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Abstract The tensor kernel has been used across the machine learning literature for a num-
ber of purposes and applications, due to its ability to incorporate samples from multiple
sources into a joint kernel defined feature space. Despite these uses, there have been no
attempts made towards investigating the resulting tensor weight in respect to the contribu-
tion of the individual tensor sources. Motivated by the increase in the current availability
of Neuroscience data, specifically for two-source analyses, we propose a novel approach
for decomposing the resulting tensor weight into its two components without accessing the
feature space. We demonstrate our method and give experimental results on paired fMRI
image-stimuli data.

Keywords Tensor kernel · Support vector machine · Decomposition · fMRI

1 Introduction

Recently, machine learning methodologies have been increasingly used to analyse the re-
lationship between stimulus categories and neuroscience data, such as functional Mag-
netic Resonance Imaging (fMRI) responses (Carlson et al. 2003; Mitchell et al. 2004;
LaConte et al. 2005; Mourão-Miranda et al. 2005). Furthermore, due to recent improvements
in neuroscience scanning technology, there has been an increased interest in analysing vari-
ous conditions using cross-domain multiple sources (e.g., medical devices); such as learning
the relationship between brain structure and genetic representation (Hardoon et al. 2009),
as well as conducting experiments aimed at analysing brain responses to (complex) struc-
tured data such as; listening to music (Koelsch et al. 2006), watching a movie (Anderson
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et al. 2006), or observing real-world images (Mourão-Miranda et al. 2006). In this paper
we focus on supervised learning with multiple sources and propose a novel methodology
for decomposing source-independent weight vectors from the joint kernel defined feature
space.

Current analysis techniques conventionally rely on replacing the structured stimulus with
a simple categorical representation for the stimulus type (e.g. type of task). This represen-
tation does not enable the analysis to take into account the information that can potentially
be gained from the structure of the stimuli. In a recent study Hardoon et al. (2007) pro-
posed extending the standard methodology by incorporating the structural information of
image-stimuli into the brain analysis via Canonical Correlation Analysis (CCA) as an un-
supervised fMRI analysis technique. In this study, the simple categorical description of the
stimulus type (e.g., +1/−1) was replaced by a more informative vector of stimulus features.
The unsupervised procedure in Hardoon et al. (2007) was indeed able to discriminate be-
tween the tasks as well as providing an insight into the corresponding feature representations
for both the brain and image data, i.e. producing a heat map of brain region activity as well
as an indication of the image features corresponding to respective tasks. Interpreting the
weight vectors as brain activity maps has been proposed by Mourão-Miranda et al. (2005)
who applied the SVM to map whole fMRI volumes (brain states) from different subjects
to different classes without prior selection of features. They demonstrated that the SVM
produces spatial maps, i.e. the weight vector that were robust and comparable to the GLM
(Friston et al. 1995) standard fMRI analysis.

A potential disadvantage of the CCA technique (Hardoon et al. 2007) is that it performs
feature selection in an unsupervised way (O’Toole et al. 2007). The discriminative power,
and the resulting brain analysis, may not conform to the original goal of the experiment and
therefore would potentially not be of interest to the neuroscientist. For example, analysing
the cognitive response for structured images containing natural scenery (with overlapping
features) may focus attention on processing of natural scenery rather than features relevant
to the experimental design/interest. This potential disadvantage of an unsupervised analysis
may pose a “high risk” given the cost and time required to conduct such experiments. There-
fore, we propose to explicitly use the label/task information while learning the relationship
between the brain and structured stimulus by using a Support Vector Machine (SVM) with
a tensor kernel. The tensor product kernel allows the combination of several sources into
the kernel defined feature space (we briefly review the tensor product kernel in Sect. 2).
We subsequently propose a novel decomposition of the resulting tensor weight vector into
individual weight components without accessing the two feature spaces.

Tensor product kernels have been used across the machine learning literature for various
purposes. We briefly review a number of these uses, for example; Szedmak et al. (2005)
has used the tensor product kernel to construct a new maximum margin framework for
multi-class and multi-view learning at a one-class complexity and Szedmak et al. (2007)
has recently shown how the maximum margin framework relates to CCA, a powerful unsu-
pervised tool for discovering relationships between different sources of information. Kondor
and Lafferty (2002) proposed a general method of constructing natural families of kernels
over discrete structures, based on the matrix exponentiation idea, while Ben-Hur and Noble
(2005), Martin et al. (2005), Qiu and Noble (2008) explored predicting edges in a protein
interaction or co-complex network, using a tensor product transformation to derive a ker-
nel on protein pairs from a kernel on individual proteins. Furthermore, Weston et al. (2007)
have used tensor kernels to explore methodologies for solving high dimensional estimation
problems between pairs of arbitrary data types as a regression problem.

Despite the many uses of tensor kernels across the machine learning literature we have
not found any attempts made towards representing the resulting weight vector, i.e. when
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two sources1 have been used to construct the hyper-plane the resulting weight vector does
not elucidate the respective contributions of each of the sources. We are motivated by the
specific problem when fMRI and complex image stimuli are used within a tensor kernel
SVM. In this problem, further to achieving good results, we wish to obtain correspondence
between voxel2 weight activations and associate feature weights on the image stimuli such
that the relation between cognitive activity and task-stimuli (and vice-versa) is preserved.
We speculate, as in Hardoon et al. (2007), that such a learnt relationship may better help our
understanding of the neurological responses to a cognitive task and similarly to understand
the image features that relate to these responses. The latter could assist in devising better
fMRI experiments.

In this paper we present a novel and straightforward approach towards decomposing
the tensor kernel SVM weight vector without accessing the feature spaces. We show that the
performance of the method is statistically indistinguishable from the original tensor method,
demonstrating that the decomposition does not impair the classification accuracy. Further-
more, we show that the decomposed weights can also be used as single source classifiers as
well as for performing content based information retrieval. The neurological interpretation
of the resulting weight maps (Mourão-Miranda et al. 2005, 2006; Hardoon et al. 2007) is
outside the scope of this paper and will be addressed in a future study.

The paper is laid out as follows; In Sect. 2 we discuss the nomenclature used throughout
the paper and briefly review the SVM formulation with a tensor kernel. Our main and novel
results are given in Sect. 3, where we show how the decomposition of the weight vector
derived from a SVM with a tensor kernel can be computed without accessing the feature
spaces. Section 4 focuses on the issue of how to select an appropriate subspace for the
decomposition while in Sect. 5 we elaborate on our experiments with the paired fRMI and
image stimuli data. The paper is concluded with a discussion in Sect. 6.

2 Nomenclature & SVM formulation

We begin by introducing in Table 1 the general nomenclature used throughout the paper.
Furthermore, we consider samples from a pair of random vectors (i.i.d. assumptions hold)
of the form (xi ,yi ) each with zero mean (i.e. centered) where i = 1, . . . ,m.

We first quote from Cristianini and Shawe-Taylor (2000) the general dual SVM optimi-
sation as

max
α

W(α) =
m∑

i=1

αi − 1

2

m∑

i,j=1

αiαj cicj κ(xi ,xj )

subject to
m∑

i=1

αici = 0 and αi ≥ 0, i = 1, . . . ,m, (1)

where we use ci to represent the label of the data rather than the conventional yi (this is
because we use yi to represent the paired sample of xi ). The resulting decision function is

f (x) =
m∑

i=1

αiciκ(xi ,x). (2)

1We limit ourselves to tensor kernels constructed of only two sources.
2A voxel is a pixel representing the smallest three-dimensional point volume referenced in an fMRI image of
the brain. It is usually approximately 3 mm ×3 mm.
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Table 1 General nomenclature
used throughout the paper s lower case represents a scalar

v bold face represents a vector

M upper case represents a matrix

κ represents a kernel function

φ projection operator into feature space

◦ is the tensor product

U a matrix whose columns are the vectors u

m denotes the number of samples

c class label

It is easily shown how a vector space tensor product can be turned into an inner product
space

〈φx ◦ φy,ψx ◦ ψy〉Hx◦Hy = 〈φx,ψx〉Hx 〈φy,ψy〉Hy

for all φx,ψx ∈ Hx and φy,ψy ∈ Hy where Hx,Hy are two Hilbert spaces. Therefore the
tensor product between xi ,yi can be represented as point-wise dot product kernel between
the two respective kernels κ(xi ◦ yi ,xj ◦ yj ) = κx(xi ,xj )κy(yi ,yj ) and hence, the change in
the SVM optimisation in (1) is only in the kernel used. Let κ̂ be the tensor kernel matrix, so
that

κ̂ij = κx(xi ,xj )κy(yi ,yj ).

Detailed description of tensor products and their operations in Hilbert spaces are given in
Szedmak et al. (2005), Pulmannová (2004) and therefore omitted here. Throughout the paper
we assume that the resulting eigenvalues from the symmetric eigenproblem Ax = λx are
ordered such that λx ≥ λy ≥ · · · ≥ λ�.

3 Tensor decomposition

We now give the main focus and novel contribution of the paper. The goal is to decompose
the weight matrix W given by a dual representation W = ∑m

i αiciφx(xi ) ◦ φy(yi ) without
accessing the feature space. Given the paired samples x,y the decision function in (2) be-
comes

f (x,y) = W ◦ φx(x)φy(y)′ =
m∑

i=1

αiciκx(xi ,x)κy(yi ,y),

where we are able to express

W =
m∑

i=1

αiciφx(xi )φy(yi )
′.

We want to decompose the weight matrix into a sum of tensor products of corresponding
weight components for Hx and Hy

W ≈ WT =
T∑

t=1

wt
xwt

y
′, (3)
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where for t = 1, . . . , T (we address the selection of T , the number of projections used, later
in the paper) we have

wt
x ∈ span (φx(xi ),1 ≤ i ≤ m) ⊆ Hx,

wt
y ∈ span

(
φy(yi ),1 ≤ i ≤ m

) ⊆ Hy,

so that wt
x = ∑m

i=1 βt
i φx(xi ) and wt

y = ∑m

i=1 γ t
i φy(yi ) where β t ,γ t are the dual variables of

wt
x ,wt

y . We compute

WW ′ =
m∑

i=1

αiciφx(xi )φy(yi )
′

m∑

j=1

αjcjφy(yj )φx(xj )
′

=
m∑

i,j

αiαj cicjφx(xi )κy(yi ,yj )φx(xj )
′

=
m∑

i,j

αiαj cicj κy(yi ,yj )φx(xi )φx(xj )
′ (4)

and are able to express

Ky = (
κy(yi ,yj )

)m

i,j=1
=

K∑

k=1

λkukuk ′ = UΛU ′, (5)

where U = (u1, . . . ,uK) by performing an eigenvalue decomposition of the kernel matrix
Ky with entries K

y

ij = κy(yi ,yj ). Substituting back into (4) gives

WW ′ =
K∑

k

λk

m∑

i,j

αiαj cicj uk
i uk

j

′
φx(xi )φx(xj )

′.

Letting hk = ∑m

i=1 αiciuk
i φx(xi ) we have

WW ′ =
K∑

k

λkhkh′
k = HH ′,

where H = (
√

λ1h1, . . . ,
√

λKhK). Note that H �= W but is a low dimensional representa-
tion of W (similar to performing a PCA). We would like to find the singular value decom-
position of H = V Υ Z′. Consider for A = diag(α) and C = diag(c) we have

[
H ′H

]
k�

= √
λkλ�h′

kh�

= √
λkλ�

∑

ij

αiαj cicj uk
i u�

j κx(xi ,xj )

= [(
CAUΛ

1
2
)′
Kx

(
CAUΛ

1
2
)]

k�
,

which is computable without accessing the feature space. Performing an eigenvalue decom-
position on H ′H we have

H ′H = ZΥ V ′V Υ Z′ = ZΥ 2Z′ (6)
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with Υ a matrix with υt on the diagonal truncated after the J’th eigenvalue, which gives the
dual representation of

vt = 1

υt

Hzt , t = 1, . . . , T ,

and since

H ′Hzt = υ2
t zt

we are able to verify that

WW ′vt = HH ′vt = 1

υt

HH ′Hzt = υtHzt = υ2
t vt .

We are now able to express W as

W = IW =
(

m∑

t=1

vtv′
t

)
W =

m∑

t=1

vt

(
v′

tW
) =

m∑

t=1

vt

(
W ′vt

)′
.

Restricting to the first T singular vectors allows us to express

W ≈ WT =
T∑

t=1

vt

(
W ′vt

)′
,

and from (3) we are able to express wt
x = vt and wt

y = W ′vt , which in turn results in

wt
x = vt = 1

υt

Hzt

= 1

υt

T∑

k=1

√
λk

m∑

i=1

αiciu
k
i φx(xi )zt

k

=
m∑

i=1

(
1

υt

αici

T∑

k=1

√
λkzt

ku
k
i

)
φx(xi )

=
m∑

i=1

βt
i φx(xi ),

where βt
i = 1

υt
αici

∑T

k=1

√
λkzt

ku
k
i . We can now also express

wt
y = W ′vt = 1

υt

W ′Hzt

= W ′
m∑

i=1

βt
i φx(xi )

=
m∑

i=1

αiciφy(yi )

m∑

j=1

κ(xi ,xj )β
t
j
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=
m∑

i=1

(
m∑

j=1

αiciβ
t
j κx(xi ,xj )

)
φy(yi )

=
m∑

i=1

γ t
i φy(yi ),

where γ t
i = ∑m

j=1 αiciβ
t
j κx(xi ,xj ) are the dual variables of wt

y . We are therefore now able to
decompose W into Wx,Wy without accessing the feature space giving us the desired result.

We continue to construct a new feature representation for a sample x as

φ̂x(x) =
[

m∑

i=1

κx(xi ,x)βt
i

]T

t=1

(7)

and similarly are able to construct the new feature representation for a sample y from the
second view as

φ̂y(y) =
[

m∑

i=1

κy(yi ,y)γ t
i

]T

t=1

. (8)

Proposition 1 With the computation described above we have that

f (x,y) =
m∑

i=1

αiciκx(xi ,x)κy(yi ,y)

≈ WT (φx(x) ◦ φy(y))

= φ̂x(x)′φ̂y(y)

with equality if T is chosen to be m.

We refer to the above tensor decomposition procedure as TD.

4 Subspace selection

We observe that the decomposition in Sect. 3 leaves open the question of selecting the
number of eigenvectors to construct the subspaces for the decomposition. This corre-
sponds to the selection of K and T in (5) and (6) respectively. We observe that T

in (3) is determined by the eigenvalue decomposition in (6). Therefore, by ensuring that
T ≤ min(rank(Ky), rank(Kx)) we can select T = K in (6) unless there is a non-trivial in-
tersection between the span of {u1, . . . ,uK} and Ky .

We propose the following two approaches in setting the number of projections K . The
first approach is by using the PCA bound proposed in Shawe-Taylor et al. (2005), which
motivates selecting K projections that no longer improve the bound. We quote the bound in
Theorem 1.

Theorem 1 (Shawe-Taylor et al. 2005) If we perform PCA in the feature space defined by
a kernel κ(x, z) then with probability great than 1 − δ, for any 1 ≤ k ≤ m, if we project new
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data onto the space Uk , the expected squared residual is bounded by

E
[‖P ⊥

Uk
(φ(x))‖2

] ≤ min
1≤t≤k

⎡

⎣ 1

m
λ>t(S) + 1 + √

t√
m

√√√√ 2

m

m∑

i=1

κ(xi ,xi )

⎤

⎦ + R2

√
18

m
ln

(
2m

δ

)
,

where the support of the distribution is in a ball of radius R in the feature space and
λ>t (S) = ∑m

i=t+1 λi is the sum of the eigenvalues greater than t computed from the training
data in the feature space.

We observe that the value of the bound, for a kernel and fixed δ, will be shifted by a
constant for all values of K normalised. Therefore, we use a simplified version of the bound

Ẽ ≤ min
1≤t≤k

[
1

m
λ>t(S) + 2(1 + √

t)√
m

]
,

which is sufficient to indicate when adding more eigenvalues will not improve the bound.
The second approach is to take the maximum number of eigenvectors corresponding to

non-zero eigenvalues. We refer to this method as ‘Max’ in the experiments.

5 Experiments

fMRI data3 was acquired from 16 right handed healthy US college male students aged
20–25 who, according to a self report, did not have any history of neurological or psychiatric
illness. The subjects viewed image stimuli of three different active conditions: viewing un-
pleasant (dermatologic diseases), neutral (people), pleasant images (female models in swim-
suits and lingerie), and a control condition (fixation). In these experiments only unpleasant
and pleasant image categories are used.

The image-stimuli were presented in a block fashion and consisted of 42 images per cat-
egory. During the experiment, there were 6 blocks of each active condition (each consisting
of 7 image volumes) alternating with control blocks (fixation) of 7 images volumes. Simi-
larly to the work in Hardoon et al. (2007) we associate pleasant with positive and unpleasant
with negative and represent the image stimuli using the Scale Invariant Feature Transforma-
tion (SIFT) (Lowe 1999). Furthermore, we apply conventional pre-processing to the fMRI
data. A detailed description of the fMRI pre-processing procedure and image-stimuli repre-
sentation is given in Hardoon et al. (2007).

We run the experiments in a leave-subject-out fashion where 15 subjects are combined
for training and a single subject is withheld for testing. This gave a sum total of 42×2×15 =
1260 training and 42 × 2 = 84 testing fMRI volumes and paired image stimuli. The analysis
was repeated 16 times using linear kernels. We use the LIBSVM 2.854 (Fan et al. 2005)
package for our SVM computation using default parameters and run all our experimentation
on a 3 GHz 2×Xeon X5450 Quad Cores with 32 Gb RAM running on Centos 4.5.

We find that the bound in Theorem 1 indicates that no improvement can be achieved after
the first 50 eigenvalues. The value of the simplified bound is plotted in Fig. 1.

3The data was acquired in a study by Mourão-Miranda et al. (2006).
4http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 1 We plot the simplified PCA bound values for the different number of eigenvalues decomposition
of Ky . We are able to observe that roughly after 50 eigenvalues we are no longer able to improve on the
bound, indicating this to be a sufficient number of eigenvectors (corresponding to the largest 50 eigenvalues)
for our computation

In the following experiments we propose to decompose the tensor kernel into the dual
variables βt , γ t in order to construct a new feature representation using (7) and (8) for the
two sources respectively. This procedure enables us to project the data, from individual
sources, into the common semantic space learnt by the tensor kernel SVM. In other words,
we can construct a new kernel K̂x = 〈φ̂x(x), φ̂x(x)〉 which can be trained as usual using an
SVM. We refer to our proposed procedure as the Decomposed Tensor kernel SVM (DTS)
and proceed to demonstrate, in the following sections, that the DTS is able to maintain good
results in comparison to the tensor kernel SVM. Whereas now the TD procedure allows us
to compute individual weight vectors which have the potential, in our case, to elucidate the
relationship between the fMRI activation and the image-stimuli features.

5.1 Results

5.1.1 Paired data

Initially, we aim to demonstrate that DTS does not lose, as a result of the decompo-
sition, any discriminability from the original tensor SVM. We show this by combining
the decomposed features back into a tensor product kernel and training, as well as test-
ing, an SVM. To avoid any ambiguity we refer to this as DTS. Our baseline is the ten-
sor kernel SVM trained on the paired fMRI and image-stimuli samples, for brevity we
refer to this as the tensor SVM. We also consider an SVM in which the two feature
vectors were concatenated into one high dimensional vector. We refer to this as SVM
concatenated. Furthermore we compare to kernel CCA (kCCA) (Bach and Jordan 2002;
Hardoon et al. 2004) where the learnt projections, of the two views, are used to create a
tensor kernel, on which an SVM is trained and tested.5

5We use all the learnt kCCA directions for projection into the common semantic feature space.
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Table 2 Results on the leave-subject-out procedure across the 16 subjects. We compare DTS (with the
two approaches to the subspace selection) to an SVM trained on the fMRI + Image Stimuli feature spaces
concatenated, an SVM trained on the kCCA joint semantic space (where the learnt projections are used to
create a tensor kernel) and an SVM using the tensor kernel

Subject SVM concat. kCCA SVM Tensor SVM DTS

Th. 1 Max

Sub 01 86.90 80.95 89.28 88.09 89.28

Sub 02 80.95 73.80 80.95 88.09 86.90

Sub 03 79.76 75.00 75.00 76.19 75.00

Sub 04 83.33 77.38 95.23 90.47 91.66

Sub 05 80.95 70.23 88.09 90.47 91.66

Sub 06 83.33 80.95 88.09 84.52 85.71

Sub 07 82.14 75.00 89.28 89.28 90.47

Sub 08 76.19 72.61 83.33 90.47 88.09

Sub 09 69.04 63.09 72.61 82.14 82.14

Sub 10 70.23 70.23 89.28 83.33 83.33

Sub 11 88.09 78.57 84.52 84.52 82.14

Sub 12 82.14 75.00 86.90 88.09 83.33

Sub 13 75.00 79.76 86.90 89.28 88.09

Sub 14 55.95 57.14 86.90 94.04 92.85

Sub 15 75.00 67.85 86.90 84.52 83.33

Sub 16 85.71 83.33 91.66 95.23 95.23

average 78.42 ± 8.15 73.80 ± 6.94 85.93 ± 5.75 87.42 ± 4.74 86.83 ± 5.15

The results of this comparison are given in Table 2 where we are able to observe that
the tensor SVM significantly improves on the concatenation of the two feature vectors as
well as the kCCA joint semantic space learnt in an unsupervised fashion. Furthermore, we
compare to DTS using the two proposed approaches for subspace selections (described in
Sect. 4), and are able to observe that the decomposition maintains the original quality of
discrimination.

5.1.2 Single source data

In the previous comparison we used paired-samples for the training and testing. In this
section we wish to test the quality of the decomposed subspace by comparing our proposed
method to the following two baselines where only the fMRI samples are used for testing;

1. A vanilla SVM trained on the fMRI samples.
2. kCCA trained on the paired-data followed by an SVM trained only on the fMRI samples

projected into the learnt kCCA semantic space.
3. The tensor SVM trained on the paired fMRI and image-stimuli samples but only tested

using fMRI testing samples. Conventionally the tensor kernel SVM uses paired samples
for testing, although for this case we assume the paired image-stimuli test kernel to be an
all ones matrix (i.e. we test using only the fMRI test samples).

In Table 3 we compare DTS, using an SVM trained only on the decomposed fMRI
source, to the three baselines detailed above. We are able to observe that our proposed
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Table 3 Results on the leave-subject-out procedure across the 16 subjects. We compare the DTS (with the
two approaches to the subspace selection) to a vanilla SVM, an SVM trained only on fMRI samples projected
into the common kCCA space as well as to an SVM using the tensor kernel. The testing procedure across all
methods only involved the fMRI testing samples

Subject fMRI SVM kCCA SVM Tensor SVM DTS

Th. 1 Max

Sub 01 86.90 83.33 71.42 80.95 83.33

Sub 02 80.95 72.61 84.52 86.90 91.66

Sub 03 79.76 82.14 66.67 76.19 78.57

Sub 04 83.33 78.57 84.52 86.90 85.71

Sub 05 80.95 70.23 77.38 78.57 76.19

Sub 06 83.33 84.52 72.61 85.71 84.52

Sub 07 82.14 77.38 69.04 76.19 77.38

Sub 08 76.19 71.42 65.47 71.42 70.23

Sub 09 69.04 66.66 57.14 67.85 65.47

Sub 10 70.23 69.04 64.28 75.00 71.42

Sub 11 88.09 82.14 77.38 79.76 79.76

Sub 12 82.14 77.38 72.61 82.14 80.95

Sub 13 75.00 76.19 73.80 88.09 89.28

Sub 14 55.95 55.95 63.09 64.28 63.09

Sub 15 75.00 70.23 72.61 72.61 76.19

Sub 16 85.71 80.95 68.04 83.33 83.33

mean 78.42 74.92 71.35 78.50 78.57

std ±8.15 ±7.54 ±7.38 ±7.08 ±8.03

method achieves a improvement on the tensor SVM and kCCA SVM accuracy, while ob-
taining similar results to the vanilla SVM. These results indicate that the tensor SVM is
unable to perform well when tested only using a single source. Whereas our method is able
to learn the joint semantic space using the two sources and successfully decompose it to its
individual components that retain a high classification accuracy when tested independently.

It is interesting to observe that in the case of six subjects6 the vanilla SVM trained and
tested on a single source performs better than the methods using both sources. We speculate
that in these cases the fMRI data is sufficient to discriminate between the tasks. Although
for eight subjects, we find that exploiting information from both sources improves the dis-
crimination. In particular, we focus on subject 14 where our proposed approach improved
the accuracy by 8.33%. While this is not the only occurrence where such a large improve-
ment is achieved, it is the only case where SVM obtains a near random discrimination of
55.95%. Furthermore, we are able to observe that kCCA does not obtain any improvement,
suggesting that explicit task information is important in extracting information from two
sources.

Based on the poor SVM performance, it was hypothesised that subject 14 did not have a
significantly different cognitive response to image-stimuli of ‘female models in swimsuits’
and that of ‘dermatologic diseases’. However, following the improvement on Subject 14’s

6Subjects number {1,7,8,9,11,13}.
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accuracy by our proposed approach, we now speculate that the reduced SVM ability in
discrimination is potentially due to an increased level of biological noise within Subject
14’s scans. The improvement may be achieved due to noise being filtered out during the
weight decomposition. The hypothesis of biological-noise hampering the classification will
be addressed in a separate study.

Furthermore, it is interesting to observe that the results obtained by ‘fMRI SVM’ are
the same as those listed under ‘SVM concatenated’ in Table 2. Further investigation had
revealed that this is due to the weight vectors of the two methods7 being identical. This
observation will also be investigated in a future follow-up analysis.

5.2 Weight maps in voxel space

We continue with the visualisation of the computed weight maps in voxel space for the
tensor decomposition and subsequent SVM methods. The computed ‘SVM concatenated’
weight vector (corresponding to the voxel space) was found to be equal to the weight vector
for the vanilla SVM trained only using fMRI data and was therefore omitted.

The brain regions identified in Sects. 5.2.1 and 5.2.2 were previously shown8 in the neu-
roimaging literature to be associated with responses to visual and emotional processing. The
detailed analysis and interpretation of the brain regions is beyond the scope of the paper and
will be addressed in a separate study.

5.2.1 TD weight maps

In this section we visualise the weight maps in voxel space for the Tensor Decomposition
(TD) (as detailed in Sect. 3). In Fig. 2 we plot wt corresponding to the largest t = 1, . . . ,10.
Whereas, in Fig. 3 we plot the corresponding weight matrix from the tensor decomposition
(TD) summed over the largest 10 components w̄ = ∑10

t=1 wt and averaged across all 16
subjects.

We are able to observe that the TD procedure allows us to compute individual weight
vectors which have the potential to elucidate the relationship between the fMRI activation
and the image-stimuli features. Furthermore, as the decomposition generates T directions
we hypothesise that each of the resulting directions (map) correspond to particular neuro-
logical information that discriminate between the two tasks.

5.2.2 SVM weight maps

We continue to plot in Fig. 4 the weight maps in voxel space for SVM, kCCA-SVM, and
DTS. The visualised weight vector w was computed as the average across the individual 16
weight vectors. We are able to observe that the weight map for both kCCA-SVM and DTS
are a sparser than the SVM weight map. Furthermore we are able to observe that the DTS
map emphasise regions not localised by kCCA-SVM.

7For the concatenated case, we are referring to the section of weight vector that corresponding to the fMRI
features.
8Private communication.
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Fig. 2 (Color online) The unthresholded weight maps in voxel space showing the contrast between view-
ing pleasant vs. unpleasant for the top 10 decomposed tensor weights. We use the blue scale for negative
(unpleasant) values and the red scale for the positive values (pleasant)
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Fig. 3 (Color online) We plot, on axial slices, the unthresholded weight maps in voxel space showing
the contrast between viewing pleasant vs. unpleasant for the summed top 10 decomposed tensor weights
wx = ∑10

t=1
∑m

i=1 βt
i
φx(xi ). We use the blue scale for negative (unpleasant) values and the red scale for the

positive values (pleasant)

5.3 Sparsity results

In the previous section we sequentially selected a consecutive number of features to rep-
resent the new features. In this section we use the Least Absolute Shrinkage and Selection
Operator (LASSO) (Tibshirani 1994) to select a sparse subset of the features to train and
test (for simplicity we focus and compare to testing using only fMRI samples). We solve the
LASSO problem using the framework proposed in Hardoon and Shawe-Taylor (2007).

In Table 4 we are able to observe that the LASSO always chooses a number of features
that is less than the maximum number of possible features (these correspond to the number
of non-zero eigenvalues, i.e. rank of Ky ). We note that even though the overall number of
features used is identical to that indicated by the simplified bound, the LASSO does not
necessarily choose consecutive features and this indeed improves the classification result.

5.4 Content retrieval

In this section we continue to verify the quality of the decomposed components in a content
retrieval task. We compare DTS to kCCA for retrieval, where given a fMRI scan query i, we
aim to retrieve a fMRI scan j (from the training corpus) with the same label as the query.
Formally given as,

max
j∈m

〈
(K̃x

i β), (Kx
j β)

〉
,

where K̃x
i is a vector product of a query scan i with the training data and β is either the DTS

fMRI decomposed projections (as described in Sect. 3) or the kCCA fMRI projections. We
give our results in Table 5 where we are able to observe the large improvement gained by
DTS over kCCA. We believe these results indicate that the learnt projections by the tensor
SVM, which are retained during the decomposition, provide a common semantic space that
genuinely captures the underlying information of the tasks.
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Fig. 4 (Color online) In the following subfigures we plot, on axial slices, the unthresholded weight maps
in voxel space showing the contrast between viewing pleasant vs. unpleasant for; SVM in (a), kCCA-SVM
in (b) and DTS in (c). We use the blue scale for negative (unpleasant) values and the red scale for the positive
values (pleasant)
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Table 4 We use a LASSO for selecting a sparse set of features for training and testing. Similarly to the
previous experiments a leave-subject-out routine has been done across all 16 subjects and only fMRI testing
samples have been used during the testing procedure

Subject Accuracy # features ∈ 83

Sub 01 82.14 29

Sub 02 90.48 29

Sub 03 84.52 32

Sub 04 85.71 36

Sub 05 79.76 38

Sub 06 83.33 83

Sub 07 78.57 83

Sub 08 72.62 83

Sub 09 71.43 83

Sub 10 79.76 43

Sub 11 82.14 31

Sub 12 82.14 38

Sub 13 88.10 38

Sub 14 65.48 83

Sub 15 79.76 83

Sub 16 82.14 43

average 80.51 ± 6.30 53.43

Table 5 Results on the leave-subject-out procedure across the 16 subjects for content retrieval. We compare
the DTS (with the two approaches to the subspace selection) to kCCA. For both methods training was done
using the paired data while the testing procedure only involved the fMRI testing samples

Subject kCCA DTS

Th. 1 Max

Sub 01 44.04 63.10 64.29

Sub 02 55.95 73.81 70.24

Sub 03 51.19 70.23 73.81

Sub 04 44.04 71.42 66.67

Sub 05 42.85 67.85 64.29

Sub 06 57.14 70.23 55.95

Sub 07 54.76 67.85 69.04

Sub 08 44.04 60.71 58.33

Sub 09 57.14 60.71 55.95

Sub 10 47.42 71.43 73.81

Sub 11 51.19 67.86 64.28

Sub 12 52.38 72.62 77.38

Sub 13 58.33 70.24 67.85

Sub 14 60.71 57.14 61.90

Sub 15 59.52 65.48 66.67

Sub 16 50.00 78.57 72.62

average 51.86 ± 6.10 68.08 ± 5.54 64.44 ± 6.38



Mach Learn

6 Discussion

In this paper we address the issue of how to decompose a decision function learnt using
the tensor kernel SVM with two sources, into their respective components such that we
retain discriminability and obtain interpretability. The motivation and benefit for such a de-
composition arrises from applications in the fields of Genetics, Neuroscience, Data mining,
Psychometrics as well as others, where we wish to address more complex problems that re-
quire multi-source learning or analysis (e.g., Hardoon et al. 2007, 2009; Bickel et al. 2008)
without sacrificing interpretability of the individual sources. We propose a novel approach
for decomposing the resulting tensor weight into its two components without accessing the
feature space.

We have demonstrated that DTS performs as well as the baseline approaches in three
experiments of two-source and single-source classification while in a content retrieval task
DTS outperforms KCCA based methods. This demonstrates that it is indeed possible to
decompose the resulting tensor weight while retaining, and improving on, discriminability
and, more importantly, attaining interpretability, the latter being important for practitioners.

In future studies we aim to address the application of this methodology to clinical studies
as well as extending the theoretical understanding of the decomposition and its relationship
to correlation analysis, as it is possible that the tensor space implicitly learns the correlation
while discriminating between the tasks. Furthermore, we believe that the issue of sparsity
and how it can further improve on discriminability is worth investigating as well as the
extension of the tensor decomposition to more than two sources (Kolda and Sun 2008).
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