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ABSTRACT

In the setting of active learning there exists a general assumption that labeled examples are available
for training a classifier, which in turn is used to examine unlabeled data to select the most ‘informative’
examples for manual labeling. However, in some domain applications there are a limited number of
labeled examples available, such as in the most extreme cases of having a single labeled example per
category. In these scenarios, the most existing active learning methodologies cannot be directly applied
without initially making an assumption on label assignment. In this paper we present a method for
finding high-informative examples for manual labeling based on extremely limited labeled data
available during training. We propose using canonical correlation analysis to investigate the correlation
between different views of the available data and demonstrate that this measure can be used as a
selection criterion for the novel application of active learning using only a single labeled example from
each class. We demonstrate our method with promising experimental results on text classification,
advertisement removal and multi-class image classification tasks.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In supervised learning algorithms we require a number of
labeled examples for training a classifier. However, there exist a
number of machine learning and data mining applications, where
labeling examples is difficult, expensive or a time consuming
process due to the requirement of large amounts of, what can be
tedious, labor from experienced annotators. As a consequence,
there generally exists a much larger set of unlabeled examples
than labeled ones. For example, in web-page classification or
content-based image retrieval we can easily build a large database
of documents or images, but labeling a considerable portion of the
database is almost infeasible when considering time and cost.

Active learning is the scenario, where the learning algorithm
can actively query the user for labels. Due to this interactive
setting, the number of examples needed to learn a concept can
often be much lower than the number of examples required in a
normal supervised learning setting. In other words, we can view
the aim of active learning as reducing the number of examples
needed to be labeled or generated by investigating the values of
different examples. Active learning can be roughly divided into
two categories: selective sampling [18] and interventional
experimentation [24]. In selective sampling an active learner
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selects the most informative candidates, following some criterion,
from a large pool of unlabeled data for human labeling.
Interventional experimentation can force interesting variables to
be set to certain values given an experiment, for example, feeding
a rat with food which is not normally eaten by rats to observe the
values of interesting variables [24]. This paper focuses on the
selective sampling setting for active learning.

In order for active learning methods to operate, a number of
labeled examples are usually needed for a moderate classifier to
be trained, which is then used on the unlabeled data to select the
most informative examples for labeling. Nonetheless, in some
applications the number of attainable labeled examples is
extremely limited, which in turn hampers our ability to construct
an efficient classifier. In particular, there may be only one labeled
example from each category. For example, consider an online
product-recommendation system for anonymous internet visitors
(or online web-page recommendation). When a visitor browses
an interesting product, the system can try to provide them
products of similar content. This can be simplified to a binary
classification problem. The product, the visitor is browsing, is the
positive example and the system can easily find a negative
example by providing the visitor with products of various types
and asking for a single feedback on the product the visitor is not
interested in. In this case, the system has obtained one labeled
example from the positive and negative classes, respectively.
Similarly in content-based image retrieval the query image will
constitute the positive example and the retrieval systems can
offer the user images of various types to obtain a negative
example. In these scenarios, if the initial classifier cannot be


www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.07.007
mailto:slsun@cs.ecnu.edu.cn
mailto:shiliangsun@gmail.com
dx.doi.org/10.1016/j.neucom.2010.07.007

S. Sun, D.R. Hardoon / Neurocomputing 73 (2010) 2980-2988 2981

learned from the limited labeled data available the corresponding
active learning methods would not work well.

This paper proposes active learning with extremely sparse
labeled examples (ALESLE), which works under a multi-view
setting. Specifically, for each considered learning problem, we
assume there is only one example labeled from each class. By
exploiting the correlation between features of the different views,
additional high-informative examples can be selected for labeling
and then incorporated in subsequent active learning algorithms.
Experiments in different domains show the effectiveness of the
proposed ALESLE method.

It should be noted that although we have used the high-
informative examples found by our proposed approach to a
subsequent active learning context, they can also be used to other
learning scenarios. The remainder of the paper is organized as
follows. In Section 2 we give a brief review on related work and
our motivation, furthermore we clarify the contribution of the
proposed method, whereas in Section 3 we describe ALESLE in
detail. Section 4 applies the proposed method to multiple real
word data sets and reports the experimental results. Finally, in
Section 5 we bring forward our conclusions.

2. Related work and motivation

The earliest works on active learning can be attributed to the
contribution of Angluin [1] who had considered the problem of
using queries and answers to learn an unknown concept in a
formal framework. Several types of queries were described and
studied including membership, equivalence, subset, superset,
disjointness and exhaustiveness. Angluin also described some
efficient algorithms and lower bounds on the number of queries
in several domains.

Until now, there have been a number of selective sampling
methods proposed in the literature, although some of them can
also be applied to interventional experimentation. The proposed
active learning methods can be subdivided into two major
paradigms: uncertainty sampling and committee-based sampling
[18]. Uncertainty sampling selects for labeling the unlabeled data
on which the learned single classifier is the least confident.
Representative methods of uncertainty sampling include studies
in [5,11,16,25]. Cohn et al. [5] reviewed the use of optimal data
selection techniques with feedforward neural networks, and
further extended the principles to active learning with two
statistical learning architectures: mixtures of Gaussians and
locally weighted regression. Hoi et al. [11] introduced a frame-
work for batch mode active learning where Fisher information
matrix is adopted to simultaneously select some informative
examples. Lewis and Gale [16] applied a probabilistic classifier to
a text classification task, and selected the examples for manual
labeling based on their posterior probabilities. Tong and Koller
[25] presented an algorithm for performing active learning with
support vector machines. Theoretically, this algorithm is well
motivated in terms of the concept of version space! [17].

Committee-based sampling measures the degree to which a
committee of classifiers disagrees. It selects for labeling the
unlabeled examples whose classification is the most uncertain
amongst the committee member classifiers. Representative
methods include work in [6,21,26]. Freund et al. [6] analyzed
the query by committee algorithm proposed in [21] in the
Bayesian learning framework and showed that for some natural
learning problems, prediction errors decrease exponentially fast

! Given a set of labeled training data, the set of hypotheses which are
consistent with the data is called the version space.

with the number of queries. Zhou and Goldman [26] presented a
democratic priority sampling method which integrates the
confidence of each individual classifier (committee member) in
priority estimates. While query by committee [21] used a vote
entropy to determine the unlabeled examples for active labeling,
the democratic priority sampling employs a confidence-weighted
vote entropy to implement this task.

Unlike the described active learning methods, co-testing is a
multi-view active learning method, which repeatedly trains a
classifier from each view and queries contention points from
unlabeled examples where the two classifiers have different
predictions for labeling [18]. Co-testing has been shown to have
intrinsic superiority over the single-view uncertainty and commit-
tee-based sampling approaches [18]. Recently, multi-view active
learning has also been applied to information extraction [13].

Current active learning methods usually require a number of
labeled training examples before they can learn a classifier to further
examine the unlabeled data. When encountering applications where
only a limited number of labeled examples are available, the most
current active learning methods cannot be applied. It is important to
note that while relevance feedback process, in content-based image
retrieval, can be generated from a single query (labeled positive
example), it is not a genuine active learning method as it does not
provide the most informative examples for users to annotate.
Furthermore, relevance feedback has limitations in sampling
examples to be labeled as it is susceptible to select redundant and
uninformative examples [16]. Our proposed multi-view active
learning method ALESLE can work in the situation where extremely
limited data are available for training, which to the best of our
knowledge is the first systematical contribution on active learning
from sparse labeled training data.

Our present study is largely motivated by [3,22,27]. Blum and
Mitchell [3] had noted that there are many real world domains
with natural multiple view data. For example, in web-page
classification, a web page can be described by the text appearing
on the document itself and by the anchor text attached to the
hyperlinks pointing to this page. In television broadcast under-
standing, broadcast segments can be simultaneously described by
their video and audio signals. Further examples include web-
image retrieval, where an image can be described by its visual
information or by the surrounding text. Theoretically, co-training
assumes that features from each view are sufficient to train a good
classifier, and that the two views are conditionally independent
given the class [3]. In a recent study, Balcan et al. [2] relaxed the
conditional independence assumption with a much weaker
expansion condition given appropriately strong PAC-learning
algorithms on each view.

Previously, Sun et al. [22] introduced the transduction of labeled
examples (TLE) method that works with one available labeled
example from each category. TLE was applied in the context of
semi-supervised learning, a field which concerns on how to
combine labeled and unlabeled examples to train a good classifier
where manual labeling is not involved [4]. The TLE method seeks
the mode of the example distribution corresponding to each
labeled example by mean shift [7]. Mean shift makes use of the
shift of sample means to estimate the gradient of a distribution,
and thus can be used to determine the mode of the distribution.
Each example at the mode is then regarded as an extra labeled
example for classification. This method cannot work well in high-
dimensional spaces with comparatively limited training data as, in
this scenario, the modes found would be unreliable.

The one labeled example and two views (OLTV) method
proposed by Zhou et al. [27] is a semi-supervised learning
method, which assumes that there only exists a single positive
labeled example. In order to make the use of subsequent semi-
supervised learning methods, it uses kernel canonical component
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analysis [8] to increase the number of labeled data by selecting
unlabeled examples with the highest and lowest similarity scores
(automatically regarded as positive and negative examples) to the
labeled example. Since OLTV only uses one labeled example from
the positive class, the examples labeled from the unlabeled data
may be unreliable. A further and important limitation of OLTV is
that it cannot be directly applied to multi-class discrimination. In
addition, the limitation of only using one positive labeled example
makes it impossible to apply active learning algorithms as it is
hard to determine informative unlabeled examples.

The proposed ALESLE method works in the active learning
context and unlike TLE and OLTV, which have been proposed
for semi-supervised learning, ALESLE can be naturally applied
in high-dimensional spaces and in multi-class discrimination
scenarios.

3. ALESLE
3.1. Problem setting

We begin by giving the nomenclature used throughout the
paper. Let V=V' x V? be the instance space in the two-view
background where V! and V? correspond to two different views
(features sets) of an example. Let ({X,y),z) denote a labeled
example where vector x and y are features, respectively, arising
from space V' and V?, and scalar ze N is a class label. In this
paper, we first limit ourselves to the binary classification with
z e {1,—1} (for binary classification we use a different representa-
tion for the range of z), and then extend our method to the multi-
class case.

Co-training assumes each view is sufficient for correct
classification [3]. Formally, for examples with non-zero prob-
ability there exist functions f,, f,» and f. defined on the
corresponding spaces indicated by subscripts, such that

XY =f LX) =f2(y)=z

We assume that there is only one labeled example from each
class, therefore the two labeled examples are, respectively,
defined as (<{x1,y; »,1) and ({X3,y, »,—1). Finally, the remaining
unlabeled data set is U = {({X;,y; >,z;)} for i=3,...,]l where the
true label z; is unknown. Our task is to induce a classifier for
classifying new data based on the two labeled examples and those
selected and manually labeled from /.

3.2. Methodology

Motivated by the assumption that the two views are sufficient
for correct classification [3] we further assume that each view
should have some close relationship with the semantic char-
acteristic of underlying patterns we aim to learn. Therefore, the
two views must be strongly correlated in some way [10,27]. As
correlation analysis relies on the coordinate system adopted to
describe variables, we attempt to find projections, by linear
transformations, of the two views which can unfold the latent
correlation. The correlated projections can help determine the
labels of the unlabeled data. In particular, canonical correlation
analysis (CCA) is used to identify the projections [12] and a
similarity measure in the space of correlated projections is
adopted to judge the similarity of unlabeled examples to the
original labeled data.

We briefly review CCA for completeness of the presented
study. CCA finds basis vectors for the two feature sets, respec-
tively, from each of the two views, such that the projections of
these feature sets to the basis vectors are maximally correlated

[9,10,12]. For the current problem, CCA tries to find two basis
vectors wy and w,, for feature matrices

X= (X'lvxzv o0 Xp)
and

Y=y1Y2--- W)

in order to maximize the correlation coefficient between projec-
tions w, X and w;Y. Let C,, denotes the between-sets covariance
matrix of X and Y while C and C,, denote the within-sets
covariance matrices of X and Y, respectively. The objective
function for CCA is

T
max w, C,,w,
s x CxyWy

W, Cowy =1
st wy Cywy =1

The corresponding Lagrangian is
, A A
L(Jix Ay, Wi, Wy) = W, Cyy Wy — 7" (W, CyeWy—1)— % (W, Cyywy—1).

Taking derivatives to w, and w,, and letting them equal to zero,
we obtain

OL/OWy, = CyWy— AxCxWx = 0 )

0L /oWy = CyWx— 7, CyyWy = 0. @)
Subtracting wy x (2) from w, x (1) results in

Ay Wy Cyy Wy — 2, Wy CoxWy = Jy—/ix = 0.

Let Ay = Jx = A. For invertible C,,, from (2) we get

w, Tea

v=7Cy CyxWy. 3)

Substituting (3) into (1) results in the following generalized
eigenvalue problem:

Gy Gy, CaWy = 72 CuWy. )

Then w, can be solved, and the corresponding w, would be
obtained from (3). Now the objective function would be

W, CyW, = %chxyc;y’ CyxWy = AW, CeWy = 1. (5)
From (5), it is clear that eigenvectors corresponding to large
eigenvalues in (4) should be chosen. Finally, there is often a
normalization procedure to make wy and w,, be unit vectors, as we
only concern projection directions.

From (4), more than one w, with the corresponding 4 can be
identified and consequently multiple w, would be obtained. The
degree of correlation between projections is reflected by A. For
real applications, it is often the case that there are a lot of basis
vector pairs (wyw,) available to reflect different correlations.
Assume CCA identifies m pairs of correlated projections and the
corresponding correlation coefficients are 4; for j=1,...,m. An
example ¢(x,y» will be transformed to m projection pairs denoted
as (Pj(x),P(y)> forj=1,...,m. Given an labeled example <X,y >
for k=1,2 and an original unlabeled example <x;y;> for
i=3,...,l, the similarity in the jth projection between these two
examples can be calculated as

Sk = exp(—(P;(X))—P;(X))*) +exp(—(Pi(¥)—P;(¥i))*).
The total similarity between these two examples is given by
m
pi=>_ %S ©6)
j=1

Since the effectiveness of this similarity measure for determining
similarities and its superiority over the k-nearest neighbor rule
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have been shown in OLTV [27] and our previous study [23], we
also employ this measure in ALESLE.

Following our assumption that there is only one labeled
example from each category, the ALESLE method uses the above
similarity rule to calculate d values and select unlabeled examples
with small d values, where d has the following definition for an
unlabeled example with index i:

di=llp} —p?Il. )

The intuition is that examples with small d values tend to be
equidistant from the two labeled examples, and lie somewhere at
the boundary between these two classes. Therefore, labeling these
examples would be very helpful. As a consequence, the number of
labeled training data would increase allowing for general active
learning methods to be applied. Since the distance metric in (7)
uses semantic information in the space of correlated projections,
the induced examples may be more useful than those obtained by
the general manner of random selection from . In addition, to
retain as much semantic information as possible the parameter m
in (6) is taken to be the number of eigenvalues 2% in (4) whose
values are larger than 0.01. This corresponds to keep all
correlation coefficients with 4 greater than 0.1. We give the
pseudocode of the ALESLE method in Table 1. Considering

Table 1
ALESLE pseudocode.

Input:

L={({X1,¥1 >, D.({X2,¥2 >, =D} U={({Xp,y; .2} (i=3,..., h.

m: number of pairs of correlated projections retained.

n: number of actively selected examples for labeling.
Algorithm:

1 Obtain wy, wy, and / according to (4) and (3); keep m pairs of basis vectors
with largest 4.

2Fori=1,..., I Project <x;,y;> to the m pairs of basis vectors.

3 For i=3,...,l Compute d; according to (7).

4 Choose a subset A from ¢/ with least d; values.

5 Label n randomly selected examples from .A. The n labeled examples
constitute set A;.

6 L=L+A,U=U-A,.
Output: 2, U.
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the total data distribution and existence of noise, it does not
select the n examples with least d; values directly from /.

The extension of ALESLE to multi-class discrimination is
straightforward. Suppose M classes are considered and
M examples are provided as original labeled ones each of which
belongs to one of the M classes. According to (6), for an unlabeled
example (x;y;> we can obtain M similarities p¥ for k=1,...,M.
Then, we calculate d; as follows:

M
di= " lpf—pil, ®)
k=1
where p; = %Z’,ﬁ”: 1 P¥. When M=2 (for binary classification), (8)

degenerates to (7). In other words, the multi-class extension
includes the binary classification as a special case.

ALESLE allows for more informative labeled examples to be
obtained, and thus the subsequent execution of general active
learning methods. Since the proposed ALESLE method works
under a two-view setting, naive co-testing is used to implement
subsequent active learning tasks. Naive co-testing is a state-of-
the-art multi-view active learning method [18] which, based on
the labeled informative examples provided by ALESLE, trains two
classifiers, respectively, from each view and then randomly
selects one of the contention points of the two classifiers for
further manual labeling. With the progress of this active learning,
more and more informative examples are labeled which in turn
benefit the training of accurate classifiers. Although here naive
co-testing is used to combine with ALESLE, in fact other active
learning methods can also be employed.

4. Experiments

In this section, we describe a number of experiments, where
ALESLE is used for active data labeling including text classifica-
tion, advertisement removal and multi-class image classification.
For the first two tasks, a 10 x 10-fold cross validation (CV) is
performed. In each division, one positive and negative examples
are randomly selected from the nine training folds to be used as
the labeled training examples. The remaining data within the
training folds are used as the unlabeled data set. The performance

a
CS401/501 Home Page
Looking for ...

¢ Admin handouts and information (incl. TA office hours)

e Lecture notes

o Assignment information

e Recitation information

o The Ethics, Professionalism, and Social Responsibility Page
b
CS 501 : Software Engineering Programming Languages/Software
Engineering CS501 Software Engineering/Programming Languages
CS501 CS501: Programming Languages and Software Engineering CS501
Programming Languages / Software Engineering

Fig. 1. Information related to a course web page in database: (a) words on the web page and (b) words in links.
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is evaluated on the test fold. We report the average accuracy
across the whole CV procedure. For the multi-class image
classification task, the evaluation procedure is basically the same
except that the original labeled examples contain one example
from each category.

On all the experiments we compare ALESLE to our baseline, the
general preliminary approach for active learning when only very
few labeled examples are available, which constitutes of
randomly selecting examples for labeling. In addition, we also
adopt the ratio margin (RatioM for short) method [25] for
selective sampling as another comparison on the first two data
sets involving binary classification. RatioM is a support vector
machine (SVM) active learning method suitable for binary
classification. It first obtains the classifier margin m* and m~,
respectively, assuming an unlabeled example is a positive or
negative example. Then RatioM chooses to query the example
whose min(m~/m*,m*/m~) is largest. Being a single-view
algorithm, in our experiments RatioM combines all features from
different views to train linear SVMs and calculate margins.

S. Sun, D.R. Hardoon / Neurocomputing 73 (2010) 2980-2988

4.1. Text classification

In this experiment, we consider the problem of classifying web
pages. The data set consists of 1051 two-view web pages collected
from the computer science department web sites at four U.S.
universities: Cornell, University of Washington, University of
Wisconsin, and University of Texas [3]. The task is to predict
whether a web page is a course home page (see Fig. 1 as an
example) or not. Within the data set there are a total of 230
course home pages (positive examples). The first view of the data
is the words appearing on the web page itself, whereas the second
view is the underlined words in all links pointing to the web page
from other pages. We preprocesses each view by removing stop
words, punctuation and numbers and Porter’s stemming is
applied on the text [19]. In addition, words that occur in five or
fewer documents are ignored. This results in a 2332 and
87-dimensional vectors in space V! and V?, respectively. Finally,
document vectors are normalized to TFIDF (the product of term
frequency and inverse document frequency) features [20].

a b
0.95 - - - - - - 0.95 - T T T T T
09 E 0.9
3 0.85 .++‘++'++‘++'++++'+‘+' 3 0.85
S PR S
=] -+ 3
3 3
< o8} {< o8
0.75 g 0.75
—#— Baseline —#— Baseline
-+ RatioM -+ RatioM
: —&— ALESLE : —&— ALESLE
07 + L L L L n n 07 - L L L L n n
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Round Round
C
0.95 T T T T T T
09 E
++++++++++++++
+ 4T
s, 085 ¢ E
(8]
o
]
Q
(5]
< 08} ]
0.75 E
—#— Baseline
“ 4 RatioM
—&— ALESLE
07 L L L L n n
0 5 10 15 20 25 30
Round

Fig. 2. Text classification performance with active learning, respectively, launched by ALESLE, RatioM and the baseline. The number of examples selected for manual

labeling varies in {10, 15, 20}. (a) 10, (b) 15 and (c) 20.
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We use ALESLE to select 10, 15, and 20 examples, respectively, performance of active learning, after each round a single SVM
for manual labeling. Then naive co-testing continues to make classifier is trained using both views to predict the test data.
queries for 30 rounds, and after each learning episode 10 The average prediction accuracies obtained by CV for the ALESLE
unlabeled examples are presented for labeling. On each view, approach, RatioM and the baseline are shown in Fig. 2. We find that

linear SVM learners are employed. Besides, to evaluate the after several rounds of active learning, the performance of naive

<A href="http://www.corp.com/sales.html">
Our sponsor: <IMG src="http://www.corp.com/ads/thead.gif’
alt="click here' height="40" width="200"></A>

<A href="contact.html">
Contact us: <IMG src="images/contact.gif”
alt="contact info" height="50" width="40"></A>

Fig. 3. An HTML file example containing ads and non-ads image instances [15].

a b
1 T T T T T T 1 T T T - - -
0.95 | :::¢¢;¢¢¢::::¢¢¢=¢ 0.95
3 . +,++'+ +H+EebebEbE + 4+ 5
o ‘ o
=] =]
o o
Q Q
< <
09 E 0.9
—%— Baseline —#— Baseline
4 RatioM : “++ . RatioM
: —&— ALESLE : —&O— ALESLE
0.85 — . . . ' ' 0.85 — . . . ' '
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Round Round
C
1
0.95 | ,.¢¢:°°;°¢:¢¢::¢: vvvvv i
V +++++ 4+ttt
oy
o
=]
o
Q
<
09 t ]
—#— Baseline
-+ RatioM
: —&— ALESLE
0.85 - ! ! ! ! N N
0 5 10 15 20 25 30

Round

Fig. 4. Web advertisement image classification performance with active learning, respectively, launched by ALESLE, RatioM and the baseline. The number of examples
selected for manual labeling varies in {10, 15, 20}. (a) 10, (b) 15 and (c) 20.
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co-testing with initial examples selected by ALESLE is consistently method launched by ALESLE obtains higher classification accuracies
better than that by the general random selection manner (baseline). than that launched by our baseline. In other words, active learning
Basically for the same number of rounds/queries, the active learning following ALESLE can reach the same classification accuracy with

a b

a b
1
09 .
08 | .
o) 3 07 | ]
g o
= =]
3 S 06
< < 2T 1
0.5 g
0.4 | ]
—#— Baseline —%— Baseline
—&— ALESLE —&— ALESLE
0.3 - - - - - - 0.3 - : : - - -
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Round Round
C
1
09
0.8 }
3 07t
Y
=
3
2 06 |
05
04 |
—¥— Baseline
—&— ALESLE
0.3 - - - - - -
0 5 10 15 20 25 30

Round

Fig. 6. Multi-class image classification performance with active learning, respectively, launched by ALESLE and the baseline. The number of examples selected for manual
labeling varies in {10, 15, 20}. (a) 10, (b) 15 and (c) 20.
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fewer manually labeled examples than that following the baseline.
We are able to observe a performance decrease in ALESLE during
the first two or three rounds. This may due to a mismatch between
the distribution of the labeled data and the total distribution.
Although we are able to observe that phenomenon as ALESLE can
select genuinely informative examples it soon outperforms our
baseline after several rounds of queries. The performance of RatioM
is not as good as random selection, which is also well supported by
results in [25]. That is, when the number of unlabeled examples
chosen for manual labeling is not large, RatioM has no guarantee to
be better than random selection.

We also tried kernel CCA [8,10] to replace the (linear) CCA in
ALESLE, and found that for the current data set kernel CCA is
largely inferior to CCA. We speculate that this is due to the high
dimensionality of instance spaces which caused the performance
degeneration of kernel CCA in ALESLE. Although Zhou et al. [27]
applied kernel CCA to the same data set and obtained good semi-
supervised learning results; however, the dimensionalities of
their instances spaces after preprocessing are much lower,
respectively, 66 and 5 for the two views. Considering this factor
and the simplicity of linear methods, for the following experi-
ments, we use CCA in ALESLE.

4.2. Advertisement removal

Advertisement images that are embedded in web pages can
increase users’ browsing time and distract their attentions. In this
experiment we consider the problem of classifying web images
into ads and non-ads [15], so that the images, which are classified
as ads are then removed before the corresponding web pages are
rendered to users.

The data set consists of 3279 examples with 459 of them being
ads. Fig. 3 gives an example of ads and non-ads images. We use
1554 binary attributes (weights of text terms related to an image
using Boolean model) whose values can be 0 and 1 for
classification. These attributes are naturally divided into two
views: V' describes the image itself (terms in the image’s URL,
caption and alt text) and V? contains features from other
information (terms in the page and destination URLs). As a result,
V! and V?, respectively, have 587 and 967 features.

We follow the same experimental setting as in Section 4.1. Fig. 4
gives the prediction accuracies obtained by CV for ALESLE, RatioM
and our baseline. For ALESLE and the baseline, curves in this figure
have quite similar characteristics with that in Fig. 2. These curves
show that with the same number of selected queries ALESLE can
have higher performance than the general approach of random
selection. In others words, to achieve a fixed accuracy ALESLE
usually requires much fewer queries. As shown in Fig. 4, on this data
set the performance of RatioM is better than random selection only
when the number of examples selected for manual labeling is 10.

4.3. Multi-class image classification

In this case study, we try to apply ALESLE to multi-class image
classification, an important problem in computer vision. A
multimedia web image-text database is used, which includes
examples of three classes: Sports, Aviation, and Paintball (Fig. 5
shows three examples of images) [14]. The three categories are
represented as z € {1,2,3}. Following preprocessing, V' consists of
960-dimensional image visual features (image HSV color and
Gabor texture), while V? is composed of 3522-dimensional term
frequency features appearing in the attached text.

The same experimental setting as the above two experiments
is adopted. Fig. 6 gives the prediction accuracies of naive
co-testing active learning, respectively, launched by ALESLE and

our baseline. Tendencies reflected by the curves in this figure are
similar with those in Figs. 2 and 4. These curves show that to
achieve a fixed accuracy active learning launched by ALESLE can
largely reduce the number of manually labeled examples. The
superiority of ALESLE over the general method of randomly
selecting examples to label is indicated.

Fig. 6 also suggests that with enough rounds of queries, active
learning applied to the baseline approach can achieve the same
performance as with ALESLE. This is straightforward to perceive if
all the unlabeled examples in the training sets were labeled. But
using, or labeling, all the data would oppose the main aim of
active learning, which is to achieve as good a performance using a
few labeled examples as possible.

5. Conclusion

In this paper we introduce ALESLE, a method for active
learning with extremely sparse labeled examples. The method
works under the assumption that there exists multiple views that
are sufficient for correct classification. CCA between these views is
used to calculate the similarities between unlabeled examples
and the original labeled examples. Based on these similarities,
ALESLE uses its criterion to select informative queries for manual
labeling. This allows for the subsequent application of general
active learning methods, such as naive co-testing, as the number
of high-informative labeled examples is increased. To the best of
our knowledge this is the first proposed general method for active
learning with extremely limited labeled data.

ALESLE can be applied to a number of real-world scenarios, such
as those described in Section 1. In this paper, empirical results on
text classification, advertisement removal, and multi-class image
classification tasks demonstrate the superiority of ALESLE over
RatioM and the baseline approach. Experimental results have
indicated that a similar number of selected queries, using active
learning with ALESLE can achieve a higher performance than by
using RatioM and the baseline approach of random selection. In
other words, to achieve a fixed accuracy using ALESLE requires fewer
queries which can greatly reduce the ‘cost’ of labeling.

For future work we hope to focus on the theoretical analysis of
ALESLE and explore its performance with the assumption that
existing views are no longer sufficient. Furthermore, we aim to
explore other applications of the proposed method, for example,
using the combination of ALESLE with relevance feedback in
content-based image retrieval.
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