19th SYMPOSIUM ON INDUSTRIAL APPLICATIONS OF GAS TURBINES

Introduction to Gas Turbine Fuel Control

by

Brett Butler / Tarco

Session outline

- Turbine control and control types
- Control instrumentation
- Fuel control logic

Types of Control Programs

- The Control Units can be supplied individually or combined:
 - PCU (Package Control Unit)
 - FCU (Fuel Control Unit)
 - ACU (AntiSurge Control Unit) & RCU (Reciprocating Compressor Unit)
- Each Control Unit operates as an independent program. FCU, ACU, RCU are enabled by the PCU when supplied as a complete package or by an external system when supplied as stands-alone systems.

Package control

Turbine Fuel Control Unit

Fuel control system requirements are to safely & reliably

- Control turbine start sequence to idle
- During operation keep turbine within physical limitations
 - Temperature Limits (TE)
 - Speed Limits (N1, N2, N3)
 - Power Limits (turbine and driven equipment)
 - Stall Limit (compressor stall, CDP)
- Control the turbine during transient maneuvers
 - Acceleration Limit (over-speed, over-temperature)
 - Deceleration Limit (flameout)
 - Must minimize overshooting the target condition/setpoint
- Control the turbine air system
 - BOV and variable geometry

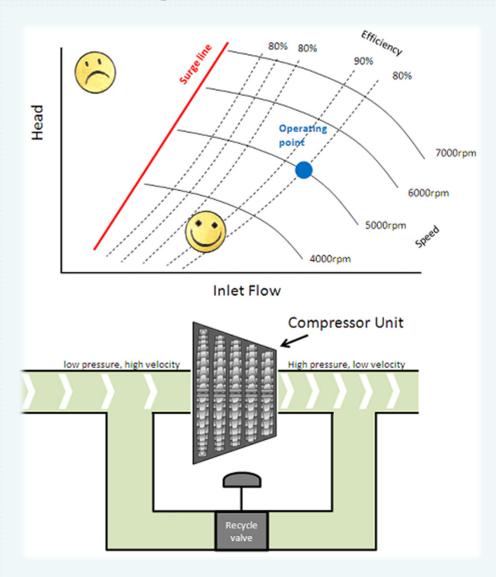
Turbine Fuel Control Unit

Turbine Fuel Control is accomplished by:

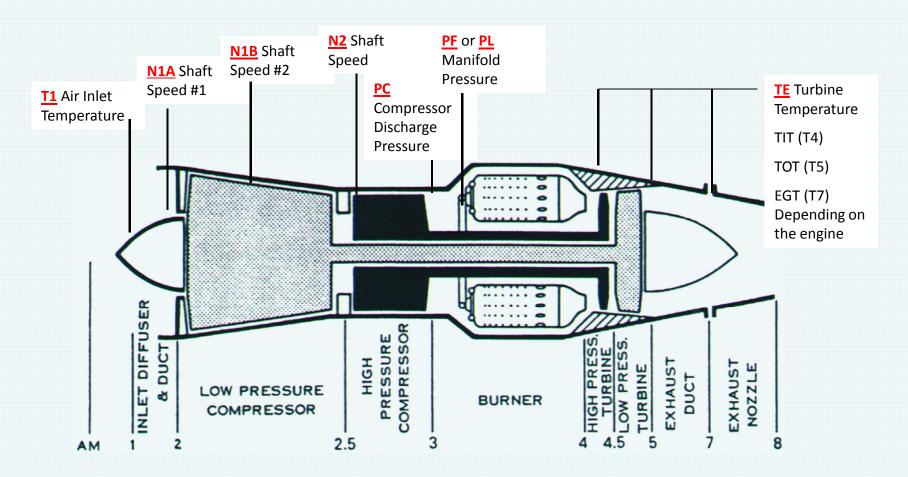
Fuel flow control

- Varying fuel flow to the engine using a throttle valve
- HSS valves to chop fuel to the engine in an emergency shut down
- Valve position feedback signal to TCS

Airflow control


- Manipulating air flow through the engine using variable geometry (IGV, VSV)
- On some engines, the variable geometry is controlled by the control system
- On other engines it is done mechanically, on-engine (open-loop no feedback)
- BOV starting and handling valves
- Air flow control to improve operability of engine off-design point
 - move away from any surge condition

Fuel control valves

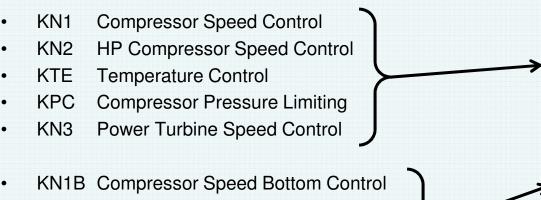

Compressor Anti-Surge Control

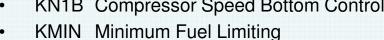
- Compressor Surge control
 - Low pressure/high velocity converted to high pressure/low velocity gas
 - The compressors need to be protected against surge
 - Use the recycle valve to control operating point
- Disabled until the Load Sequence
- Enabled by asserting "KALOAD"
- Ensures Compressor Flow remains high enough to prevent surge.
- Surge line, control line and alarm line

Fuel Control Instrumentation

Gas Turbine Stage Definitions – TARCO Variation

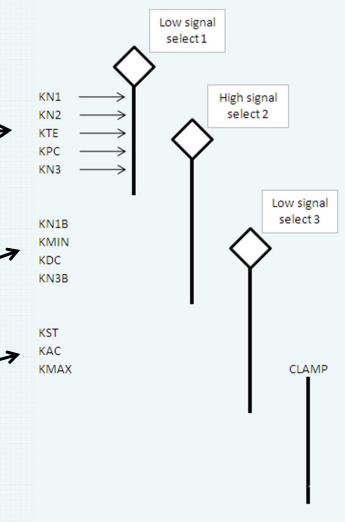
Fuel Control Instrumentation

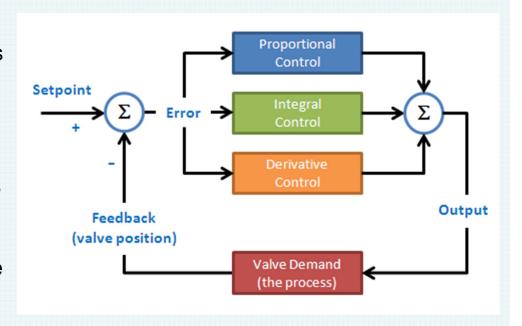

Analog inputs Fuel manifold pressure, CDP, fuel valve position **Analog outputs** feedback Fuel throttle demand, variable geometry **Temperature inputs** demand (thermocouple / RDT) **Fuel Control** Exhaust gas Package Control temperature, inlet temp **Surge Control Frequency inputs Programs** Shaft speeds of **Digital outputs** turbine, driven Alarms or shutdown equipment, flow types, controlling schedule (N1, accel **Digital inputs** control) Fuel off/on, reset, fuel increase or decrease, online/loaded


Signal Selection

- The TCS control philosophy is to protect the machine and when possible prevent spurious trips. This results in the highest availability possible for the selected design configuration.
 - Best to have 2 or more signals for critical control parameters
- Digital signals
 - Faulted if the hardware senses a fault or if they inputs do not agree (one off & one on)
- Analog signals
 - If not faulted, can use one of 2 voting options: high signal or low signal selects
 - If one of the channels is faulted then the non-faulted channel is selected
 - Is considered faulted if channel is outside fault limits, hardware system detects a fault and/or channel deviates from the sensed value by both
- Some examples are:
 - Speed pick-ups the highest of the signals is used for control
 - Inlet air temperature RTD's the lowest of the signals is used for control
 - Individual thermocouples are used for deviation alarming only, highest of the average signals is used for control

Fuel Control Logic


There are many controllers that interact. At any given time, only one controller will actually control the fuel valve position:


- **KDC Deceleration Limiting**
- KN3B Power Turbine Speed Bottom Control
- Starting Fuel Ramp **KST**
- KAC **Acceleration Limiting**
- KMAX Maximum Fuel Limiting

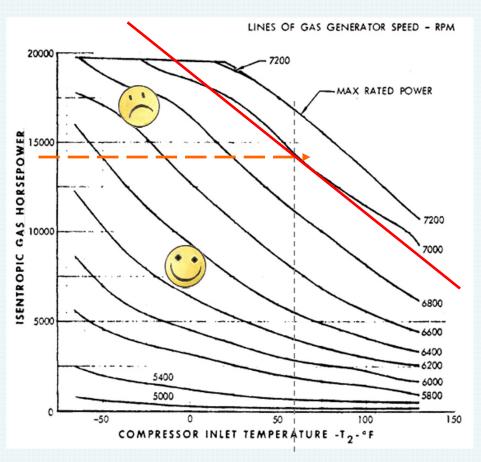
Various controllers go through a low, high and low signal selector gate, only the 'winning' signal passes through to give the final valve demand position

PID Control Loops

- Almost all of the controllers consist of PID-type control loops to move the fuel valve to it's setpoint. There are 3 components:
 - P –Proportional term is proportional to the error. If there is no error the output is zero, which means there is usually an offset which is smaller with bigger gains
 - I Integral term grows bigger if the error is positive, and shrinks if the error is negative. It grows or shrinks more quickly if the error is bigger
 - D Derivative term is only there if the error is changing. The derivative term can be there even if you are a long way from setpoint

For some controls not all P-I-D components are used

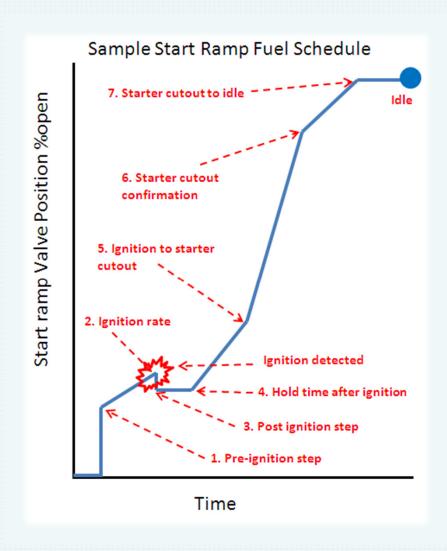
Limits & Air Temperature Effect


 Output Power decreases dramatically with increasing air temperature – Operations concern

Conversely

 Output Power increases dramatically with decreasing air temperature – Concern about power rating of driven equipment

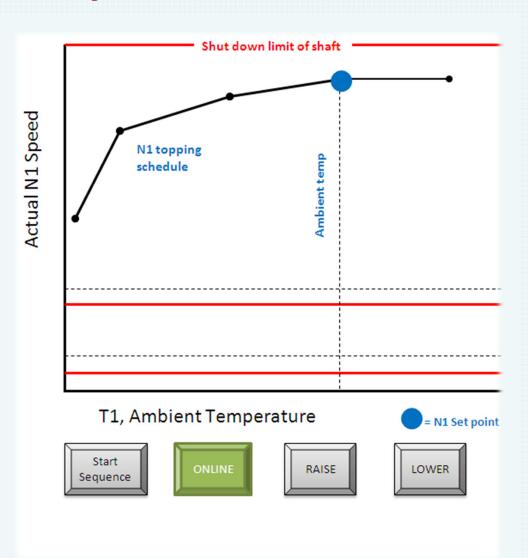
Example


- Assume the orange dashed line represents the maximum power rating of the driven equipment
- As the air temperature falls below 55 deg F, the turbine can produce more power than the driven equipment can handle
- Fuel Control must watch out for this by limiting engine speed at lower temperatures

Turbine Average Performance

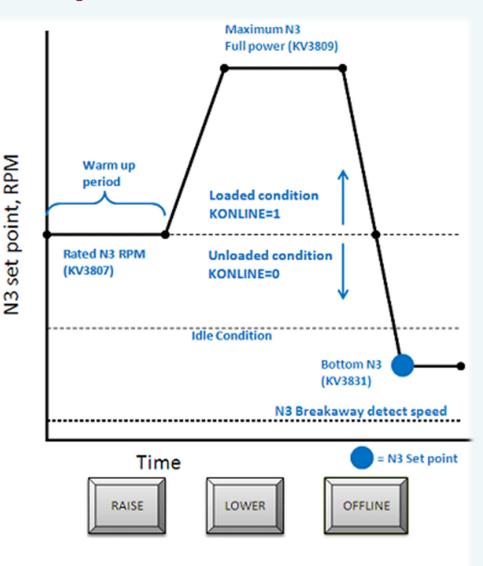
ST, Start Fuel Ramp

- Controls fuel flow to the engine during
- Prevents over-fuelling
- Fuel flow is strictly controlled
- PID style control is not used
- Starter and lube oil are controller via package control

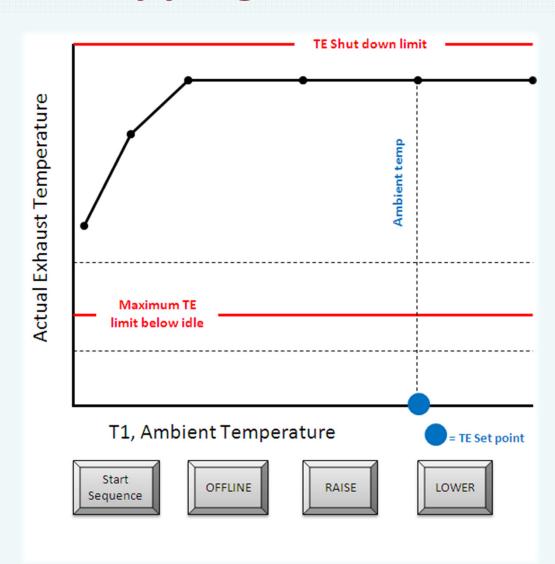


N1, Compressor Speed Controller

- "Ambient Biasing" ensures engine power output does not exceed rating of driven equipment or the engine itself.
- N1 Speed is reduced at lower temperatures, reducing mass air flow and therefore, power output.


Also, N1B bottom controller

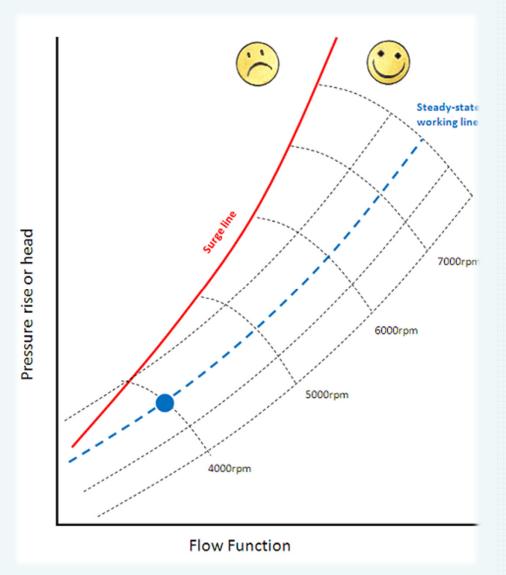
- N1 Bottom control ensures that the engine speed does not fall below the minimum allowable
- Prevents underspeed and flameout


N3, Power Turbine Speed Controller

- Controls N3 speed to the desired setpoint
- N3 setpoint is controlled by "Raise/Lower" commands
- PT bottom speed controller
 - N3 Bottom control ensures that the PT speed does not fall below the minimum allowable
 - Prevents PT underspeed
- N3 breakaway control initiated if PT has not started rotating

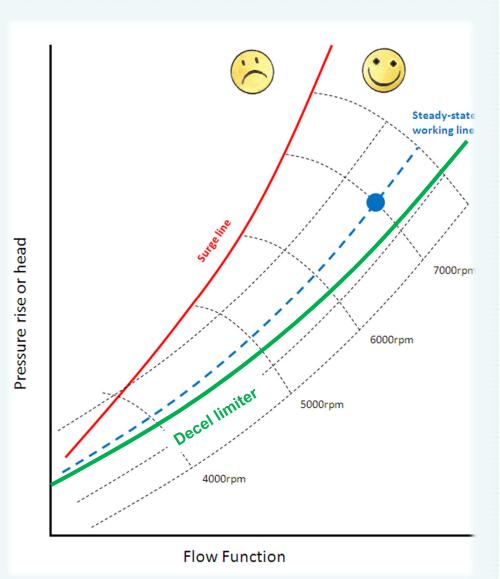
TE, Temperature Topping Controller

- This controller has two purposes:
 - Limit exit temperature to maintain the hot gas path components.
 - Backup to the N1
 ambient biasing to limit output power, although on hotter days it is usually the limiting schedule
- For start sequence, SD limit for over-temp
- SD / trip limit in effect above idle



CDP, Compressor Pressure Controller

- The PC (Compressor Discharge Pressure) Setpoint is not scheduled. It is a single KVAL.
- If the PC tries to increase above KV3611, the PC controller will act to reduce fuel demand.
- PC is related to engine power output so this controller can be used as a backup to N1 and TE ambient biasing to ensure that the turbine power output does not exceed the rating of itself of the driven equipment.


AC, Acceleration Controller

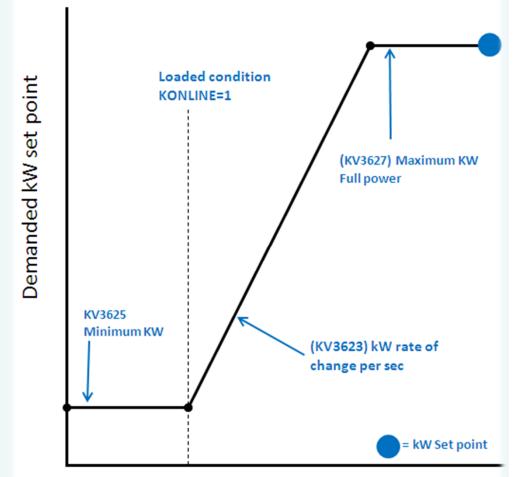
- Accel limit should not normally occur on a pipeline application
- Prevents over-fuelling the gas turbine during fast load acceptance
 - Protects hot gas path components
 - Over-speed/temperature
 - Potential HP comp surge
- For any given compressor discharge pressure, the fuel valve is not allowed to open more than allowed by the Acceleration Schedule.

DC, Deceleration Controller

- For normal operation, the gas turbine should not hit the decel limit
- Prevents under-fuelling the turbine during fast load rejection
 - Protects against flameout
 - Potential LP comp surge
- Manifold Pressure is used to estimate fuel flow vs valve position

Max & Min Fuel Limiting

Maximum fuel limiter


- The MAX fuel Limiter acts as a maximum clamp on the fuel valve demand.
- If any controller tries to open the fuel valve more than the MAX limit, it is clamped at the MAX limit
- Acts as a backup to the Acceleration controller to prevent over-fuelling during fast load acceptance

Minimum fuel limiter

- The MIN fuel Limiter acts as a minimum clamp on the fuel valve demand
- If any controller tries to close the fuel valve more than the MIN limit, it is clamped at the MIN limit
- Acts as a backup to the deceleration controller to prevent under-fuelling during fast load rejection
- There are two MIN setpoints for the liquid fuel valve and two for the gas fuel valve: one at idle and one for loaded

KW, Generator Max Power Output

- The KW Max Controller is usually only in effect during initial loading of a generator.
- The main purpose is to provide a means of controlling how fast the generator takes load after the breaker closes
- It can also be used to limit generator power output when running but usually TE, PC, or N1 will have control before the KW max controller.

Time