

A Therapeutic Candidate for Pediatric Orphan Cancers

NSC 750854

(3,4-dihydroxy-5-purin-9-yloxolan-2-yl)methyl sulfamate

CIFHER note: NCI developed 42 drugs before 2004. Since then, the drug development effort is practically non-existent. At the previous development rate, the tax-paying US Citizen is missing about 80 Investigational New Drugs that could be treating cancers. This Natural Product analog is one of them.

Computational Institute For Health and Environmental Research (formerly CDDG)

NSC 750854

This compound was discovered by **Dr. Jerry Collins** at the NCI

750854 NCI60 Results

Selected Pediatric Xenografts

- Multiple pediatric xenografts respond to 750854
- 5 mg/kg IP QDx5, repeated at 2 wk
- . Dose well-tolerated by mice
- KT-10 maintained complete remission

CIFHER note: Even as a mechanistic toxin, the efficacy and potency of this compound can have a high therapeutic index in specific patient populations such as these pediatric cancers

Overview

- 750854 is active in multiple xenografts models
- 750854 is distinct from approved nucleosides
- Mechanism is likely to be inhibition of amino-acyl tRNA synthetase, based on unpublished yeast data
- 750854 is active in 12 out of 20 Pediatric Cancer Efficacy Studies
- Especially active in Pediatric Rhabdomyosarcoma, and other Pediatric Orphan Cancers

Mechanistic Studies

NSC 750854 is very distinct from other FDA-Approved Nucleoside Agents by GI_{50} Matrix COMPARE

MATRIX COMPARE

- Pairwise complete Pearson's product moment correlation
- Each experiment yields ~60 GI50 values (one for each cell line)
 - Correlation of GI50 values for each experiment versus every other experiment is determined
- Self-consistent experiments were retained (mean self:self correlation ≥ 0.6)
- Vectors of correlation values were then hierarchically clustered

Susceptibility Correlates with mRNA Expression

- (NARS) mRNA expression is correlated with NCI-60 GI_{50} : r = 0.66
- Low NARS expression is associated with low GI₅₀ (higher susceptibility)

aaRS Enzymes Charge tRNA

Binding Mode of 750854 in NARS

- Energy-refined all-atom protein model generated for human NARS based on archaebacterial crystal structure
- 750854 docked at AMP site of NARS

ATP binds aaRS's and the first PO₄ is charged for nucleophilic attack via a proton relay network.

- A water serves as the ambident nucleophile.
- Subsequently, an amino acid: AMP conjugate is formed.

Native Binding Mode: ATP - Proton Relay Network

NSC 750854: Transition State Mimic – Stage I

- Upon binding, the sulfonamide moiety of NSC 750854 mimics the phosphate of AMP, while the purine and sugar components mimic the AMP adenosine.
- The sulfonamide proceeds
 to 'trap' the enzyme's
 proton relay network (which
 normally facilitates amino
 acid: AMP conjugation).
- <u>Stage I</u>: **a)** sulfonamide nitrogen proton forms a **unique** H-bond with the back-bone carbonyl oxygen of GLN₂₉₈, **b)** a second sulfonamide proton H-bonds with the hydroxyl oxygen of TYR₃₃₅, **c)** an H-bond forms between an ambident water and the hydroxyl proton of TYR₃₃₅, and **d)** GLU₃₃₉, exchanges a proton with HIS₃₃₇.

Transition State Mimic – Stage II

- The unique H-bond between one of the sulfonamide nitrogen protons and the backbone carbonyl oxygen of GLN₂₉₈ is maintained during the entire mechanism.
- Stage II: a) the charged HIS₃₃₇ H-bonds with one of the oxygens of the sulfonamide, this begins to further delocalize the sulfonamide π electon network, b) the second proton of the sulfonamide nitrogen H-bonds with oxygen of tautomerized TYR₃₃₅, which has lost its proton to an ambident water, and c) GLU₃₃₉ is no longer ionized.

Transition State Mimic – Stage III

• Stage III: a) the acidic sulfonamide transfers a nitrogen proton to the oxygen of TYR₃₃₅, restoring the more stable tautomer, and b) the sulfonamide nitrogen becomes a fully ionized atom.

Adenosine Binding Site

Culmination: Proton Relay Network Trapped

- Stages I III are reversible.
 This results in a 'trapped' proton relay network.
- The continual shuffling backand-forth of the proton relay network is hypothesized to contribute to the longevity of NSC 750854 binding site occupancy.

Full View: All Binding Site Contacts

- NSC 750854 possesses excellent chemical complementarity for the AMP binding site of NARs.
- Contacts include 7 H-bonds and 2 π stacking interactions.
- The binding mode is unique in that NSC 750854 binding results in a new hydrogen bond between the compound's sulfonamide moiety and the backbone carbonyl oxygen of GLN₂₉₈.
- The GLN₂₉₈ carbonyl oxygen is engages in a watermediated hydrogen bond with an unrelated segment of tRNA during normal biological function.
- Two other saltbridges: D463-K445, E279-R322, may help stabilize the pocket.

NSC 750854 Binding Mode to NARs

