тум

Single Cash Flow Xo = Xn/(1+r)^n Xn = Xo*(1+r)^n

Multiple Cash Flow = sum of single CF

Perpetuity Xo = X/r --> X = r*Xo --> r = Xo/P

Annuity Xo = X/r (1 - 1/(1+r)^n) Xn = X/r ((1+r)^n - 1)

Bonds:

coupon rate, n, r, par value, present value DY = D/PV

Ex1.

I invested 20k in 2010 and another 15k in 2015 at r=5%. How much would they be worth in 2020? If I want to have 100k in 2025, how much should I invest in 2017?

X2020 = 20 k*1.05^10 + 15k*1.05^5

100 = 20*1.05^15 + 15*1.05^10 + X*1.05^8 100 - (20*1.05^15 + 15*1.05^10) = X*1.05^8 33.988 = X*1.05^8 33.988 /1.05^8 = X X = 23.0044 k -> X = 23,004.40

X 2017

2017

13 K

2015

JUK

9110

150 K

2520

I deposited 2k per year starting end-1995 at r=10%. The last deposit was on end-2016. How much is it worth at the end of 2016? How much is it worth at the end of 2020?

X = 2k, n = 22, r = 10% X2016 = X/r ((1+r)^n - 1) = 2000 / .10 * (1.10^22 -1) = 142,805.4988

X2020 = X2016*(1+r)^n = 142,805.4988*1.10^4 = 209,081.5308

Ex3.

Ex2.

Find the price of a bond that pays 5% coupon for 10 years if YTM = 10%.

n=10, r =10%, FV = 1,000 , C = 50

 $\begin{array}{l} P=\ C/r\ (1-1/(1+r)^n)\ +\ FV/(1+r)^n\\ P=50/.10^*\ (1-1/1.10^{-10})\ +\ 1000/1.10^{-10}=692.7716 \end{array}$

Ex4

I plan to retire in end-2040 and I estimate that I would live for another 20 years. I also estimate that I would need 200k per year for 20 years. Today is end-2016 and I want to invest a fixed amount every year starting end-2017 at 3%. How much should I invest if my last investment is at end-2040?

Age at 2040 = 65 Age 2016 = 65 - (2040-2016) = 41

Let Y = value at 2040 of all \$X deposits. Let Z = value at 2040 of all 200k withdrawals.

--> Y = Z

Y = X/r ((1+r)^n - 1), where r = 3%, n= 24 Y = X/.03* (1.03^24 - 1)

Z = single CF + annuity for n-1 years instead of annuity due for n years!!!

 $Z = 200k + X/r (1 - 1/(1+r)^n)$ where r = 3%, n= 19

Z = 200k + 200k/.03 * (1 - 1/1.03^19) = 3,064.7598

Z = 3,064,759.80

Y = Z

X/.03* (1.03^24 - 1) = 3,064,759.80 X = 3,064,759.80*.03 /(1.03^24 - 1) X = 89.023.3527

Y = Z

X/.03* (1.03^24 - 1) = 3,064,759.80 X = 3,064,759.80*.03 /(1.03^24 - 1) X = 89,023.3527

If you start saving at age 28 and retires at 65 and lives for 20 more years, how much should be the saving per year? Same numbers as the previous question.

Z = single CF + annuity for n-1 years instead of annuity due for n years!!!

Z = 200k + X/r (1 - 1/(1+r)^n) where r = 3%, n= 19

Z = 200k + 200k/.03 * (1 - 1/1.03^19) = 3,064.7598

Z = 3,064,759.80

Y = X/r ((1+r)^n - 1), where r = 3%, n= 65-28+1 = 38 Y = X/.03* (1.03^38 - 1)

Y = Z X/.03* (1.03^38 - 1) = 3,064,759.80 X = 3,064,759.80*.03 /(1.03^38 - 1) X = 44,314.4044

TVM

Single Cash Flow Xo = Xn/(1+r)^n Xn = Xo*(1+r)^n

Multiple Cash Flow = sum of single CF

Perpetuity Xo = X/r --> X = r*Xo --> r = Xo/P

Annuity Xo = X/r (1 - 1/(1+r)^n) Xn = X/r ((1+r)^n - 1)

Bonds: coupon rate, n, r, par value, present value DY = D/PV

How would the answer change if instead of expenses of only 200k/year for 20 years, you need 200k/year for 10 years and 250k/yr for the next 10 years?

Let Y = value at age 65 of all X deposits. Let Z = value at age 65 of all 200k withdrawals. Let W = value at age 74 of all 250k withdrawals. Let Q = value of W at age 65

Y = Z + Q

Q = W/(1+r)^n, r = 3%, n = 9 W = 250/r *(1 - 1/(1+r)^n), r = 3%, n = 10 W = 250/.03 *(1 - 1/1.03^10) W = 2,132.5507 or 2,132,550.70

Q = W/(1+r)^n = 2,132.55070 /1.03^9 Q = 1,634.42254 or 1,634,422.54 --> The 250k payments from age75 to 84 is worth 1.6M at age 65.

Z = single CF + annuity for n-1 years instead of annuity due for n years!!!

Z = 200k + X/r (1 - 1/(1+r)^n) where r = 3%, n= 9 Z = 200 + 200/.03 *(1 - 1/1.03^9) Z = 1,757.2218 Z = 1,757,221.80

Y = X/r ((1+r)^n - 1), where r = 3%, n= 65-28+1 = 38 Y = X/.03* (1.03^38 - 1)

--> Y = Z + Q

 $\begin{array}{l} X/.03^{*} \; (1.03^{*}38 \; -1) = 1,757,221.80 + 1,634,422.54 \\ X = (1,757,221.80 + 1,634,422.54) *.03 / (1.03^{*}38 \; -1) \\ X = 49,040.9391 \end{array}$

Annuity

 $Xo = X/r (1 - 1/(1+r)^n)$ $Xn = X/r ((1+r)^n - 1)$

Lesson: Use annuity formulas + single CF to analyze bonds. Price --> Xo, Coupon --> X, maturity --> n , YTM --> r

Perpetuity with no growth Xo = X/r --> X = r*Xo --> r = Xo/P

Perpetuity with growth Xo = X/(r-g) , r> g

Lesson: Use perpetuity formulas to analyze stocks. Dividends --> X CAPM: r = rf + Beta*MRP