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Changes in Electricity Generation

» Base loaded power plants
— High fixed costs
— Low operating costs
* Nuclear, Coal
— Large power plants can take days to reach steady




Changes in Electricity Generation

» Peaking Power Plants
— Simple Cycle Power Plants
— Combined Cycle Power Plants (CCPPs)
— Hydroelectric
— Renewables
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Source: www.opg.com
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California’s “Duck” Curve

Net load - March 31
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Changes in Electricity Generation
» OTSG-based cycling combined cycle plant loading
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Changes in Electricity Generation

Combined Cycle power plants could be based upon
industrial or aeroderivative type turbines

. B
Industrial
HeaVy & ru999d S Well suited to plants
Longer start up times that demand base-loaded
. efficiency
Longer maintenance schedule
Aeroderivative )
Light Well suited to plants
Shorter start up times "~ that need to start up/
_ change load quickly
Shorter maintenance schedule_z/




Building a CC with ~50 MW Gas Turbines? Have Fun!
SIEMENS

Aero

siemens.com powergen.gepower.com

Frame

siemens.com powergen.gepower.com
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Flexible HRSG Designs



William Rankine Cycle
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HRSG Design

Basic HRSG Design

Economizers / Preheaters
Evaporators
Superheaters / Reheaters
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Fundamentals of Transient Response

The laws of the conservation of mass and energy dictate the transient response of steam
generators. Simplified equations are provided below.

W,—Sg=d/dt (W) .......... (1)
Qi—Qu=d/dt (Qip) ...venn.e. (2)
where:

W, — quantity of water supplied to the steam generator

Qs - quantity of heat supplied to the steam generator

S¢ — quantity of steam delivered from the steam generator
Qg4 — quantity of heat delivered from the steam generator
Wi, — quantity of water in the steam generator

Qin — quantity of heat in the steam generator

Qin = (Mmcmtm + MyCwlw + Mscsts)
M - mass

C — specific heat

m — metal

W — water

$ — steam

Response time 1s dependant on the water/steam inventory and quantity of heat in the steam
generator.

e SIST



HRSG Design

 HRSG design limitations for cycling
— Thick drums/headers lead to large cyclic thermal stress

Thermal Fatigue Life Estimates at Gas-inlet Row Tube to Header Connection at

Toe of Weld on Tube to Outlet Header
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Source: Anderson, R. & Pearson, M., Influences of HRSG and CCGT Design and Operation on the Durability of Two-Shifted HRSGs.
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HRSG Design

» HRSG operation drawbacks
— Superheater drain failures during warm starts
— Slow start up times

— There are operational means of maintaining drum heat/pressure
during a shutdown to minimize thermal cycling

FIGURE 2
IMPACT OF CYCLING ON USEFUL LIFE OF HEADER
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The Industry’'s Response

N M * “The HP drum of our DrumPlus™ requires a
o - P small wall thickness and nozzle sizes are

OUR ENERGY, YOUR POWER

minimized. As a result peak stresses are
significantly reduced.”

INE NOOTERERIKSEN

* “The startup of a HRSG is limited by the
maximum allowable startup saturation
temperature rise in the thick HP steam drum
(typically in the 2-10° F/minute range).” In

STEam &=




HRSG VS IST OTSG

Drum-Type HRSG OTSG Type HRSG
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“Drumless” Design

e FeedwaterIn
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Gas Turbine
Exhaust Gas

- All tubes thin-walled — low thermal mass — fast cycling
- Compact lightweight pressure bundle

- Simple once through steam path

- Zero Blowdown (no blowdown treatment)

e SIST



Once Through
Vertical Gas Path




Pressure Module Layout

Tubes held in place by tubesheets

Entire boiler is designed to freely expand thermally
Internally insulated casing
Maintenance cavities allow for easy repairs __#-3 2
100% of tube welds accessible '




Main Internal Components
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OTSG Bundle Movement

Blue = normal operation
Black = cold state




S st OTSG Start-Up Curve

LME000 (Typical) (Start Permissive approx 12 min from GT ignition without SCR/CO)
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Turndown and Flexibility

*  Feedwater In
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2+ rows of economizer section
*1 row of superheated steam
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Supplementary Firing



Supplementary Firing

- Combust natural gas (or liquid fuel) in

the TEG path to add to the available
energy for heat recovery

- Common in cogen applications where

the value of the steam exceeds the
cost of additional fuel burned

- Natural gas is piped through

“runners” and distributed by nozzles
across the width of the duct.

- Scope consists of runners, gas

distribution manifold, fuel handling
skid, and auxiliary blower skid




Supplementary Firing — Velocity Distribution

Final Design Case
Total Velocity - OTSG Inlet

Up
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Supplementary Firing — Velocity Distribution

Final Design Case
Total Velocity - 127 Upstream of Burnen

- Distribution Grid + Flow
Straightener

- Flatten velocity profile and
remove swirl r’(

L T B

A

- Target 75 ft/s normal operation
35 ft/s minimum

- *+10% of average free stream
velocity after distribution grid

- Burner duct length provision
- 1.5x flame length

- Burner duct liner material

- 409SS, 304SS, 316SS, Piro
Block 0.0

30.0 450
Total Velocity (ft/s)

e SIST



Supplementary Firing — Velocity Distribution

Typical temperature distribution
guarantee +/-10% of the average
temperature given a particular
velocity profile input guarantee

Typical heat release from a burner
runner is 3 MMBtu/hr per linear foot

Increase total heat release by
wider duct or more runners
(taller duct)

Duct size is driven by a balance

between space required for runners
(heat release) and the 75 ft/s target ..

Final Design Case

Temperature - Centreline of OTSG

| |
2250 4000 5750  F500 0 9250 11000
Temperature (F)




Module Material Considerations in Fired Applications

Fin Material

Tubesheets

<1050 F — Chromoly
1050 - 1400 F - 347SS
1400 - 1500 F — NO6617

Steam Headers
P22 or P91
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Fin Material Considerations

Thermal conductivity
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Fresh Air Firing — Case Study



Fresh Air Firing | - s S
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Fresh Air Firing

- Consider the following FAF case study for a cogen application
using a 45MW gas turbine:

1000 kpph
650 kW (@ 21"WC)

T(amb)= O FT=
1000 kpph (© TEG= . FT= 75 F 1200 F
— 900 F 1200 F
75 ft/ A 29 ts ?
S
| 338 MMBtu/hr heat
96 MMBtu/hr heat release

/’
release m



Fresh Air Firing

* Conclusion: Managing the flu gas velocity and peak heat release in FAF mode is a
considerable challenge. The capital investment and parasitic load associated with the fan
often pushes projects toward direct fired aux boilers.

» The compromise:
* Generate partial steam supply in the FAF case (70 — 80% of unfired capacity)

800 kpph
520 kW (@ 21"WC()

TEG= FT=
900 F /5 F . 750 F
75 ft/s — ?
55 ft/s

| 144 MMBtu/hr heat
release

e mm— SISt
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Balance of Plant Considerations



OPTIMAL STEAM LOOP B.0.P.:

Maintain Condensate Loop Vacuum during overnight
shutdowns (requires auxiliary boiler)

Fastest start due to STG thermal gradient, gland steam, and water
chemistry

ST- Condenser should be spec’d for part load operation (larger
vacuum pumps)

Allows gas removal from condensate in turndown modes

Dedicated ST Condenser By-passes

Minimize water consumption during frequent starts and multi-unit
configurations



OTSG #2
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Fastest Ramping CC in the World

Escatron
Tecnicas Reunidas SA, Zaragoza, Spain
— 4x LM6000 & 4x OTSGs
— Duct fired to 1088 F
— Load ramp from 50% to 100% in 100 seconds
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Innovative Steam Technologies

Thank you for your time



