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ABSTRACT 

Predictive Emission Monitoring (PEM) systems have been developed for four natural gas 

fired power generating facilities.  The systems are based on an artificial neural network 

(ANN) using the power plant operation variables to predict the nitric oxide (NO) portion 

of the exhaust emissions.  The PEM systems were trained with emission and operation 

data gathered from the facilities during normal operation.  A multi-layer perceptron fully-

connected feed forward network with two hidden layers was the best architecture for all 

of the facilities.  Verification of the PEM systems involved querying the trained networks 

with independent data sets (i.e. Demonstration Periods).  The accuracy of the system was 

determined using the relative accuracy (RA) calculations from the Environment Canada 

EPS 1/PG/7 report (Environment Canada, 1993) .  The PEM system is an ideal system for 

the low emitting natural gas fired generating plants however the system could be adapted 

for other types of industries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Page 4 of 24 

 

 

TABLE OF CONTENTS 

AUTHOR BIOGRAPHY ............................................................................................................................. 2 

ABSTRACT .................................................................................................................................................. 3 

TABLE OF CONTENTS ............................................................................................................................. 4 

1.0 INTRODUCTION .......................................................................................................................... 5 

2.0 SITE DESCRIPTION .................................................................................................................... 7 

3.0 NITROGEN OXIDE (NOX) CHEMISTRY ................................................................................ 8 

4.0 SUPPORT FOR USE OF PEM SYSTEM ................................................................................... 8 

5.0 REGULATORY CONTEXT ........................................................................................................ 9 

6.0 WHAT IS AN ARTIFICIAL NEURAL NETWORK (ANN)? ..................................................10 

7.0 ANN PROCESS – ANALYSIS/PRE-PROCESSING/DESIGN/TRAINING/QUERYING ....11 

8.0 DATA COLLECTION PROGRAM ...........................................................................................13 

9.0 PLANT OPERATION VARIABLES ..........................................................................................15 

10.0 DATA PROCESSING ..................................................................................................................16 

11.0 PEM SYSTEM ..............................................................................................................................17 

12.0 RESULTS ......................................................................................................................................19 

13.0 CONCLUSIONS ...........................................................................................................................22 

14.0 ACKNOWLEDGEMENTS ..........................................................................................................24 

15.0 REFERENCES ..............................................................................................................................24 

 

Key words: Predictive emission monitoring system, artificial neural network, power 

generation, nitric oxide emission 

 

 

 

 



  Page 5 of 24 

 

 

1.0 INTRODUCTION 

Predictive Emission Monitoring (PEM) systems have become fashionable in the past few 

years because of advances in computer processing capability and the concept of an 

artificial neural network.  Artificial neural networks (ANN) are increasing in popularity 

because of their capability to examine highly complex non-linear problems, such as NOx 

formation.  The use of neural networks has shown to be an effective alternative to the 

traditional statistical techniques (Schalkoff, 1992; Comrie, 1997).  The PEM system 

methodology is intended to be used by facilities to meet compliance issues pertaining to 

measurement, monitoring and reporting requirements as an alternative to Continuous 

Emission Monitoring (CEM) systems. 

The PEM-ANN system developed during this study predicts mass NOx (as NO) emission 

rates using readily available and measured physical variables associated with the 

combustion process (i.e. fuel consumption, power output, compressor discharge pressure, 

etc.).  This was an important component of the design phase of the program; namely that 

we do not introduce additional measurement points.  A general PEM system framework 

for the prediction of the nitric oxide (NO) portion of exhaust emissions from low mass 

emitting natural gas fired facilities is discussed.  

The ANN system uses a multi-layer perceptron (MLP) model which consists of a system 

of simple interconnected neurons representing a non-linear mapping between an input 

vector (i.e. plant operational variables) and an output vector (i.e. NO emission rate).  The 

neurons are connected by weights and output signals which are a function of the sum of 

the inputs to the neurons modified by a simple non-linear transfer or activation function.   
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The principle objective of this work was to develop an alternative monitoring method that 

is less expensive and as accurate as traditional CEM systems.  Using the four gas turbine 

power plants operated, at the time of the system development, by TransCanada Energy 

Ltd.1, a system was developed that achieved the required accuracy of the regulatory 

authorities.  The results of the PEM systems are currently being reviewed by the Ministry 

of the Environment of Ontario (MOE).  The following describes the PEM system 

architecture, facilities that were used in the development, approach to development and 

results.  

Finding cost-effective ways to deal with changes in legislation impacting facilities 

already in operation is extremely important, especially considering the nature of long 

term power supply contracts that do not include mechanisms for cost recovery.  It is also 

important to consider the age of the facilities, having not required CEM systems when 

put into operation but not yet old enough yet for capital stock turnover to allow for 

equipment changes or transition to new operations.   

The advantages to having a regulator approved PEM system will no doubt be important 

to regulators and facilities alike as legislation is implemented requiring similar 

monitoring systems be in place at facilities in other sectors beyond electricity generation. 

 
1 These. facilities are now controlled by EPCOR. 
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2.0 SITE DESCRIPTION 

The PEM system development program involved four power generating facilities 

operated, at the time of system development, by TransCanada Energy Ltd. - North Bay, 

Kapuskasing, Tunis and Nipigon.  The facilities operate natural gas fired combustion gas 

turbines (CGT) in a combined cycle set-up with power generation between 22 – 31 

megawatts (MW) of electricity production from the CGT units alone.  Additional power 

is also produced by passing hot exhaust gases from the turbines, as well as adjacent 

compression facilities through a heat recovery steam generator (HRSG), making the 

facilities “enhanced combined cycle”.  The plants are base load plants with minimal start-

ups and shutdowns.  The facilities are all located in Northern Ontario, thus exposed to 

extreme climates on a regular basis.  Table 1 summarizes the four facilities. 

Table 1 Summary of TransCanada Facilities 

Facility Turbine Output 

(MW) 

Load Gas turbine type In-service date 

North Bay 25 Base (22-31 MW) FT-8 (DLN) March 1997 

Kapuskasing 25 Base (20-30 MW) FT-8 (DLN) March 1997 

Tunis 31 Base (20-30 MW) LM6000 January 1995 

Nipigon 22 Base (19-23 MW) LM2500 May 1992 

 

North Bay and Kapuskasing facilities have dry low NOx (DLN) control systems to 

reduce the NOx emissions.  The DLN system is used to control local fuel/air ratio and 

fuel zones for optimum low emissions and combustion stability.  As well, these two 

facilities have duct burners to heat the gas turbine exhaust gases entering the HRSG to 

increase the power output of the steam generator.  The other two facilities do not have 

any type of NOx controls. 
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3.0 NITROGEN OXIDE (NOX) CHEMISTRY 

Products of combustion include carbon monoxide, carbon soot, aldehydes and nitrogen 

oxides.  The major component of nitrogen oxides (NOx) is nitric oxide (NO) which is 

formed due to the high temperatures in the post flame area, known as thermal NOx.  NO 

may react to form NO2, N2O, N2O3 or N2O5 later either when temperatures are cooler in 

the stack or after being exhausted.  Other processes contribute to the total NOx emissions: 

reactions within the flame area with cyanide compounds – termed prompt NOx; and the 

nitrous oxide process that involves the reaction of O with N2 to form N2O which oxidizes 

to NO; and another process of formation is from the nitrogen contained in the fuel which 

produces NO2 (Botros et al, 2001). 

4.0 SUPPORT FOR USE OF PEM SYSTEM 

The facilities used in the study are part of the many small power generating stations 

located across Canada which operate with very few full time employees and under well-

defined load conditions.  A PEM system is an ideal solution to providing accurate and 

environmentally sound emission predictions as the results here show.  The US EPA and 

Environment Canada have indicated that these facilities may be better served using a 

PEM system instead of a CEM system.  The US EPA has recently released its own set of 

criteria for the development of PEM systems.  The protocol and analysis used in this 

PEM system development would be sufficient to meet the intent of the US requirements 

as currently proposed (USEPA, 2005) and would therefore also make a good template to 

develop a Canadian guideline for PEM systems.  As well, there is a lower capital 

investment with a PEM system than a CEM system.  Existing facilities without an 
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installed CEM system can face extremely high retrofit costs when compared with 

installation of a CEM system at the time of construction of a new facility. 

The decreased costs are also due to the shared nature of a PEM system, utilizing 

equipment and information otherwise necessary for the operation of a facility.  This leads 

to an added potential benefit of being able to correlate operation of a facility directly to 

emissions levels.  CEM systems don’t often share this capability and therefore don’t offer 

the same potential opportunity to “fine tune” operations to reduce emissions even lower 

than the currently low levels from natural gas facilities. 

5.0 REGULATORY CONTEXT 

PEM systems can be designed to achieve results for the various reporting regulations.  

Currently the NO portion has been predicted, however the system has the ability to 

predict the mass emission rate of nitrogen oxides in whatever metric regulatory 

authorities require.  At the commencement of this study O.Reg. 397/01 required only the 

NO portion to be reported, however, the regulation has been recently amended to O.Reg. 

193/05 which requires total nitrogen oxide expressed as nitrogen dioxide (i.e. the sum of 

NO converted to NO2, and NO2).   

Development of the new system will only require the change of emission data to the 

proper reporting metric.  Operation data of the sampling period can be reused to redesign 

the system. 
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The other requirement of Regulation 397/01 was that any PEM system must have the 

ability to meet the federal Canada guideline for CEM systems (EPS 1/PG/7), as 

previously discussed.  This became the general “test” for the study outlined herein.   

6.0 WHAT IS AN ARTIFICIAL NEURAL NETWORK (ANN)? 

Artificial neural networks are data analysis methods and algorithms based loosely on the 

nervous systems of humans and animals.  The human brain is orders of magnitude more 

complex than the ANN.  An ANN in general terms is a network consisting of a large 

number of simple processing units linked by weighted connections.  The main processing 

unit of the network is the neuron and the power of the network comes from the 

combination and connections between the neurons.  The ANN can be adjusted to the 

particular problem by tuning the parameters of the neural network such as input variables, 

algorithms, method of architecture search, weights of the variables and many more.  The 

more complex the problem, there is a greater variation of the parameters used in the 

creation of a network. 

A multi-layer perceptron (MLP) is the most common form of a neural network.  The 

MLP consists of a system of neurons which represents a non-linear mapping between the 

inputs and outputs.  The neurons are connected by weights and output signals that are the 

function of the sum of the inputs modified by a simple non-linear transfer or activation 

function.  It is the activation function involved in all of the connections which make it 

possible for the neural network to approximate extremely non-linear functions.  The 

logistic function is the most commonly used function (Figure 1).  The logistic function 

has a sigmoid curve and is calculated using the following formula: F(x) = 1/ (1+e-x).  Its 
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output range is [0...1].  The output produced by a neuron is fed forward to be an input for 

neurons in the next layer.  This information flow is referred to as a feed forward process.   

 

Figure 1 A multi-layer perceptron feed-forward artificial neural network 

generalized architecture (Source: http://www.nd.com). 

The architecture of a MLP varies depending on the problem; however the MLP tends to 

have multiple layers of neurons.  The input layer only passes the input variables into the 

network, no calculations occur in this layer.  A MLP is fully connected, with every 

neuron connected to neurons in the previous and next layers.  According to Hornik et al. 

(1989), if the appropriate weights and activation function are chosen then the MLP can 

approximate any smooth, measurable function between inputs and outputs. 

7.0 ANN PROCESS – ANALYSIS/PRE-

PROCESSING/DESIGN/TRAINING/QUERYING 

Preparation of data sets is critical when working with an artificial neural network (ANN).  

The ANN requires certain qualities with input data, for example, proper quantity of data, 

data should not be self-contradictory, inputs should have maximum influence on output, 

no missing values or outliers, and data should represent the problem.  The quality of the 

input data plays a large role in the creation of an accurate neural network.   
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The ANN development process begins with organizing the data into paired data sets and 

being confident the data meets the required quality for input into the software.  Analysis 

of the data includes a search for missing values and outliers, subdividing data into 

training, validation and test data sets and pre-processing.   

Training period data is subdivided into the three sets for the training process.  The 

training set is the input data used to train the neural network – data is used to adjust 

network weights to maximize the accuracy of the predictions and reduce the amount of 

error.  The validation set is used to tune the network topology or network parameters 

other than weights.  The test set is used only to estimate the quality of the training of the 

neural network and is the portion of the training data that is not presented to the network 

for training. 

Pre-processing involves the transformation of data before being fed into the neural 

network.  The data is scaled into a numerical format which is required for data to be 

processed.  Following pre-processing the next step is to design architecture to be used by 

the network.  The architecture design stage involves using the input training data and 

various search parameters to specify the number of layers in the neural network and the 

number of neurons per layer along with activation functions for layers and network error 

function.  Determining the best architecture is an essential step to being able to solve the 

problem.  

Training the neural network is the next step and the purpose of training is to teach the 

network to associate specific output values with a given set of input-output data.  During 

training, input data is presented to the network and signals are propagated forward 
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through the network.  The response produced in the output layer is then compared to the 

desired response.  Training will continue to change the weights between network units 

(neurons) to reflect dependencies in the data.  Following training the network is ready to 

be queried with new unseen data (i.e. Demonstration periods) to test the generalisation of 

the network.  Generalisation refers to the ability of the network to respond to inputs it has 

not encountered during the training process.  The ability to generalize is essential to the 

decision making ability and accuracy of the network.   

A trial and error method using the above ANN process was used to determine the best 

networks for the four sites.  The method involved changing the fitness criterion, 

increasing the search range, reducing the search step or accuracy, increasing the number 

of retrains per configuration, increasing number of iterations per configuration, changing 

algorithms, combinations of operational variables and changing other network training 

parameters. 

8.0 DATA COLLECTION PROGRAM 

Emission and plant operation data were collected from the four facilities to obtain a 

sufficiently sized dataset of NO, NO2, NOx and O2 measurements and plant operational 

data to be used to develop the PEM system.  The NO data was used for this particular 

study.  The paired data was collected on a minute by minute basis with emission data 

reported in ppm and oxygen data in percent.  Plant operational data was reported in the 

appropriate units for each variable.  Data collection was carried out during normal 

operation of the facility.   
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The data collection program comprised of a Training Period and two Demonstration 

Periods (Table 2).  Training periods consisted of approximately 32 – 36 hours of data, 

and Demonstration periods consisted of approximately 72 hours.  A separation period of 

a minimum of 48 hours was scheduled between the two demonstration periods.  The 

training period data was used to train and prepare the PEM system following the method 

described previously.  Verification of the system involved the use of the Demonstration 

Periods to show independently of the training data set that the PEM system could 

accurately predict emissions. 

Table 2 Schedule of Testing 

Site Phase Period Start Date/Time Finish 

Date/Time

Full scale 

(ppm)

Load Gas turbine 

status

Gas Turbine

North Bay Fall Training 10/25/04 4:18 10/26/04 11:59 50 Normal operation FT-8 (DLN)

Demonstration #1 10/26/04 13:00 10/29/04 13:00 50 Low/High Normal operation

Demonstration #2 11/1/04 4:30 11/4/04 7:59 50 Low/High Normal operation

Winter Training 1/24/05 3:00 1/25/05 16:00 50 Normal operation FT-8 (DLN)

Demonstration #1 1/25/05 17:00 1/28/05 18:12 50 Low/High

Turbine 

Malfunction

Demonstration #2 1/31/05 16:00 2/3/05 19:23 50 Low/High

Lease turbine 

installed

Kapuskasing Winter Training 2/14/05 4:30 2/15/05 23:59 50 Normal operation FT-8 (DLN)

Demonstration #1 2/16/05 0:00 2/18/05 23:59 50 Low/High Normal operation

Demonstration #2 2/21/05 4:00 2/24/05 19:00 50 Low/High Normal operation

Tunis Winter Training 6/2/05 19:00 8/2/05 20:00 250 Normal operation LM6000

Demonstration #1 8/2/05 20:01 12/2/05 12:55 250 Low/High Normal operation

Demonstration #2 3/23/05 16:00 3/27/05 8:15 250 Low/High Normal operation

Nipigon Winter Training 3/11/05 17:16 3/13/05 7:00 250 Normal operation LM2500

Demonstration #1 3/13/05 19:01 3/16/05 22:00 250 Low/High Normal operation

Demonstration #2 3/16/05 22:01 3/22/05 8:00 250 Low/High Normal operation

NOTES:

1. Span, downloading, sampling and operational down periods were removed from the training and demonstration period 

data before ANN training and querying.

2. Relative accuracy (RA) calculations were based on EPS 1/PG/7 methodology.  As the NO concentration at all sites  

was below 250 ppm, the Full Scale value was substituted for the Reference Method average in the RA equation.

Relative accuracy was calculated based on a mass per time basis (g/s).
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9.0 PLANT OPERATION VARIABLES 

Plant operational variables required for the PEM system were collected from plant data 

collection systems (DCS).  These variables are part of the CGT train and are used to 

routinely monitor behaviour and performance of the CGT.  The sensors provide 

measurements once per minute.  The CGT is a precision machine and has many variables 

that must function in sync to realize an optimum output. 

Operational variables were chosen based on the availability and current set-up of the 

DCS.  A trial and error process was used to determine the best combination of variables 

for accurately predicting emissions and as a result not all of the variables collected were 

used in the final PEM system.  

The PEM systems of the four facilities used some of the same operational variables.  For 

example, the North Bay and Kapuskasing facilities used the same six operational 

variables whereas Tunis and Nipigon used thirteen and seven variables respectfully. 

Table 3 provides a summary of the plant operational variables for all of the facilities. An 

interesting note is that the North Bay and Kapuskasing used the same variables and 

further testing is being conducted to develop an interchangeable ANN for facilities using 

similar types of gas turbines. 
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Table 3 Operational variables from the four facilities 

North Bay 

[FT-8 (DLN)] 

Kapuskasing 

[FT-8 (DLN)] 

Tunis 

[LM6000] 

Nipigon 

[LM2500] 

GT fuel gas GT fuel gas GT fuel gas GT fuel gas 

Compressor 

outlet 

temperature 

Compressor 

outlet 

temperature 

HPC discharge temperature - 

compressor discharge 

temperature 

CDP temperature 

CDP pressure CDP pressure 
HPC discharge st. pressure - 

compressor discharge pressure 
Power turbine inlet temperature 

Mass flow Mass flow Mass flow 
Ambient temperature 

(compressor inlet temperature) 

Power Power Power HRSG #1 inlet temperature 

Ductburner 

fuel gas 

Ductburner fuel 

gas 

LPT inlet temperature - turbine 

inlet temperature 
HRSG #1 exhaust temperature 

  

Ambient temperature LM2500 RPM 

Combustor exhaust avg. temp - 

turbine exhaust temperature 

 

Stack exhaust 

LPT inlet total pressure - turbine 

inlet pressure 

HPC total air pressure - 

compressor inlet pressure 

HPC inlet air temperature - 

compressor inlet temperature 

LPC inlet temperature - 

compressor inlet temperature 

 

10.0 DATA PROCESSING 

Emission data was processed before the development of a neural network.  Processing 

involved converting the concentration emission data to a mass emission rate and pairing 

the emissions with the plant operational data.  Periods of interruptions in the data, for 

example, periods of data downloading, span checks, sampling and operation down 

periods were removed from the data used to train and verify the PEM system. 

NO mass emission rates were calculated using F-factors – Method A (Environment 

Canada Report EPS 1/PG/7, Sept. 1993, Appendix B – Determination of Mass Emission 

Rates) from the source testing data and fuel consumption. 
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Equation 1 transforms the NO concentration from a volume basis to a mass per time (g/s) 

basis. 










−
=

d

xdxd
O

KFCHI
2

,
%9.20

9.20
ERx  (1) 

Where: 

ERx = emission rate of pollutant (g/s) 

HI = gross heat input (MJ/hr) 

Cd,x = dry-basis concentration of NO (ppm) 

Fd = ratio of the volume of dry gas resulting from stoichiometric combustion of the fuel 

with air, to the amount of heat produced (Natural gas = 0.247 dscm/MMJ ) 

Kx = conversion factor for ppm into ng/scm (1.23 x 106 ng/scm for NO) 

%O2d = dry-basis concentration of oxygen (%, dry, v/v ) 

11.0 PEM SYSTEM 

Equation 2 below is the simplified NO function for the Tunis facility PEM system.   

),,,,,,,,,,,,( 22 stackinCCEXTGTEG THDPHCDTHPHTATTFlTPTMWQfnNONO ==   (2) 

Where: 

NO EG = NO emissions from electrical generation (g/s)  

NO GT  =  Emissions of NO after Gas Turbine (g/s) 

fn() = Artificial neural network function 

 

The trained PEM system is designed to react to the changes/fluctuations in the operation 

variables.  This was achieved during training when the weights of the each variable were 

determined.  Each facility has a unique system designed specifically for the unit that was 

in operation at the time of the study.  The architectures of the facilities are in Table 4. 
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Table 4 Architectures for the four facilities 

Facility ANN Architecture 

North Bay 6-14-9-1 

Kapuskasing 6-14-4-1 

Tunis 13-24-11-1 

Nipigon 7-16-9-1 

 

The ANN based PEM system will be composed of the trained neural networks model and 

a stand alone computer.  The appropriate plant variables will be downloaded from the 

plant data collection systems and fed through the PEM system.  Minute by minute and 

hourly averages of emissions will be determined and stored on the data collection system.  

Emissions will be continuously predicted while the plant is in operation.  Process 

interruptions or an equipment change will require the system to be retrained. 

Tuning (re-training) may be performed to enhance the accuracy of the PEM system for 

the following reasons: process aging, significant process modification, and new process 

operating modes.  The PEM system must be tuned on an augmented set of data which 

includes the set of data used for developing the system in use prior to tuning and the 

newly collected set of data needed to tune the system.  Verification that the PEM system 

is acceptable after tuning will be performed utilizing a set of the recent paired data set of 

reference test method emissions data and plant operational variables. 
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12.0 RESULTS  

Through a trial and error research process a feed-forward fully connected multi-layer 

perceptron neural network with two hidden layers was found to be the best ANN for 

predicting NO emissions at the four facilities.  The trial and error process involved 

evaluating all of the functions, data, parameters and algorithms and determining the best 

combination.  These network parameters were similar between the facilities, with only 

the architecture varying from facility to facility. 

Each PEM system used the same activation function (logistic), error function (sum-of-

squares) and training algorithm (conjugate gradient descent (CGD)).  CGD was chosen as 

it is a general purpose training algorithm and was recommended when working with large 

sets of data.  CGD has nearly the convergence speed of second-order methods, while 

avoiding the need to compute and store the Hessian matrix.  Its memory requirements are 

proportional to the number of weights.  Through a trial and error process the CGD 

algorithm was discovered to provide the best results when training the PEM systems.  

Originally, the back propagation algorithm was chosen as it was one of the more popular 

algorithms to train multi-layer perceptron networks.  However the algorithms main 

drawbacks of slow convergence need to tune up the learning rate and momentum 

parameters, and high probability of getting caught in local minima created more difficulty 

to use then CGD.  The convergence to a good solution was more probable with the CGD 

algorithm.  CGD is a method what works faster than back propagation and provides more 

precise forecasting results. 
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Each facility has a unique PEM system based on the CGT unit and existing operational 

set-up.  Ranges of the operational variables vary with each site.  The quantity of data 

points varied from facility to facility due to the removal of data points and length of time 

sampling occurred.  The PEM systems were developed using data collected during a 

period of normal operation.   

Minimization of the error and developing an accurate prediction system were the main 

objectives of the neural network training.  Through the trial and error process systems 

were developed based on achieving the two objectives.  Verification of the systems was 

completed to determine the predictability or accuracy.  The verification process involved 

feeding unseen data (i.e. Demonstration Period) into the trained networks and comparing 

the predicted output value with the actual (measured) value.  The accuracy of the PEM 

system was determined using the relative accuracy (RA) calculations as per EPS 1/PG/7 

report.  The average RAs for the four sites are in Table 5.  These values were calculated 

using the full-scale of the analyzer converted to a mass emission.  Based on the results 

the PEM systems meet the requirements of the guideline and would not require semi-

annual testing of the PEM system.  Graphical results for the Tunis facility are shown in 

Figure 2.  

A variety of statistical metrics were calculated to determine the accuracy of the PEMS 

(Table 5) including relative accuracy, which is a comparative evaluation of the PEM 

system performance compared to a reference method (RM) (measured values). An 

acceptable RA value is less than 10%.   
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Table 5 Accuracy statistics of the PEM systems  

Site Phase Period Load Emission Mean Variance Std 

Deviation 

Average RA 

values 

North Bay Fall Demonstration #1 High Actual 1.70 0.011 0.104 
2.6 

 

 

        Predicted 1.70 0.004 0.066 

      Low Actual 0.96 0.003 0.056 

        Predicted 0.87 0.005 0.069 

    Demonstration #2 High Actual 1.80 0.005 0.071 
4.7 

 

 

        Predicted 1.71 0.001 0.031 

      Low Actual 1.10 0.013 0.115 

        Predicted 0.89 0.034 0.185 

  Winter Demonstration #1 High Actual 1.59 0.437 0.661 
9.1 

 

 

        Predicted 2.18 0.159 0.398 

      Low Actual 0.98 0.042 0.204 

        Predicted 1.10 0.031 0.177 

    Demonstration #2 High Actual 1.17 0.533 0.730 
14.8 

 

 

        Predicted 2.18 0.208 0.456 

      Low Actual 0.75 0.007 0.082 

        Predicted 0.88 0.021 0.145 

Kapuskasing Winter Demonstration #1 High Actual 1.99 0.012 0.111 
3.1 

 

 

        Predicted 1.85 0.038 0.194 

      Low Actual 1.07 0.007 0.082 

        Predicted 1.07 0.010 0.098 

    Demonstration #2 High Actual 1.91 0.020 0.141 
2.7 

 

 

        Predicted 1.86 0.069 0.263 

      Low Actual 1.04 0.006 0.074 

        Predicted 1.08 0.007 0.083 

Tunis Winter Demonstration #1 High Actual 18.23 0.373 0.611 
2.7 

 

 

        Predicted 18.24 0.009 0.097 

      Low Actual 11.22 0.821 0.906 

        Predicted 10.69 0.895 0.946 

    Demonstration #2 High Actual 17.67 0.701 0.838 
2.7 

 

 

        Predicted 18.23 0.081 0.284 

      Low Actual 13.06 1.955 1.398 

        Predicted 12.19 1.085 1.042 

Nipigon Winter Demonstration #1 N/A Actual 9.89 0.521 0.722 3.8 

 

         Predicted 
9.89 0.269 0.518 

    Demonstration #2 N/A Actual 9.86 0.418 0.647 
2.6 

        Predicted 10.07 0.469 0.685 
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Figure 2 Tunis Demonstration Period #1 – NO actual and predicted emissions 

 

 

 

 

 

 

13.0 CONCLUSIONS 

The PEM system provides a cost effective method to monitor emissions accurately and 

reliably at low emitting natural gas fired facilities.  As well, there is a great potential for 

the system to be used by other industries to monitor and report emissions. 

The practical benefits of a PEM system that can accurately predict process emissions are 

great.   

1. Costs 

a. Capital investment – PEM system low compared to CEM system. 

b. Cost effective – Installation and maintenance cost of a PEM system lower 

compared to a CEM system. 

c. Labour – Less time required for system maintenance allowing employees 

to focus on other tasks as well as reducing overall system downtime and 

therefore non-compliance events related to such downtime. 

d. Supplies and parts – PEM system does not require the purchase of gases 

and/or additional supplies, once again decreasing the costs and potential 

downtime/non-compliance events. 
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2. Ability to detect anomalies in the power generation operational system as well 

as to better understand correlations between operating conditions and 

emissions levels.  This would allow “fine-tuning” of operations to maximize 

power output while maintaining emissions compliance or potentially reducing 

emissions. 

3. Hands off – Once running the system does not require any additional input 

(i.e. gas cylinders do not have to be changed). 

4. PEM system adaptable to the specific set-up of a facility.  No additional set-up 

(i.e. wiring, gases) are necessary.  This allows for easy retrofit to existing 

facilities, minimizing downtime and increasing the ability of a facility to come 

into compliance with newly implemented emissions monitoring and reporting 

legislation. 

These benefits should be taken into account by companies and regulators alike when 

considering options for compliance with growing regulatory requirements for emissions 

monitoring and reporting.  Barriers, such as the lack of applicable criteria, should be 

removed in order to allow for PEM systems to be implemented as an effective and 

accurate emissions monitoring system.  As barriers are removed and society becomes 

familiar with the use of PEM systems, one can imagine that emissions monitoring issues 

will decrease over time. 
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