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Present Challenges

Fuel Flexibility

Environmental Friendliness 

Global Uncertainties
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Global Fuel Scenario



Fuel Flexibility Challenge

• Much tighter control (regulations) requirement on fuel 
specification in aviation gas turbines

• Requirement for industrial gas turbine – burn anything

• How does/can fuel affect gas turbine operation?
– Combustion
– TurbomachineryTurbomachinery
– Emissions
– Hot gas path components
– MaintenanceMaintenance

• Decision to utilize alternative fuels depends on these effects 
and the associated costand the associated cost



Gas Turbine Fuels – Conventional  & 
Alternative
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Gas Turbine Fuels’ Composition
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Gas Turbine Fuels’ Properties

(Ref: Popovic et al, 2010, GE, ASME)( f p , , , )

Main Constituents LHV (MJ/m3) U/L Flammability Ratio
Mi M Mi MMain Constituents Min. Max. Min. Max.

Natural Gas CH4, C2H6 31.971 47.957 2.20 3.00
LPG C3H8, C4H10 91.917 127.885 4.00 5.00

Air Blown Syngas H2, CO, N2 , H2O, CO2 5.195 7.993 2.40 5.40
Oxygen Blown Syngas H2 CO H2O CO2 7 993 15 986 6 00 12 00Oxygen Blown Syngas H2, CO, H2O, CO2 7.993 15.986 6.00 12.00

Refinery Offgas H2, C2H6, C3H8, C4H10, C2H4, C3H6 11.989 63.942 3.00 18.00
Blast Furnace Gas H2, CO, N2 , H2O, CO2 2.997 4.996 1.50 3.00

Coke Oven Gas H2, CO, N2 , H2O, CO2 11.989 19.982 6.00 8.00



Fuel Constituents – Characteristic Values

LHV 
(MJ/kg)

Flammability Limits 
(Air-Fuel Ratio) Autoignition 

(oC)

Laminar 
Flame Speed 

(cm/s)Lean U/L Ratio(MJ/kg) (cm/s)Lean U/L Ratio
Methane CH4 50.048 34.26 3.35 537 44.8
Ethane C2H6 47.511 31.11 4.58 472 47.6
Propane C3H8 46.330 30.59 4.89 450 46.4
Butane C4H10 45.725 27.16 5.00 462 44.9
Pentane C5H12 45.343 28.24 5.96 284 43
Hexane C6H14 44.925 27.64 6.58 225
Methanol CH3OH 19.915 12.57 7.83 385 72.2
Carbon Monoxide CO 10.113 7.23 19.92 609 52
H d H 120 071 344 40 72 00 400 325Hydrogen H2 120.071 344.40 72.00 400 325



Syngas Related Issues – Composition 

Feedstock Variation 

Variations 

Composition (Volume %) Coal-Gas Bio-Gas Natural Gas
Hydrogen (H2) 14.0% 18.0% --

Carbon Monoxide (CO) 27.0% 24.0% --

Carbon Dioxide (CO2) 4.5% 6.0% --

• Gasifier type
• Process temperature
• Feed rate

Oxygen (O2) 0.6% 0.4% --

Methane (CH4) 3.0% 3.0% 90.0%

Nitrogen (N2) 50.9% 48.6% 5.0%

Ethane (C2H6) -- -- 5.0%

• Feed rate
• Amount of Oxygen
• H:C ratio in feedstock

HHV (kJ/m^3) 6,417 5,315 39,450

Composition (Volume %) Min. Max. Avg.

Process Variation 
Composition (Volume %) Min. Max. Avg.

Hydrogen (H2) 8.6 61.9 31.0

Carbon Monoxide (CO) 22.3 55.4 37.2

Carbon Dioxide (CO2) 1.6 30 12

Methane (CH4) 0 8.2 2.2Methane (CH4) 0 8.2 2.2

Nitrogen (N2)+ Argon (Ar) 0.2 49.3 12.2

Water (H2O) 0.1 39.8 7.8

Hydrogen/Carbon Monoxide Ratio 0.33 0.8 0.86



Fuel Flexibility Spread
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Thermodynamics of Gas Turbines
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Types of Combustors

(Ref: Hill & Peterson, 1992)



Combustor Anatomy
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Fundamentals of Combustion

• What is combustion?

– Rapid oxidation generating heat, or both light and heat
– Chemical reaction between a fuel and an oxidant– Chemical reaction between a fuel and an oxidant

CH4 + 2O2                CO2 + 2H2O + Heat

• What is flame?

– A self-sustaining propagation of localized reaction zone 
at subsonic velocities



Rich vs. Lean Combustion
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Basic Combustion Concepts

• Fuel-air ratio
• Stoichiometry• Stoichiometry
• Equivalence ratio
• Pattern factor
• Ignition delay
• Autoignition
• Flame speedp
• Lean blowout
• Flashback
• Adiabatic flame temperature• Adiabatic flame temperature
• Combustion efficiency



Combustion Dynamics

• Unsteady rate of heat input in phase with 
the pressure oscillations

• The instability grows to high-amplitude and 
hardware damaging pressure oscillations

• Susceptibility of DLN combustors to 
oscillations 

• Mechanisms responsible for oscillations in 
(Ref: Zukoski, 1978)

p
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Gas Turbine Related Pollutants

Pollutant Effect Mechanism

CO Toxic Incomplete combustion, dissociation of CO2
(weak or rich FAR in primary zone, low reaction temperature, 
poor mixing quenching by liner cooling air)poor mixing, quenching by liner cooling air)

UHC Toxic Incomplete combustion, 
(poor atomization, insufficient flame speed, quenching by liner 
cooling air)

C Toxic visibility High temperature fuel oxidation under very richC 
(particulates, smoke(95%))

Toxic, visibility High temperature fuel oxidation under very rich 
equivalence ratio
(very rich FAR in PZ, short intermediate zone, poor atomization)

NOx (NO and NO2) Toxic, smog 
precursor ozone

Thermal NO (N2+O->NO, N+OH->NO) (TPZ >1850K)

Prompt NO ( N2 CH HCN CN CNO NO)precursor, ozone 
depletion

Prompt NO ( N2+CH-> HCN-> CN-> CNO->NO)

Fuel NO (oxidation of fuel bound N2 mainly heavy distillate 
fuel)

SOx (SO2 and SO3) Toxic, corrosive Oxidation of fuel bound sulfur

GHG (CO2, H2O and N2O) Global warming Combustion of fossil fuels



Influence of Primary Zone Temperature 
CO d NO F tion CO and NOx Formation

(Ref: Lefebvre, 1998)



Premixed vs. Non-premixed Combustion

Diffusion

Mixing Autoignition Flashback Emissions Fuel 
Flexibility

Diffusion Critical No No Higher GoodDiffusion Critical No No Higher Good

Premixed Good Possible Possible Low Challenging

Premixed



Low NOx Technologies

• Wet Low-NOx• Wet Low-NOx

• Catalytic Combustion
C l b ti d l– Cool combustion module

– Selective catalytic reduction (SCR)

• Dry Low-NOx 
– Rich-burn Quick-quench Lean-burn (RQL)
– Lean Premixed (LP)
– Lean Premixed Prevaporized (LPP)
– Lead Direct Injection (LDI)



Influence of Premixing



Important Combustor Performance 
Parameters

• Wide operability
– Blow-off limits
– Flashback and auto-ignition limits– Flashback and auto-ignition limits
– Static and dynamic stability (spatial and temporal flame 

anchoring)

• Low emission

G d t d• Good turndown

• Durability



Fuel Composition Issues – Flame Blowoff  
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Fuel Composition Issues – Flame 

• Multiple flashback mechanisms

Flashback  

– In boundary layer
– In core flow
– Strong acoustic pulsations lead to 

l flnearly reverse flow
– Combustion induced vortex 

breakdown
1

1.2 Flashback

• Different fuel properties influence 
these mechanisms differently 0.6
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• Hydrogen influence on flashback



Fuel Composition Issues – Flame and 
Combustion Stability  

• Fuel composition variations 
influence
– Flame shape

– Flame standoff location

Alteration in flame shape and• Alteration in flame shape and 
location can worsen or improve 
combustor dynamics via τconvect
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Fuel Composition Issues – Emissions

• Strongly dependant on composition

• Reactive fuel blends having high H2 or C2+ compositions
– Increase NOx formationIncrease NOx formation
– Decrease CO formation at part load

• Fuels having high inert constituents• Fuels having high inert constituents
– Reduce NOx formation
– Increase concentration of CO and UHC in exhaust



Syngas Emissions  

• Strongly dependant on composition
• In general syngas produce lower emissions for combined cycles 
• VOC emissions low
• SOx emissions low
• CO emissions 

– Unburned syngas CO from insufficient mixing and equivalence ratio lower 
than ignition range

– Incomplete combustion of HC contents
• NOx emissions

– Thermally generated: Increase with increase in H2 contents due to higher 
firing temperatures. Decrease with increase in H2 contents due to leaner 
combustion potentials

– Flame-generated: Increase with increase in H2 contents due to higher 
flame temperatures
F l b d I if i t d i t b ti– Fuel-bound: Increase if ammonia not removed prior to combustion.  
Decrease if burned rich.

– Increase with increase in CO:H2 ratio



Dry Low NOx Operation within 
Emissions & Dynamics Limits 
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Effects on Hardware Changeability & 
Durability

• Increased fuel reactivity causes thermal distress to premixer and hot 
gas path components due to:gas-path components due to:
– Higher flame temperature and flashback propensity
– Susceptibility to high temperature thermoacoustic pressure oscillations

• High reactivity fuels require 
– Alternate fuel as well as purging system for starting and shutdown

• Reduced fuel reactivity due to addition of Inerts require 
– Larger sized injectors to compensate for higher fuel flow rate requirement

• Reduced fuel reactivity cause hardware distress due to
– Low temperature combustion dynamics

• Syngas use may cause increased component corrosion



Re-Cap
• Challenges facing gas turbine technology

F l i• Fuels scenario

• Fuel types and characteristics

• Fuel flexibility challenge

• Combustion basics

L NO b ti t h l i• Low NOx combustion technologies

• Effects of variations in fuel composition on:
– Gas turbine operability and durability
– Gas turbine emissions
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