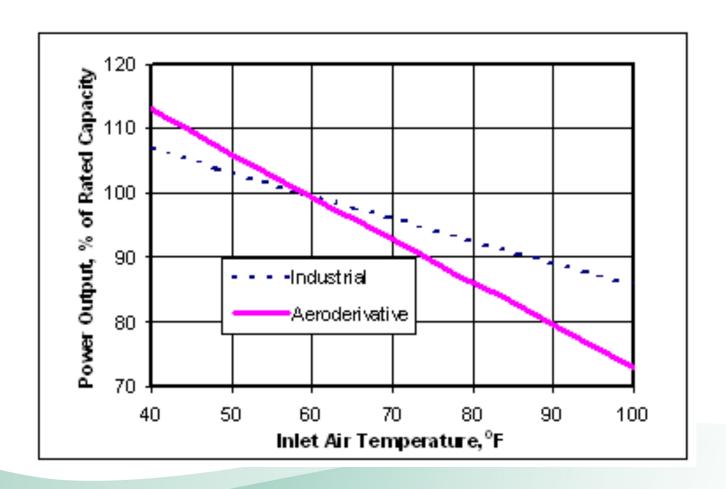
F9 is 2x more efficient than an F7

Standards Comparison									
ASHRAE Standard 52.2-1999				ASHRAE 52.1		EN 779	EN 1822		
Minimum Eff Reporting	Composite Average Particle Size Efficiency, % in Size Range, μm			Average Arrestance	Average Dust Spot	Efficiency Average Eff	Efficiency Average Eff at		
Value	Range 1	Range 2	Range 3	Arrestance	Efficiency	at 0.4μm	MPPS		
(MERV)	0.30 - 1.0	1.0 - 3.0	3.0 - 10.0	%	%	%	%		
1	n/a	n/a	E ₃ < 20	A _{avg} < 65	< 20	G1			
2	n/a	n/a	E ₃ < 20	A _{avg} ≥ 65	< 20				
3	n/a	n/a	E ₃ < 20	A _{avg} ≥ 70	< 20	G2			
4	n/a	n/a	E ₃ < 20	A _{avg} ≥ 75	< 20				
5	n/a	n/a	E ₃ ≥ 20	80	20	G 3			
6	n/a	n/a	E ₃ ≥ 35	85	20-25				
7	n/a	n/a	E ₃ ≥ 50	90	25-30	G4			
8	n/a	n/a	E ₃ ≥ 70	92	30-35				
9	n/a	n/a	E ₃ ≥ 85	95	40-45	F5			
10	n/a	E ₂ ≥ 50	E ₃ ≥ 85	96	50-55				
11	n/a	E ₂ ≥ 65	E ₃ ≥ 85	97	60-65				
12	n/a	E ₂ ≥ 80	E ₃ ≥ 90	98	70-75	F6			
13	n/a	E ₂ ≥ 90	E ₃ ≥ 90	98	80-85	F7			
14	E ₁ ≥ 75	E ₂ ≥ 90	E ₃ ≥ 90	99	90-95	F8			
15	E₁ ≥ 85	E ₂ ≥ 90	E ₃ ≥ 90	99	95	F9			
16	E₁ <u>></u> 95	E ₂ ≥ 95	E ₃ ≥ 95	100	99	H10	> 85		
	N/A	N/A	N/A	N/A	N/A	H11	> 95		
N/A						H12	> 99.5		
						H13	> 99.95		
						H14	> 99.995		
						U15	> 99.9995		
						U16	> 99.99995		
						U17	> 99.999995		

Note: The final MERV value is the highest MERV where the filter data meets all requirements of that MERV.

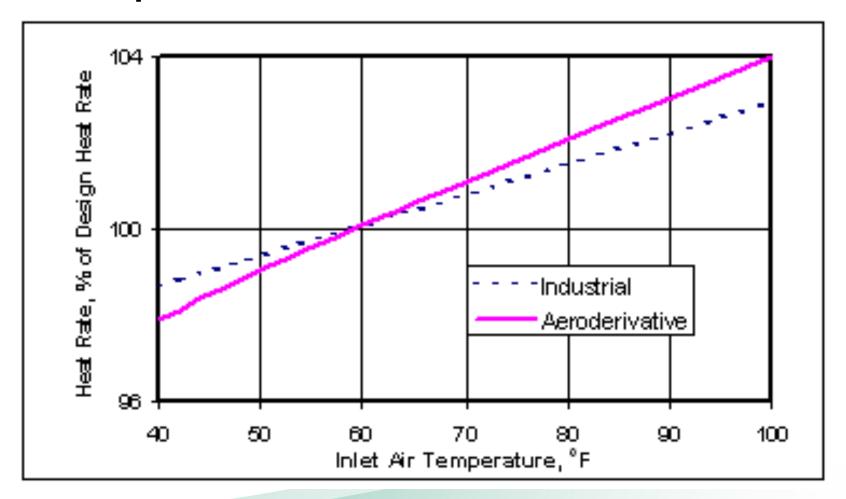
Summary

- Inlet Filtration Protects GT
- Filtration Performance
 - Environment
 - Aerosol Contaminant
 - Filter Selection
- Inlet Filtration affects GT Performance and Economics



Turbine Inlet Cooling

- What is it?
 - A system that cools the ambient temperature of the turbine's inlet air
- Why Cool?
 - Increase power output and efficiency
- How?
 - Cooling the inlet air increase the density of the air, thus increases the mass airflow thru the unit thus more power, efficiency

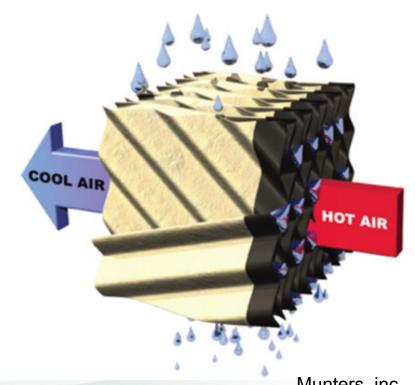


Temperature effect vs. Power

Temperature effect on Heat Rate

Turbine Inlet Cooling Technologies

- Evaporative
 - Wetted Media
 - Fogging
 - Wet Compression
- Chillers
 - Mechanical
 - Absorption
 - Thermal energy storage optional
 - LNG Vaporization
- Hybrid System
 - Combination of above technologies


Evaporative Technologies

- Evaporation of water added to the inlet air stream cools the air
- Performance limited to the wet-bulb temperature

Evaporative Technologies Wetted Media

- inlet air is exposed to a film of water in one of the many types of wetted media.
- A honey-comb-like medium is most commonly employed media
- Cools to 85 -95 % of the dry -wet blub difference

Evaporative Technologies Fogging

- Water Droplets sprayed into the inlet air
- Demineralized water
- Pressurize system
- Cools to 85 -95 % of the dry –wet blub difference

Mee Industries inc.

Evaporative Technologies Wet Compression

- Similar to Fogging
- But Droplets injected near the Bellmouth
 - Greater mass flow
 - May be used with other cooling technology

Chillers

- Heat Exchanger Coils installed in the duct
- Chilled fluid or refrigerant is circulated through the coils
- Can cool below wet-blub
- Higher Capital & operating cost
- Higher Temperature performance

Options: Internally Mounted Coils • Bulk Air Cooler

StellarEnergy

Chillers

- Require Refrigeration System
 - Mechanical
 - Motors/Compressor
 - Absorption
 - Steam or heat for chiller system
 - excess thermal energy is available
 - Thermal energy storage
 - Storage of ice or chiller water
 - Use in peak duty cycles
 - LNG Vaporization

Turbine Inlet Cooling

- Considerations for Selection
 - Climate conditions
 - Ambient dry blub and wet blub temperatures
 - Operating economics
 - Cost of fuel
 - Price of output
 - Peaking price "bonus"
 - Reference Turbine Inlet Cooling Association
 - www.turbineinletcooling.org

20 12

October 18 & 19, 2012

Delta Toronto Airport West

Thank You

