

Heat Recovery Steam Generators for Flexibility

Landon Tessmer IAGT October 2016

Overview

- The grids needs flexible power
- HRSG and OTSG Designs
- Supplementary Firing
- Fresh Air Firing Case Study
- Balance of Plant Considerations

The Grid Needs Flexible Power

Changes in Electricity Generation

- Base loaded power plants
 - High fixed costs
 - Low operating costs
 - Nuclear, Coal
 - Large power plants can take days to reach steady state

Pickering (~3.1GW)

Nanticoke Generating Station (~4GW)

Changes in Electricity Generation

- Peaking Power Plants
 - Simple Cycle Power Plants
 - Combined Cycle Power Plants (CCPPs)
 - Hydroelectric
 - Renewables

Source: www.opg.com

California's "Duck" Curve

Changes in Electricity Generation

OTSG-based cycling combined cycle plant loading

Changes in Electricity Generation

- Combined Cycle power plants could be based upon industrial or aeroderivative type turbines
 - Industrial
 - Heavy & rugged
 - Longer start up times
 - Longer maintenance schedule

Well suited to plants that demand base-loaded efficiency

- Aeroderivative
 - Light
 - Shorter start up times
 - Shorter maintenance schedule

Well suited to plants that need to start up/ change load quickly

Building a CC with ~50 MW Gas Turbines? Have Fun!

SIEMENS

Aero

siemens.com

powergen.gepower.com

Frame

siemens.com

powergen.gepower.com

Flexible HRSG Designs

William Rankine Cycle

HRSG Design

- Basic HRSG Design
 - Economizers / Preheaters
 - Evaporators
 - Superheaters / Reheaters

Fundamentals of Transient Response

The laws of the conservation of mass and energy dictate the transient response of steam generators. Simplified equations are provided below.

$$W_s - S_d = d/dt (W_{in}) (1)$$

 $Q_s - Q_d = d/dt (Q_{in}) (2)$

where:

 W_s – quantity of water supplied to the steam generator Q_s - quantity of heat supplied to the steam generator S_d – quantity of steam delivered from the steam generator Q_d – quantity of heat delivered from the steam generator W_{in} – quantity of water in the steam generator Q_{in} – quantity of heat in the steam generator

$$Q_{in} = (M_m c_m t_m + M_w c_w t_w + M_s C_s t_s)$$
M - mass

C – specific heat

m – metal

w - water

s – steam

Response time is dependant on the water/steam inventory and quantity of heat in the steam generator.

HRSG Design

- HRSG design limitations for cycling
 - Thick drums/headers lead to large cyclic thermal stress

Thermal Fatigue Life Estimates at Gas-inlet Row Tube to Header Connection at Toe of Weld on Tube to Outlet Header

Source: Anderson, R. & Pearson, M., Influences of HRSG and CCGT Design and Operation on the Durability of Two-Shifted HRSGs.

HRSG Design

- HRSG operation drawbacks
 - Superheater drain failures during warm starts
 - Slow start up times
 - There are operational means of maintaining drum heat/pressure during a shutdown to minimize thermal cycling

Source: Pijper, A., "HRSGs Must Be Designed for Cycling." Power Engineering, Vol 106, Issue 5.

The Industry's Response

 "The HP drum of our DrumPlus™ requires a small wall thickness and nozzle sizes are minimized. As a result peak stresses are significantly reduced."

 "The startup of a HRSG is limited by the maximum allowable startup saturation temperature rise in the thick HP steam drum (typically in the 2-10° F/minute range)." In reference to the Benson Technology license

HRSG

VS

IST OTSG

Drum-Type HRSG Fixed Sections

OTSG Type HRSG Non Fixed Section

"Drumless" Design

- All tubes thin-walled → low thermal mass → fast cycling
- Compact lightweight pressure bundle
- Simple once through steam path
- Zero Blowdown (no blowdown treatment)

Pressure Module Layout

Tubes held in place by tubesheets

Entire boiler is designed to freely expand thermally

Main Internal Components

OTSG Bundle Movement

OTSG Start-Up Curve

(Start Permissive approx 12 min from GT ignition without SCR/CO)

Turndown and Flexibility

Normal Operation

- •2+ rows of economizer section
- •1 row of superheated steam

Supplementary Firing

Supplementary Firing

- Combust natural gas (or liquid fuel) in the TEG path to add to the available energy for heat recovery
- Common in cogen applications where the value of the steam exceeds the cost of additional fuel burned
- Natural gas is piped through "runners" and distributed by nozzles across the width of the duct.
- Scope consists of runners, gas distribution manifold, fuel handling skid, and auxiliary blower skid

Supplementary Firing – Velocity Distribution

Supplementary Firing – Velocity Distribution

- Distribution Grid + Flow Straightener
 - Flatten velocity profile and remove swirl
- Target 75 ft/s normal operation
 - 35 ft/s minimum
- ±10% of average free stream velocity after distribution grid
- Burner duct length provision
 - 1.5x flame length
- Burner duct liner material
 - 409SS, 304SS, 316SS, Piro Block

Supplementary Firing – Velocity Distribution

Final Design Case

Temperature - Centreline of OTSG

- Typical temperature distribution guarantee +/-10% of the average temperature given a particular velocity profile input guarantee
- Typical heat release from a burner runner is 3 MMBtu/hr per linear foot
 - Increase total heat release by wider duct or more runners (taller duct)
- Duct size is driven by a balance between space required for runners (heat release) and the 75 ft/s target

Module Material Considerations in Fired Applications

Fin Material

Tubesheets

<1050 F - Chromoly 1050 - 1400 F - 347SS 1400 - 1500 F - NO6617

Steam Headers P22 or P91

Fin Material Considerations

Design Limits
CS < 454 C
409SS < 593 C
316SS < 871 C

Corrosive duty must be considered as well

Fresh Air Firing – Case Study

Fresh Air Firing

- Use a Forced Daft Fan and Duct Burner combination to simulate the gas turbine exhaust during a GT outage.
- Common in cogen applications where an uninterrupted steam supply is paramount.
- The duct burner is near identical to a traditional duct burner with minor modifications to the airfoil.
- Low water content in ambient air reduces the available energy.

Fresh Air Firing

Consider the following FAF case study for a cogen application using a 45MW gas turbine:

Fresh Air Firing

- Conclusion: Managing the flu gas velocity and peak heat release in FAF mode is a considerable challenge. The capital investment and parasitic load associated with the fan often pushes projects toward direct fired aux boilers.
- The compromise:
 - Generate partial steam supply in the FAF case (70 80% of unfired capacity)

Balance of Plant Considerations

OPTIMAL STEAM LOOP B.o.P.:

- Maintain Condensate Loop Vacuum during overnight shutdowns (requires auxiliary boiler)
 - Fastest start due to STG thermal gradient, gland steam, and water chemistry
- ST- Condenser should be spec'd for part load operation (larger vacuum pumps)
 - Allows gas removal from condensate in turndown modes
- 3. Dedicated ST Condenser By-passes
 - Minimize water consumption during frequent starts and multi-unit configurations

OPTIMAL OTSG CC PLANT CONFIGURATION

Fastest Ramping CC in the World

Escatron

Tecnicas Reunidas SA, Zaragoza, Spain

- 4x LM6000 & 4x OTSGs
- Duct fired to 1088 F
- Load ramp from 50% to 100% in 100 seconds

Thank you for your time