
Contents

1.Getting Started.. 1
2.Implementation... 1

2.1.First Setup.. 1
2.2.Inputs & Guide TABs..3

2.2.1.Default Inputs And Guides............................... 3
2.2.1.1.Scripting API... 3

2.2.2.Specific Inputs And Guides..............................4
2.2.2.1.Scripting API... 4

2.2.3.Interacting Object By ID Inputs And Guides...5
2.2.3.1.Scripting API... 5
2.2.3.2.Example Scenario.......................................6

2.2.4.Other Scripting APIs... 7
2.3.Input Guide... 8

2.3.1.Conditions And Events.....................................9
2.3.1.1.Defining Conditions And Events.............10

2.3.1.1.1.Example Scenario.............................. 11
2.3.2.Parent Holder Settings....................................13

3.Input & Guide Data..15
4.Localizations... 16

4.1.Scripting API...16

BudInGui Documentation

1.Getting Started
The BudInGui-Inputs, Guides, and Events System facilitates the assignment of events to inputs,
with parameters that are both multiple and editable via the inspector. These events can be executed
based on specific conditions, and the parameters for these condition functions are also adjustable
from the inspector. If necessary, the inputs for these events can be displayed anywhere within the
scene view as a guide UI. Additionally, guide texts can be customized to accommodate various
localizations. All of these configurations can be managed exclusively through the inspector.

2.Implementation
First, locate the prefab named 'InputGuideUIDisplay' in the directory
'Assets/BudInGui/InputGuideSystem/Prefabs/UIElements/' and drag it into the scene.
Subsequently, add the 'InputGuideController' as a component to the object.

2.1.First Setup

This section enables the identification of objects before assigning inputs, events, and guides.

● Object ID: Serves to define the object type and ensure unique recognition during
interactions, functioning similarly to a Unity Tag.

● Display Name: Specifies the name to be displayed in the UI for associated guides.

● On Object Distance: Applicable to guides with the 'On Object' type selected in the
'Place On Screen' property. To enable the object to recognize the player, the
‘InputGuidePlayerReference’ component must be added to the player object.

On Object Distance Value View Of Result

1

● Show Name: Enable this option to display the object's name above the guide elements.

When ‘Show The Name’ enabled View Of Result

● Show Name in the Middle: Enable this option to display the object's name at the
center of the screen view.

When ‘Show Name In The Middle’
enabled

View Of Result

2

2.2.Inputs & Guide TABs
Specifies where inputs and guides are defined.

2.2.1.Default Inputs And Guides
Refers to guides that are activated without any specific circumstances.

2.2.1.1.Scripting API
-ActivateInputsAndGuides

Declaration
public void ActivateInputsAndGuides();

Description
Provides an option to activate the default inputs and guides.
Usage
GetComponent<InputGuideController>().ActivateInputsAndGuides();

-DisableDefaultInputsAndGuides
Declaration
public void DisableDefaultInputsAndGuides(bool removeReferenceObject = false);
Parameters

● removeReferenceObject - If set to true, the reference object will be removed, if there
is.

Description
Provides an option to deactivate the default inputs and guides.
Usage
GetComponent<InputGuideController>().DisableDefaultInputsAndGuides();
GetComponent<InputGuideController>().DisableDefaultInputsAndGuides(bool);

3

2.2.2.Specific Inputs And Guides
Allows the creation of custom guides based on specific statuses. For instance, if an input is required
to drop an object after it is picked up, a ‘Guides ID’ named ‘picked’ should be defined in this section.
The necessary inputs can then be added under the ‘picked’ section and activated when the object is
picked up.

2.2.2.1.Scripting API
-ActivateInputsAndGuides

Declaration
public void ActivateInputsAndGuides(string specificGuideID, bool activateAlsoDefaults =
false);
Parameters

● specificGuideID – Defines the specific inputs and guides associated with this name.
● activateAlsoDefaults – If set to true, default inputs and guides will also be activated.

Description
Enables inputs and guides associated with a designated string identifier.
Usage
GetComponent<InputGuideController>().ActivateInputsAndGuides(string);
GetComponent<InputGuideController>().ActivateInputsAndGuides(string,bool);

-DisableSpecificInputsAndGuides
Declaration
public void DisableSpecificInputsAndGuides(string specificGuideID = null, bool
disableAlsoDefaults = false);
Parameters

● specificGuideID – Defines the specific inputs and guides associated with this name. If
not specified, all specific inputs and guides will be disabled.

● disableAlsoDefaults – If set to true, default inputs and guides will also be disabled.

Description
Disables inputs and guides linked to a designated string identifier.
Usage
GetComponent<InputGuideController>().DisableSpecificInputsAndGuides();
GetComponent<InputGuideController>().DisableSpecificInputsAndGuides(string);
GetComponent<InputGuideController>().DisableSpecificInputsAndGuides(string,bool);

4

2.2.3.Interacting Object By ID Inputs And Guides
Establishes connections between the object and others it can interact with. To use this feature, the
input guide of the interacting object must be activated with the parameter of the target object.

2.2.3.1.Scripting API
-ActivateInputsAndGuides

Declaration
public void ActivateInputsAndGuides(GameObject interactedObject, bool
saveObjAsReference = false, bool activateAlsoDefaults = false);
Parameters

● interactedObject – The object to interact with.
● saveObjAsReference – If set to true, the ‘interactedObject’ will be saved as the

reference object.
● activateAlsoDefaults – If set to true, default inputs and guides will also be activated.

Description
Activates inputs and guides if the ‘interactedObject’ contains an ‘InputGuideController’
and its ‘ObjectID’ matches one specified in this section.
Usage
GetComponent<InputGuideController>().ActivateInputsAndGuides(GameObject);
GetComponent<InputGuideController>().ActivateInputsAndGuides(GameObject,bool);
GetComponent<InputGuideController>().ActivateInputsAndGuides(GameObject,bool,bool
);

-DisableInteractingInputsAndGuides
Declaration
public void DisableInteractingInputsAndGuides(GameObject interactedObject = null, bool
removeReferenceObject = true, bool disableAlsoDefaults = false);
Parameters

● interactedObject – The object to interact with.
● removeReferenceObject – If set to true, the reference object associated with the

‘interactedObject’ will be removed, if it saved as a reference object before.
● disableAlsoDefaults – If set to true, default inputs and guides will also be removed.

Description
Disables inputs and guides associated with the defined ‘interactedObject’.
Usage
GetComponent<InputGuideController>().DisableInteractingInputsAndGuides(GameObject
);
GetComponent<InputGuideController>().DisableInteractingInputsAndGuides(GameObject
,bool);
GetComponent<InputGuideController>().DisableInteractingInputsAndGuides(GameObject
,bool,bool);

5

2.2.3.2.Example Scenario
If a player holds a cube and approaches a sphere, they may want to paint the sphere. If they hold a
ball, they may want to throw it at the sphere. To achieve this, the IDs of the cube and ball should be
specified in the sphere's ‘InputGuideController’ under the ‘Interacting Object by ID Inputs and Guides’
section. After defining the desired actions, calling the activate method with one of these game objects
will suffice. If the game object contains an ‘InputGuideController’ and its ID matches one defined in
the sphere's ‘InputGuideController’, the inputs and guides in this section will activate, and the
associated events will begin to listen.

Guide View Of Result

6

2.2.4.Other Scripting APIs
-DisableAllInputsAndGuides

Declaration
public void DisableAllInputsAndGuides(bool removeReferenceObject = false);
Parameters

● removeReferenceObject - If set to true, the reference object will be removed, if there
is.

Description
Disables all inputs and guides associated with this object.
Usage
GetComponent<InputGuideController>().DisableAllInputsAndGuides();
GetComponent<InputGuideController>().DisableAllInputsAndGuides(bool);

-SetReferenceObject
Declaration
public void SetReferenceObject(GameObject refObj);
Parameters

● refObj - The object will be designated as a reference for this purpose.

Description
Specifies an object that can be used as a reference for events and functions.
Usage
GetComponent<InputGuideController>().SetReferenceObject(GameObject);

-RemoveReferenceObject
Declaration
public void RemoveReferenceObject();
Description
Removes the defined reference object, making it unavailable for use in events and functions.
Usage
GetComponent<InputGuideController>().RemoveReferenceObject();

-SetMiddleDot
Declaration
public void SetMiddleDot(bool setActive);
Parameters

● setActive – Toggles the visibility of the dot at the center of the screen.

Description

Activates a dot at the center of the screen, commonly used in first-person games. This dot
can also be customized via the ‘UIDisplay’ component of the ‘InputGuideUIDisplay’ prefab.

Usage
UIDisplay.Instance.SetMiddleDot(bool);

7

2.3.Input Guide

Defines the actions an object will perform in response to a specified key.

● Begin by writing a brief description to serve as a guide on the interface.
● Specify the key that will trigger the associated events.
● Choose how the key will be displayed in the guide: as text or as a sprite.
● Determine where the guide will appear on the screen by selecting an option from the ‘Place

on Screen’ section:
● OnObject
● Middle
● RightBottom
● LeftBottom
● RightTop
● LeftTop
● RightEdge
● LeftEdge
● BottomEdge
● TopEdge
● DontDisplayUI

If the ‘DontDisplayUI’ option is selected, the events will continue to be monitored in the background,
but the guide for this input will not be displayed in the scene.

8

2.3.1.Conditions And Events

● Check Conditions: This option allows for greater control over when input availability
conditions are evaluated. It includes two modes:

● On Enable:
In this mode, the conditions are evaluated only once, at the moment the guide is
enabled.

● On Enable And Every Update:
In this mode, the conditions are evaluated both when the guide is enabled and
continuously on every update. This ensures that the guide and events respond
dynamically to changes in the conditions. If the conditions switch between true and
false, the guide will appear or disappear accordingly, and the associated events will
start or stop listening in real time.

● Input Available Conditions:
Only functions returning boolean values can be defined here. If the ‘Check Conditions’
option is selected in the ‘Input Available Conditions’ section, the defined events will be
triggered only if all specified conditions return true. If any condition returns false, the guide
will not appear, and the events will not be executed.

● If no function is defined, but the ‘Check Conditions’ option is enabled, the condition
automatically defaults to true, causing the guide to display and the events to be
executed.

● Pressed Events:
Executes the assigned events when the specified key is pressed.

● Holding Events:
Executes the assigned events on every frame while the specified key is held down.

● Released Events:
Executes the assigned events when the specified key is released.

● On Enable Events:
Executes the assigned events when the guide is enabled.

● On Disable Events:
Executes the assigned events when the guide is disabled.

9

2.3.1.1.Defining Conditions And Events

● If ‘Use Reference Object’ is checked, the defined reference object will be utilized.

● Select a boolean-returning function from the available functions associated with the reference
object. If the reference object is null or lacks the specified component, the condition is
bypassed.

● A GameObject can either be manually dragged and dropped, or selected directly by clicking
the 'Snap This' button, which automatically selects the GameObject to which this component
is bound .A selection can then be made from the Boolean-returning functions within the listed
components of the selected GameObject.

10

2.3.1.1.1.Example Scenario
Continuing from the earlier example:

● A player holds a red cube while looking at a green sphere. The player wants to paint the
sphere red when pressing a specific key.

● To achieve this, the system must check if the sphere's color is green before allowing the input
to trigger. If the sphere is green, the guide will be displayed, and the events will be executed.

Here’s a sample function to implement the condition:

public bool IsColorGreen(MeshRenderer meshRenderer)
{
 // Checks if the material color of the MeshRenderer is green
 return meshRenderer.material.color.Equals(Color.green);}

Any GameObject can be assigned manually by dragging it into the designated field or automatically
by clicking the ‘Snap This’ button. The button binds the current GameObject to the component for
quick selection.

● Parameter Selection:
Parameters can be assigned in several ways:

● By clicking the ‘Snap This’ button, which automatically selects a component from the
bound object if it has a required type of the parameter.

● By enabling the ‘Use Ref Obj’ option, which utilizes the previously defined reference
object.

● By manually dragging and dropping objects of the appropriate parameter type into the
designated field.

● Invert Boolean:
If the opposite of the returned boolean value is required, enable the ‘Invert Boolean’ toggle.

Once the conditions are met and the key is pressed, a function can be written and defined under the
‘Pressed Events’ section to execute the desired action, such as painting the sphere red. For
example:

public void PaintSphere(MeshRenderer meshRenderer)
{
 // Sets the material color of the MeshRenderer to red
 meshRenderer.material.color = Color.red;}

After the sphere is painted red, the guide should no longer be displayed, and the associated events
should stop being listened. This ensures that the input guide dynamically reflects the current state and
avoids redundant actions.

11

Before pressed ‘P’ key

After pressed ‘P’ key

12

2.3.2.Parent Holder Settings

Enable Background: Closes the background of the holder relative to its parent.

If ‘Enable Background’ is enabled. If ‘Enable Background’ is disabled.

Show Header: If the 'Show The Name' feature is enabled but the header is not intended to be
displayed within its parent holder, it can be disabled here.

If both ‘Show The Name’ and ‘Show Header’
are enabled.

If ‘Show The Name’ is enabled and ‘Show
Header’ is disabled.

Background Size: Sets the size of its parent holder.

The holder of ‘Red Cube’ size is 0.7.
The holder of ‘Green Cube’ size is 1.

13

Header Text Allignment: Specifies the alignment of the header within its parent holder.

Chosen ‘Middle’ for ‘Header
Text Allignment’.

Chosen ‘Left’ for ‘Header
Text Allignment’.

Chosen ‘Right’ for ‘Header
Text Allignment’.

*Tip Note: The background image can be customized via the 'Image' component of the prefab
named ‘InputGuideEdgeHolder’, located in the directory:
‘/Assets/BudInGui/InputGuideSystem/Prefabs/UIElements/GuideUIs/HolderRefere
nces/’.

14

3.Input & Guide Data

A keys data file, named ‘Input & Guide Data’, is located in the
/Assets/BudInGui/InputGuideSystem/Data/ path.

● This file contains Unity keys along with their associated names and sprites.
● If ‘Sprite’ is selected in the ‘Show As The Key’ section, the sprite will be displayed. If ‘Text’

is selected, the key's name will be displayed.

Show Option View Of Result

● You can perform the following actions:
● Add new Unity key data.
● Edit or change the sprites and names of existing data.
● Remove existing data.

15

4.Localizations
Localization settings can also be managed within the ‘Input & Guide Data’ file in the
/Assets/BudInGui/InputGuideSystem/Data/ path.

● New locales can be added and will be listed as subheadings in two places:
● The ‘Display Name’ field of the object within the ‘InputGuideController’ component.

● The ‘Guide’ section of inputs and guides.

● You can switch the current locale to the desired one by updating the relevant settings.

4.1.Scripting API
-ChangeLocalization

Declaration
public void ChangeLocalization(string localName=null);
Parameters

● localName – The name of the local. If this is null or undefined within the locals, it will
revert to the default local.

Description
Convert the current local to the desired local.

Usage

UIDisplay.Instance.inputGuideData.ChangeLocalization();
InputGuideData.Instance.ChangeLocalization();
UIDisplay.Instance.inputGuideData.ChangeLocalization(string);
InputGuideData.Instance.ChangeLocalization(string);

16

No selection

Selection any
● When the

‘Active’
property of any
locale is
enabled in the
data, the
subtexts
associated
with that locale
are
automatically
activated
across all
‘InputGuideC
ontroller’
components.

● This ensures
that localized
content is
displayed
consistently for
each
component.

17

	1.Getting Started
	2.Implementation
	2.1.First Setup
	2.2.Inputs & Guide TABs
	2.2.1.Default Inputs And Guides
	2.2.1.1.Scripting API

	2.2.2.Specific Inputs And Guides
	2.2.2.1.Scripting API

	2.2.3.Interacting Object By ID Inputs And Guides
	2.2.3.1.Scripting API
	2.2.3.2.Example Scenario

	2.2.4.Other Scripting APIs

	2.3.Input Guide
	2.3.1.Conditions And Events
	2.3.1.1.Defining Conditions And Events
	2.3.1.1.1.Example Scenario

	2.3.2.Parent Holder Settings

	3.Input & Guide Data
	4.Localizations
	4.1.Scripting API

