
Causal epistemology:
Questions
Boris Sobolev

IThis is an edited transcript of my talk at the Center
for Clinical Epidemiology and Evaluation, Spotlight
Series, June 13, 2022.[1]

1 Introduction

Hello, everyone. It’s great to be here at the Spotlight today.
Epistemology, the second word in my title, deals with the
question, How do we know? How do we know that vaccine
works, and cancer treatment prolongs life?

And here’s our challenge. We see two things happening.
But we don’t see a causal relationship. How do we know
that one causes the other? Both causation and covariation
can manifest themselves as association. And the data alone
can’t distinguish between the two. We see treatment and
we see changes in health. But we don’t see causation.

It comes from reasoning with data. We reason random-
ization makes treatment groups similar. We reason strati-
fication by confounders blocks covariation. And then we
attribute changes in health status to treatment. We see
association, rule out covariation, and claim causation.

2 The ladder of causality

In today’s talk I will share with you a breakthrough in
understanding causal claims. Professor Pearl made it by
discovering and systematically examining the Ladder of
Causality, a hierarchy of seeing, doing, and imagining.
He showed how knowledge develops from association to

causal inference as we go up the ladder.[2]
Causal inference goes beyond the description of associ-

ations (seeing). We reason about the effect of deliberate
intervention (doing). We also examine counterfactual sce-
narios (imagining). Counterfactuals is our way to see be-
yond data. Causal epistemology is a great intellectual feat.
The poster at the end of this text gathers all the questions,
definitions, target values, tools, and estimands of causal
epistemology in one place.[3]

But today, I will focus only on the types of questions we
ask as we go up the Pearl’s hierarchy. The questions we ask
determine the answers we get. The main learning objective
today is to understand the different questions when making
causal claims. To focus even more, let’s look at causality
in the context of health research.

I divide the talk into four parts: Associations, Interven-
tions, Mediation and Personalized effects. Seeing Associa-
tions is our first step on the ladder.
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3 Associations: comparing
treatment groups

Events make up reality. Some events happens together.
And sometimes they happen together for no reason. But
sometimes we notice dependency between events. We
notice that some events occur, and things change in re-
sponse. In health research, we want to find out how much
the outcome of interest changes in response to treatment.
And we look at the difference in outcomes between groups
receiving different treatments.

Why groups? Here’s the thing. Individual results can
vary. That’s what drug advertisement tells us, right? The
same treatment of the same disease by the same doctor may
have different results.

Individual results vary. Therefore, we need to summa-
rize individual results within the groups. The average out-
come, the outcome probability, and the outcome rate, all
are used as summary statistics in health research. Take for
example the average outcome. It’s the value around which
an outcome is usually centered. That’s why the most com-
mon question in health research is if there is a difference
in average outcomes between treatment groups?

When outcomes have only two values, the average becomes
a probability. Probability is a proportion. It’s the number
of times the value of interest occurs among all possible
treatment outcomes.

Picture all study units as a unit square. The horizontal
line in Figure 1 shows treatment groups: treated and un-
treated. And the vertical line shows the outcome values:
Yes and No. The areas of this graph are proportional to the
frequency of the combinations of treatments and outcomes.
The bottom left rectangle shows how often we see treated
patients with a Yes outcome. The top right rectangle shows
how often untreated patients come with a No outcome.

We use their heights to test for independence between
treatment and outcome. Under independence, the heights

Figure 1: Depicting associations

are the same. Like the windows logo. The change in height
shows the association. When events tend to occur together,
we say they are positively related. And the taller rectangle
would be on the left, as shown in this graph.

4 Interventions: deconfounding
other influences

Our next step on the ladder is Interventions.
Let’s go back to the difference in outcomes between

treatment groups. Ultimately, we would like to use it to
predict treatment results. We take what we learned from
treated patients to predict what untreated patients could
experience if treated.

But there is one problem such reasoning runs into.
Treatment groups may be different. They may be non-
comparable.

The presence of outcome determinants may differ be-
tween the groups. And we suspect that the difference in
outcomes reflects their effects, and not the effect of the
treatment. For example, two treatments will show different
mortality if the treatment groups differ in age composi-
tion. The age-related mortality is mixed with the effect of
treatment.
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We usually call this confounding, and I follow the tradition.
Just remember, non-comparable groups are the essence
of confounding. Mixing of effects is a consequence of
non-comparability.

It’s not surprising then that at the next step we deal with
de-confounding of effects. In other words, dealing with
factors that may influence both the treatment selection and
the outcome occurrence.

We say 𝑋 causes 𝑌 , when changes in 𝑌 are to blame
to changes in 𝑋. Change in 𝑋 can occur by the forces of
nature. Or, we can intervene and force treatment groups to
be similar in every way except treatment. Through unnatu-
ral selection of units into treatment groups, we manipulate
the distribution of outcome determinants. For example,
in clinical trials we allocate treatments by randomization.
Remember its purpose? To make treatment groups alike.
By doing so, we de-confound the treatment effect and the
effect of other factors.

When similar groups get different results after alterna-
tive treatments, we attribute the difference to treatments. In
this sense, “𝑋 causes 𝑌 ” is simply a shorthand for “group
membership is responsible for different outcomes”. This
reasoning is based on the idea of comparing the response
to applying and withholding treatment in the same patients.
We compare the outcomes of untreated patients with the
outcomes of the same patients as if they had received treat-
ment.

Therefore instead of asking whether there is a difference
in average outcomes between treatment groups, our ques-
tion is would average outcomes be different if the same
patients were in each treatment group?

Recognition of the counterfactual nature of this question
has led the regulator to clarify expectations for the proof
of treatment effect. Submissions for the US FDA approval
are required to demonstrate "how the results of the treat-
ment compare with what would have happened to the same
patients under an alternative treatment,"[4] see Figure 2.

Figure 2: FDA guidance for estimands of trials[5]

Key in this requirement is the counterfactual alternative to
the observed treatment: If the same patients had not have
received the treatment or if they had received a different
treatment.

Let’s draw a square again to represent the population
of units. All possible outcomes occupy the total area of
this square. The outcomes of interest fill some space in
it, colored in green in Figure 3. But we need two squares:
one for all units treated. And the other - for the same units
but remaining untreated. Then the treatment effect is the
difference between green areas in these two squares.

Figure 3: Comparing all units under two treatments

Contrasting all treated with all untreated is an important
advance in reasoning about causality. It directly confronts
a daunting problem of causal attribution: the comparabil-
ity of treatment groups. We are always concerned that
differences in outcomes may reflect the influence of other
factors. This problem does not arise when the same patients
make up the treatment groups. Indeed, their composition
of outcome determinants is indistinguishable now. We are
comparing like with like. Only one of which is treated.
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Comparing the outcomes of identical treatment groups
gives an unbiased treatment effect. In real data, we have
some patients undergoing one treatment and some other
patients receiving a different treatment. But we reason ran-
domization makes treatment groups similar. The groups’
sameness allows us to attribute the difference in out-
comes to group membership. We credit the treatment with
changes in health.

5 Mediation: deactivating
intermediaries

The next step is Mediation.
Not all causal questions are answered by randomized

trials. Take mediation. We can’t randomize patients into
groups defined by the combination of treatment and medi-
ator, because mediator values are the result of treatment
choice. We compare outcomes between treatment groups
to find the treatment effect. And we always suspect differ-
ences in outcomes may reflect the influence of other factors.
We look at pre-treatment factors that influence both the
treatment and outcome occurrence.

Here’s a new idea. Some post-treatment factors may also
influence outcomes. When factors change their values in
response to treatment and then, in turn, affect the outcome,
we call them mediators. In a sense, mediators are treatment
outcomes. Only they lie on the causal path between the
treatment and the outcome of primary interest, see Figure 4.

Mediation comes with a new hypothesis: the media-
tor’s variation explains the relationship between treatment
and outcome. This is a powerful idea. In the presence of
mediation, treatment and outcome, which are otherwise
independent, can appear to be related. When mediators are

Figure 4: Basic mediation diagram

deactivated, the treatment effect can disappear.
The purpose of mediation analysis is to find out to what

extent the association between treatment and outcome is
due to the mediator. Naturally, conditioning on mediator
will block all mediated causation. But it will not cut off the
direct influence of treatment. But how can we condition on
the outcome of treatment? Certainly not with a randomized
experiment. We can’t randomly allocate treatments and
mediator values they produce. Mediators are treatment
outcomes too, right?

Since Hume’s time, we use counterfactual reasoning
to assert causality in observed associations. We observe
response to one treatment and wonder what would have
happened if the same patients had received a different treat-
ment. That’s why we add an additional condition to the
previous question and ask: Would average outcomes be
different if each treatment group had the same patients with
the same mediator values?

To answer this question, we can think of four hypothet-
ical scenarios: (A) all patients receive treatment, (B) all
patients remain untreated, (C) all patients receive treatment,
but their mediators remain at values attained without treat-
ment, (D) all patients remain untreated, but their mediators
take values attained in the presence of treatment.

I label these scenarios A, B, C, and D. Then I wonder if
the treatment effect will change when we compare A and C
instead of A and B. Comparing A and B gives the overall
treatment effect, the effect produced by the direct and medi-
ated paths together. The difference in outcomes between A
and C gives us the mediated effect. The difference between
C and B will give the direct treatment effect.

Let’s go back to the squares. In Figure 5 each square
represents all units. On the left are units when they receive
treatment. On the right are the same units but without treat-
ment. Now I use the fishnet to show the proportion of units
with the mediator taking one of two possible values, say 1.
Notice that this proportion is the same in both squares.
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Figure 5: Treated and untreated with the same mediators

This means the right square shows the proportion of out-
comes, the green area, in untreated units with naturally
occurring mediator values. And the left square shows the
proportion in treated units when their mediator have values
that would be observed with no treatment.

The difference in the proportions of outcome between
the two squares will give us the direct treatment effect.
Mediator values of the control group considered in the
treated units effectively remove the influence of mediator.
Thus, we deactivate the mediator.

6 Personalized effects: tailoring
treatment to individuals

And now we move to the top of the ladder of causality.
What is the problem that precision medicine promised

to solve? The ATE crisis: the use of average treatment
effects for individual treatment decisions.

Will taking a pill stop migraine? Health research never
approaches this as Will taking medication stop a person
having a migraine. Simply because, in health matters, we
don’t get to predict who will become ill, who will get better,
or when, on an individual level.

Instead, testing a medical intervention involves comparing
groups. A group of patients receives an experimental treat-
ment and then another group receives a different treatment.
And then the average outcomes of the groups are compared.
This is the average treatment effect, ATE.

The ATE is the main piece of information used to judge
whether an intervention is effective or not. But how ad-
equately does an ATE inform the effect size (or even its
existence) for an individual patient? In the patient popu-
lation, some benefit from the intervention and some don’t.
Even the US FDA now "black-boxes" some approved in-
terventions from clinical trials. Trials show a significant
ATE, but the intervention does not benefit 40% of patients.

The individual treatment effect can be traced back to
John Stuart Mill. In today’s terms, Mill takes two exchange-
able units and applies treatment to one. If we observe a
difference in the condition of the units, we attribute it to
the treatment. The units are exchangeable. In fact, they are
two instances of the same unit. We can think of the change
in their state as an individual treatment effect.

Precision medicine tailors treatments to individuals. This
raises epistemological issues that affect how we empirically
test interventions. Say, we want to get individual effects
from data. Then one obvious difficulty is that we only have
data on one intervention applied to one person. Nor can we
conduct a stratified randomized trial to get the treatment
effect for all combinations of individual traits. But even if
we could, stratum-specific effects would still be an ATE.

Pearl introduced a new tool to account for uniqueness
in treatment decisions. Like Mill more than a century
before him, Pearl looks at the outcomes of two treatments
in the same unit. And then introduces the probability that
the same patient would benefit from treatment and suffer
without it. That’s the probability of individual benefit of
treatment.

Turns out it equals the probability that the outcomes
of two treatments received by the same unit are different.
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And it’s possible to further narrow this probability down
for individual characteristics.

This is a fundamental leap forward because we get to
ask the right question: How likely is it that the outcome
would have been different if the treatment had been differ-
ent in the same patient? Or, even shorter, how likely is the
treatment benefit for an individual? Or, to put it another
way, what proportion of people would have benefited from
the treatment?

And this is not just an academic question. We can find
bounds for this proportion using experimental and some-
times observational data. The bounds can be further found
for the characteristics of the individual.

7 Main message

Alright, that’s it for today. The main take-away: as we
move up the ladder of causal claims, we get answers to
different questions. The questions we ask determine the
answers we get.

Associations tell us whether there is a difference in aver-
age outcomes between treatment groups. Interventions tell
whether average outcomes would be different if each treat-
ment group had the same patients. In mediation analysis,
we ask if each treatment group had the same patients with
the same mediator values? Finally, in individual treatment
decisions, we ask how likely is the treatment benefit for an
individual?
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