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1) Glass is an important material



Materials are essential for our way of life

• we use materials to create tools

• materials science "triangle":
– synthesis - structure - properties

• we need glass because it is transparent and strong
– windows, containers, lighting, optics

– what is the alternative to glass?



Glass is transparent and strong
• We cannot use: 

– metals - not transparent

– ceramics / oxide minerals - not transparent

– polymers - not strong

• Glass was discovered approx. 4000 years ago
– probably a mixture of sand, ash and bone

– melting of mixture on a fire

– rapid cooling of melt, i.e. "melt-quenching"

• Modern glass industry
– much glass is based on 15Na2O-10CaO-75SiO2



20th century glass

• window glass
– 10% Na2O - 15% CaO - 75%SiO2
– electrical/chemical resistance: remove Na

– heat resistance: add B

– radiation resistance: add Ba

• container glass (add Al)
– i.e. bottles

• lighting glass (add Mg)
– i.e. light bulbs

• optical fibres
– pure SiO2
– need < 1ppb OH- groups

window glass 
global production 
~40 million tonnes/yr 
($20bn)

optical fibre 
global production 
~70 million km/yr 
($4bn)



Glass is non-crystalline

• Crystalline ceramics are transparent
– small crystals reflect light and look "white"

– large crystals are hard to manufacture

• Melt-quenching stops crystalisation
– only works for special compounds

– glass typically has 90% density of crystal

– glass has no crystals to reflect light

• Thermodynamics: solids are crystals
– periodic structure has lowest energy 

– crystallisation occurs extremely rapidly



Glass has a variable shape

• Melt-quenching allows control of the shape

• very useful for making containers

• very useful for making scientific instruments
– lenses for microscope and telescopes

– glassware for chemistry

– valves for electronics



Glass has variable composition

• Crystals have fixed compositions
– except for dopants and alloys

• Glass composition is defined by mixture
– glasses form more easily near the eutectic

• needed to make glass cheaply
– pure silica (quartz) is a stronger glass

– adding soda reduces melting temperature

• need to make different applications
– e.g. chromium is added to make green bottles



21st century glass

• vitrification of nuclear waste
– easy to add waste to glass mixture

– need to find glass that is more durable

• bioglass for bone replacement therapy
– glass is dissolved and replaced with bone

– composition and pores stimulate cells

• solar energy
– transparent protective layer for solar cells

– need to find glass that weighs less



Wider interest in glass

• glasses are challenging for solid state theory
– e.g. how to describe vibrations without lattice

• Earth's interior contains silicate melts
– glass represents frozen liquid 

• biomineralisation of amorphous oxides
– living organisms precipitate amorphous phases

e.g. amorphous calcium carbonate in shells

• non-oxide glasses include 
– metallic, covalent and molecular compounds
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2) Molecular dynamics of glass 



Structure is knowledge of atom positions
• crystal is described by repeated unit cell:

• glass is described by average over all atom positions: 

Hoppe et al (1998) JNCS 232 44

Lanthanum metaphosphate glass



Li+

Li+F-

F-

Can predict motion of spheres
using equations of physics

Can think of atoms 
as solid spheres

e.g. motion of cannonball under gravitye.g. electron density in LiF

• predict atom positions using "modelling" methods: 
– by hand
– Monte Carlo
– reverse Monte Carlo (RMC)

• molecular dynamics method:



Molecular dynamics simulation
(1) simulate a liquid (melt): (2) freeze the liquid (quench):

(i) atom positions derived from

Newton's equations:

(ii) force derived from

interatomic potential Uij(x): 

(iii) temperature derived from

velocity

½kBT = ½ mv2

( )xU
dx

d
F ijij =



Interatomic potentials

• long range force between ions:
– unlike charges attract, like charges repel

• short range force between atoms:
– electron clouds repel

– e.g. "Buckingham" potential

• Where to get potentials?
- from the literature

• How to check potentials?
- simulate a crystal

https://www.ivec.org/gulp/

- typical software is GULP

6



Molecular dynamics simulation of glass

coordinates

potential

temperature

MD

new coordinates

new temperature

- typical software is DLPOLY

http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/

typically: (1) randomise

(2) 3000 K

(3) 2000 K

(4) "quench"

(5) 300 K

duration of 
simulation

timestep

MELT   

QUENCH



Si-O

O-O

Si-Si

Yuan & Cormack
JNCS (2001) 283 69

Analysing atom positions

• chemical information 

e.g. SiO2 glass:

bond length RSi-O=1.60Å

coordination number NSi-O=4

polyhedral shape = SiO4 tetrahedra

connectivity of tetrahedra = 4

• interatomic distances r

described by Tij(r)

where Ri is atom coordinates

Si

( ) ( )( )∑∑ −−=
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Comparing atom positions with experiment 

X-ray absorption spectroscopy shows bond lengths
for excited atom

diffraction shows interatomic distances
• measures total interference function i(Q)

where ρi is no. density

• weighted by wij(Q) due to scattering
where ci is concentration, and bi / Zi is scattering

NMR data shows connectivity of tetrahedra
• measures chemical shift of 11B, 27Al, 29Si, 31P
depends on coordination number and connectivity

( ) ( ) 2/2 bbcbcQw jjiiijij δ−=
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Example: analysis of Tb2O3-3P2O5 glass
distribution of interatomic distancesmolecular dynamics model

coordination numbers:
NP-O=4 (96%)
NTb-O=6 (68%)

connectivity of tetrahedra:
n=2 (50%)

P

comparison with experiment:



(iii) size of simulation: 
slower if use many atoms

we use 1000 atoms
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1000

10000

duration (ps)
10 100 1000

ab inito MD

classical MD

(iv) quench rate: 

slower if use low quench rate

we use 1013 Ks-1

te
m
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 (
K
)

300

1800

timescale (ps)
10 100 1000

ab inito MD
1014 K/s

classical MD
1013 K/s

experiment
103 K/s

(ii) timesteps: 
slower if use short timesteps

we use 10-15 s

slower if use many timesteps

we use 40,000 steps

(i) potentials: 
slower if use complex potentials

we use "rigid" ions

Time for molecular dynamics simulation



• molecular dynamics does not agree with experiment
1. quench rate (too high)

2. density 

3. diffraction (especially X-ray)

4. NMR (connectivity of tetrahedra too variable)

5. vibrational spectra (frequencies too low)

• "ab initio" molecular dynamics
– uses quantum mechanics

– treats electrons separately

– very slow!

Improving molecular dynamics of glass



Interatomic potentials for SiO2 glass

• good match to structure
– compare to neutron diffraction

• poor match to vibrational spectra
– compare to inelastic neutron scattering

best

best



3) Structure of oxide glasses



Modified random network model

• Si, B, P, Ge are network formers
– provide the strong part of the glass

• alkali, alkali earths are network modifiers
– make glass useful for applications

– they break up the network

– form "channels"

• some cations have 

intermediate behaviour
– e.g. Al can be network former

after Greaves (1985)

Si

network formers

network modifiers



Network formers

• network formers are p-block elements
– in particular: Si, B, P, Ge

– strong bonds to oxygen

– tend to favour tetrahedral coordination

• coordination is sharply defined
– well defined bond lengths and polyhedra

• connectivity is described by Qn distribution
– where Q is tetrahedra and n is connections
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Network modifiers

• network modifiers are s-group elements
– e.g. Na, Ca (but not Be, Mg)

– weak, non-directional bonds to oxygen

– flexible coordination geometries

• coordination is variable
– broad distribution of bond lengths 

– coordination number not precisely defined

• modifiers tend to group together
– at small content are "mixed" into glass network

– at large content form "channels"
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Role of oxygen

• "bridging" oxygen
– used to form links in network

• "non-bridging" oxygen
– adding network modifier means breaking links

– e.g. Si−O−Si + Na2O → Si−O·Na + Si−O·Na

• oxygen bonding to modifiers
(i) non-bridging oxygens are shared between modifiers

e.g. Si−O·Na·O−Si is not possible, but Si−O· ·O−Si is possible 

(ii) bridging oxygen is also bonded to modifiers

e.g. Si−O−Si

Na
Na

Na

Si NBO
Na

Si NBO
Na

Si

Si

BO
Si

Si

BO



Examples of oxide glass structures

• CaO-SiO2 glass
– component of soda-lime (window) glass

– stimulates cells to deposit bone

• 5CaO-3Al2O3 glass
– Al is a conditional glass former

– prepared by rapid quenching or gas levitation

– have greater transparency than silicates

• Tb2O3-3P2O5 glass
– RE-doped glasses used in optical applications

– unusual thermal, acoustic, magnetic properties
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Comparing glasses with crystals

• glasses are formed near the eutectic
– lower melting temperature

– easier melt-quenching

– short range order is like crystal

• crystals with same composition might exist
– e.g. Na2O-2SiO2 glass and sodium disilicate Na2Si2O5 crystal

– other crystals will have higher melting temperature

– crystals have strong ordering over larger distances



CaO-SiO2 glass Tb2O3-3P2O5 glass5CaO-3Al2O3 glass

CaSiO3 crystal TbP3O9 crystal5CaO-3Al2O3 crystal



Arrangements of modifiers over larger distances

• how can we describe "medium range order" of cations

• our recent work has looked at "channels"

Na2O-9SiO2 glass CaO-P2O5 glass

network connectivity

arrangement of modifiers



Complex glass structures
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K.M. Wetherall, P. Doughty, G. Mountjoy, 
M. Bettinelli, A. Speghini, M.F. Casula, 
F. Cesare-Marincola, E. Locci & 
R.J. Newport JPCM (2009) 21 375106

neutron & X-ray diffraction X-ray absorption 
spectroscopy

31P & 11B NMRinfrared & Raman spectroscopy
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4) Relationship of properties and structure



Dopants in glasses

• Small amounts of modifiers (dopants)

• Dopant is beneficial
– give new property to glass

– e.g. lanthanide ions are luminescent

• Amount of dopant is limited
– more dopant enhances properties, but...

– dopants may interact with each other

– lot of dopant causes phase separation



How are dopants distributed?

• dopants far apart
– dopants well mixed

– reduced dopant interactions

phase separation � dispersed ☺solution �

min.
dist d

max.
dist D

• dopants close together
– increased dopant-dopant interactions

– causes phase separation

1 mol% Eu2O3 doped SiO2 glass



Separation of dopants in a random mixture

• shortest distance between dopants
– probability that next dopant at distance r

– follows a Poisson distribution 

• no shortest distance < 3Å
– dopants are separated by oxygens

• all shortest distances < 14Å
– otherwise dopants would not fit in "box"

• 50% of shortest distances < 7Å
– limits performance in optical applications
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Phase separation
in silicate glasses

• Medium amount of modifiers

• Phase separation in liquid
– two liquid region, i.e. immiscible

– common in silicates

• Glass has frozen phase separation
– useful in (e.g.) borosilicate glasses

– problem in (e.g.) ZrO2-SiO2 glasses

10 mol% CaO
two liquids

50 mol% CaO
one liquid

CaO-SiO2 phase diagram



No phase separation in 
Na2O-SiO2 glasses

5 mol% Na2O:  one liquid

10 mol% Na2O:  one liquid

5Na2O-95SiO2 glass

10(Na2O)·90SiO2 glass

Na2O-SiO2 phase diagram
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in Na2O-SiO2 glasses
• "channels" are formed because

Si−O·Na·O−Si is not possible 

but Si−O· ·O−Si is possible Na
Na



1 mol% Eu2O3:  one liquid

5 mol% Eu2O3:  two liquids

• isolated Eu
• pairs Eu
• clusters Eu

5Eu2O3-95SiO2 glass

melt is immiscible

Eu2O3-99SiO2 glassPhase separation in 
Eu2O3-SiO2 glasses

Eu2O3-SiO2 phase diagram



Chemical durability of glasses
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• Large amounts of modifiers

• "Durability" is important
– glass should be resistant to 

scratches, fracture, and chemicals

• chemical durability decreases

when Na is added
– other additives are ok, e.g. Ca

Na2O-SiO2 glasses
attacked by water

Si−O−Si + OH- → Si−OH + Si−O-

"the breaking of a siloxane bond Si-O-Si... proceeds through 

the nucleophilic attack on the Si atom"  Budd et al [1962]



Sodium breaks links in silica network

Si
Na

NBO
Na• "non-bridging" oxygen are introduced

– e.g. Si−O−Si + Na2O → Si−O·Na + Si−O·Na

• connectivity of tetrahedra is decreased
40Na2O-60SiO2 glass
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Sodium weakens links in silica network

Si

Si

BO Na

40Na2O-60SiO2 glass

• bridging oxygen is also bonded to Na
e.g. Si−O−Si

• links between tetrahedra are weakened
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5) Summary

• Applications of glasses
– transparent and strong with variable shape and composition

• Molecular dynamics
– provides detailed information on glass structure

• Oxide glass structure
– network formers and modifiers

– bridging and non-bridging oxygen

• Properties changed by adding modifiers
– solubility or phase separation of modifiers

– number and strength of network connections
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