

Cyclostreptin: a water-soluble natural product that is active in tubulin

CIFHER note: Many oncologists reject tubulin inhibitors as drugs due to their neuropathy side effects. However, bioconjugate coupling affords a new era in tubulin inhibitors as drugs. Maytansine is a successful example when coupled to the Her2 antibody. Would a bioconjugate coupling with Cyclostreptin afford even better advantages as a therapeutic?

3D Overlap with Docetaxel and Key Pharmacophore Centers

- 1 -3: Critical hydrogen bonding groups required for activity in the taxane site of tubulin
- 4: Epoxide overlap with taxol: for possible covalent bond formation

3D model of Cyclostreptin in the taxane site of tubulin

- Meets the structurebased pharmacophore requirements for the taxane site
- However,
 Cyclostreptin binds
 very uniquely

Cyclostreptin may offer very unique pharmacological properties as a drug if formed as a bioconjugate coupled agent

Is Cyclostreptin's water solubility in part, due to self-assembly?

- Cyclostreptin's rigid structure is ideal to study self-assembly
- It has a complex natural product structure
- Nature's design evolved Cyclostreptin with 12 chiral centers-why?
- Dynamic lactone ring opening is a probable contributor to its water solubility
- A combination of properties (lactone ring opening and self-assembly) may lead to a water soluble, unique cancer drug candidate
- This is especially true if a bioconjugate coupling strategy is employed
- Principles evolved from the study of self-assembly may be generalizable to other scaffolds

Cyclostreptin: a dynamic ring opening from carboxylate to closed lactone forms

7 Cyclostreptins can self-assemble into a primary micellar unit

Space filling rendering shown without nonpolar hydrogens

This mesoscale molecular dynamics simulation of the primary Cyclostreptin micellar unit simulates its selfassembling capabilities

Curvature of the final self-assembled structure may help "deliver" Cyclostreptin to proteins and cell-membranes from the plasma or in the cytosol

Is the study of self-assembling molecules the missing key to evolving principles of Rational Drug Design?

- Rational drug design does not exist, only rational ligand design
- Molecular scaffolds that are optimized in the target often lose activity in cells and animal assays
- Large pharmaceutical industry relies on 2nd dimension parameters (e.g., RO5, etc.) and large empirical resources to discover drugs. These calculations are inadequate to develop principles of a rational drug design architecture
- Clearly, new concepts to study molecular architecture are needed
- These principles need to be investigated in the 3rd and 4th dimensions
- Self-assembly may be the first stage for such studies