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a b s t r a c t

Considerable research effort has focused on achieving a better understanding of the genetic correlates of
individual differences in volumetric and morphological brain measures. The importance of these efforts
is underlined by evidence suggesting that brain changes in a number of neuropsychiatric disorders are
at least partly genetic in origin. The currently used methods to study these relationships are mostly
eywords:
anonical correlation analysis
ernel methods
ultivariate genetic analysis
ultivariate sMRI analysis

based on single-genotype univariate analysis techniques. These methods are limited as multiple genes
are likely to interact with each other in their influences on brain structure and function. In this paper we
present a feasibility study where we show that by using kernel correlation analysis, with a new genotypes
representation, it is possible to analyse the relative associations of several genetic polymorphisms with
brain structure. The implementation of the method is demonstrated on genetic and structural magnetic
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acroscopic features of brain morphology and volume are known
o be highly heritable [14]. Given the observation of volumetric and
tructural brain changes in a number of neuropsychiatric conditions
8,10], considerable research effort has focussed on elucidating
hese changes in vivo using structural magnetic resonance imaging
MRI). The importance of these efforts is underlined by evidence
uggesting that brain changes in a number of disorders are at least
artly genetic in origin, as suggested by family and twin studies
2,3].

Recently, MRI studies have begun to identify specific molecu-
ar genetic candidates for these brain changes. In a typical genetic

RI paradigm, participants are classified on the basis of DNA anal-
sis according to a certain genotype (e.g. genotype groups AA, AB,
B; or A-allele carriers vs. non-carriers). Statistical analysis, such
s a t-test or analysis of variance (ANOVA), of MRI data is then
arried out to identify differences between the groups which are
ssumed to reflect the influence of the investigated genotype. These
ingle-gene association studies have been useful in characterising

he likely mechanisms of risk genes on brain structure and function
nd, therefore, the pathophysiology of neuropsychiatric conditions
7,11].

∗ Correspondence author. Tel: +44 20 7679 0425; fax: +44 20 7387 1397.
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cquired from a group of 16 healthy subjects by showing the multivariate
hite matter.

© 2008 Elsevier Ireland Ltd. All rights reserved.

However, the analysis of single-gene effects is limited as
omplex phenotypes are likely influenced by multiple genetic poly-
orphisms. Also, there are likely to be effects of epistasis, i.e.

ene–gene interactions, on brain and function. The complexity of
tatistical analysis of such interactions calls for the development
f novel statistical techniques that can identify which combination
f genotypes can best explain statistical variance in brain structure
nd function.

Machine learning/pattern recognition methods are increasingly
eing used to analyze fMRI data. The most commonly employed
ethod, the Support Vector Machine (SVM), a supervised method,

ssociates properties of the imaging data with simple specific cat-
gorical labels (e.g. −1, 1 indicating experimental conditions 1 and
). The aim is then to find the hyperplane that gives optimal separa-
ion between data belonging to the two classes, using data from the
hole brain in each subject, for examples see Mourao-Miranda et al.

12,13]. In some situations, the use of categorical labels may not be
ptimal and in an earlier study [6], we introduced a new unsuper-
ised fMRI analysis method based on Kernel Canonical Correlation
nalysis (KCCA) to overcome this problem. KCCA replaces the sim-
le categorical labels used in SVM (+1/ − 1) with a label vector for

ach stimulus containing details of the features of that stimulus,
.g. a simple image label of pleasant/unpleasant is replaced by a
ector of image features.

In this paper we extend the unsupervised application of KCCA to
he analysis of genotypic effects on brain structure. We show that by

http://www.sciencedirect.com/science/journal/03043940
http://www.elsevier.com/locate/neulet
mailto:D.Hardoon@cs.ucl.ac.uk
dx.doi.org/10.1016/j.neulet.2008.11.035
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tional univariate label representation of the SNP genotype of 1 (or
AA), 2 (or AB) and 3 (or BB) due to the fact that we do not know
a-priori the direction of each of the SNPs vector, i.e. whether the
82 D.R. Hardoon et al. / Neurosc

sing KCCA, with a new orthogonalised representation to express
he genotype labeling, it is possible to examine the influences of
he interactions of multiple genes on brain structure.

16 healthy participants (14 males) took part. All participants
ere right-handed, Caucasian, and psychiatrically, medically and
eurologically healthy. Ages ranged from 18 to 36 years (mean =
3.69, S.D. = 4.33) and participants had spent an average (S.D.)
f 16.81 (2.64) years in full-time education. Participants provided
ritten, informed consent. The study had permission from the local

esearch ethics committee.
DNA was obtained from either buccal swabs or whole blood. The

heek swab method typically provides excellent yield and quality
f DNA; cheek swab samples were sent to the laboratory at the
ocial, Genetic, and Developmental Psychiatry Centre (SGDP) at the
nstitute of Psychiatry, where DNA was extracted from the samples
sing established procedures [5]. DNA was extracted from whole
lood by isolation of the white cells followed by a modified phenlol-
hloroform procedure. After extraction the DNA was re-suspended
n TRIS-EDTA (10 mM tris pH 7.4, 0.1 mM EDTA) buffer and quan-
ified by spectroscopy before storage at −80 ◦C. We selected genes
hat were found to be associated in the previous literature with
rain volume. All samples were genotyped on an Illumina 317 K
enotyping array by Decode Genetics in Iceland, as part of a separate
enetic project (SGENE, European Commission FP6). For the present
nalysis, SNPs were selected from the array genotype data only from
he following genes, and other markers were not analysed:

ASPM (rs3762271, rs10801589, rs12034362, rs1127661,
rs12137359).
IGF1 (rs10860862, rs6219, rs6214, rs978458, rs2288378,
rs7136446, rs10735380, rs1019731, rs2162679, rs35766, rs35765,
rs855211).
IGF2 (rs734351).
MAOA (rs909525, rs3027409, rs6609257, rs3027415, rs1799836).
BDNF (rs925946, rs10501087, rs2203877, rs6265, rs11030104,
rs10835211, rs7934165, rs12273363, rs908867, rs1491850).
APOE (rs405509).
SHH (rs1233556).
Plexin B3 (rs4898439, rs762650, rs762651).
MCPH1 (rs2920616, rs4840940, rs1057187, rs6995735,
rs2442546, rs894888, rs17076812, rs1968586, rs1129703,
rs1129706, rs2034143, rs2442502, rs2440399, rs12674488,
rs2920689, rs2440445, rs2922806, rs2442473, rs2979666,
rs2442632, rs3780088, rs3020213, rs1961222, rs2515464,
rs2515466, rs2515477, rs2959812, rs4841224, rs2959809,
rs2922876, rs2897911, rs2922873, rs4478599, rs2515493,
rs921291, rs2515507, rs3020242, rs2922861, rs2922859,
rs2442579, rs2442573, rs2442572, rs4841336, rs2442567,
rs10100002, rs2959802, rs1257, rs2959799, rs2013938,
rs1057090, rs2959797, rs2911968, rs2912065, rs2980654,
rs2433146, rs1057091).

Genotyping was performed using an Illumina Infinium Human-
ap 300 k genotyping bead array according to the manufacturers
rotocols. All samples were genotyped individually. For quality con-
rol, arrays yielding a call rate below 99.9% were excluded from the
tudy. The SNPs on the illumina array have been selected to avoid
aving many SNPs in strong linkage disequilibrium (LD), as this
ould yield redundant information.

Participants underwent MRI scanning using a General Electric

igna Advantage scanner at 1.5 T. A three-dimensional T1-weighted,
oronal, spoiled gradient (SPGR) of the whole head was obtained.
cquisition followed realigning along the inter-hemispheric fissure
nd the AC-PC line. The sequence used an echo time of 5.1 ms,
repetition time of 18 ms, a flip angle of 20◦ and a field of view

g
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f 240 mm × 240 mm × 192 mm for a resulting voxel dimension of
.9375 mm × 0.9375 mm × 1.5 mm. Grey/white matter discrimina-
ion was achieved by means of an inversion time of 450 ms.

First, each structural image was reoriented to the antero-
osterior commissure line of the Montreal Neurological Institute
MNI) template. Second, structural data were preprocessed fol-
owing the procedure used for voxel-based morphometry method

ith the SPM5 software.1 SPM5 implements a unified segmen-
ation/normalisation framework, which is a single probabilistic

odel combining tissue classification approach in native space,
on-uniformity correction, and nonlinear registration to the stan-
ard (MNI) space in one procedure [1]. Third, segmented and
ormalised images were modulated with Jacobian determinates,
hich involves scaling each image by the amount of contraction

ncurred during non-linear warping. This step allows preserving
he total amount of tissue in the modulated grey or white mat-
er image as in the original image, yielding the estimate of grey
r white matter volume. Finally, since normalization procedure in
PM5 is of much higher accuracy than in SPM2 and modulation
tep somewhat smoothes the images, the grey and white mat-
er tissue segments were smoothed with 8 mm FWHM Gaussian
ernel, which approximates smoothness of 12 mm obtained using
PM2 software.2 The grey and white matter probability images
ere resliced with 2 × 2 × 2 voxel size, since higher resolution of
× 1 × 1 would considerably increase the dimensionality of the

lassification problem, distributing any pattern in the data over a
uch broader area in term of search space for the classifier.
CCA is a technique, proposed by Hotelling [9] for finding pairs of

asis vectors that maximise the correlation of a set of paired vari-
bles. These pairs can be considered as two “views” of the same
bject. This technique is applicable in cases where each “view”
ontains, as a subspace, all “relevant” information plus some “irrel-
vant” information. CCA identifies a projection space containing
he relevant subspaces in both views. This projection space is often
efered to as the semantic space. In the following study we consider
he SNPs of the genetic sequence and the segmented white or grey

atter of structural MRI brain scans to be two “views” of the same
bject. CCA seeks a pair of linear transformations one for each of the
aired variables such that when the variables are transformed the
orresponding coordinates are maximally correlated. In this paper
e use the kernel variant of CCA. Due to space limitation we refer

he reader to [6] for exact details and derivations.
In the following section we elaborate on our experimental set-

p, analyses and results. Our data set consisted of 16 subjects.
enotyping of the sample yielded 94 SNPs in each subject. Each SNP

s coded as 3 genotypes, i.e. a subject is for any given SNP exam-
ned here an A-allele homozgote (AA), a heterozygote (AB), or a
-allele homozygote (BB). Each subject also completed a structural
RI scan of the brain as described above. In our analysis we masked

he voxels in the structural MR images using grey and white matter
asks thresholded at voxel intensity values of 0.2 for both grey and
hite tissue images. This value was derived by visual inspection of

he individual images. The regularisation parameter is heuristically
xed to � = 0.03 for the present preliminary study. The rigorous
ptimisation of this regularisation parameter will be addressed in
future study.

In the multivariate analysis we are unable to use the conven-
enotype representation 1 < 2 < 3 or 1 > 2 > 3 is true for each

1 http://www.fil.ion.ucl.ac.uk/spm/.
2 http://dbm.neuro.uni-jena.de/vbm/segmentation/modulation/.

http://www.fil.ion.ucl.ac.uk/spm/
http://dbm.neuro.uni-jena.de/vbm/segmentation/modulation/
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Table 1
Average correlation values for the genetic and MRI analysis on a group comparison
study.

Genetics MRI

Grey 0.8707 ± 0.0289 0.8891 ± 0.0810
White 0.8111 ± 0.0455 0.8920 ± 0.1015
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NP, although the direction for each SNP across the subjects is the
ame. We overcome this issue by representing the SNP genotypes
n a three-dimensional orthogonalised label such that 1 ⊥ 2

∧
1 ⊥∧

2 ⊥ 3. In other words we use the following representation of
he genotypes:

1 → [0, 0, 1]
2 → [0, 1, 0]
3 → [1, 0, 0]

s our corresponding label representation of the 3 genotypes. This
ethod therefore also allows for the identification of heterozy-

osity effects (e.g. AB > AA = BB). The analysis thus is of additive
enetic effects.

Following the KCCA procedure we wish to analyse the effects of
ll SNPs on entire, masked, brain. The inherited structure of KCCA
ntails that we implicitly incorporate the effect of the voxels on
ach other. This would have also been true for the effect of the
NP’s on each other but our orthogonalised representation entails
hat each SNP’s mean weight value will be zero. In other words,
hat we examined was the relative influence of the three different

enotypes within the SNPs on grey and white matter. The resulting
utput weights from the proposed technique represent, on the one
and, the changes in brain matter volume and on the other, the
orresponding relative influence of the genotypes within the SNP’s
n the change in brain matter volume.

We address the question of methods reliability by randomly
plitting the samples into two equal groups and comparing the
esulting analysis of the groups, i.e. we compute a correlation value
etween the two resulting normalised genetic and MRI weight

aps. We repeat this procedure 100 times and give the average

orrelation values and standard deviation in Table 1. The high cor-
elation value and low standard deviation represent an agreement
or the different analyses which in turn constitute an argument for
he reliability of the proposed method.

g
c

v
d

Fig. 1. The contributing largest SNP (absolute) genotype value. For
he subjects were split into two random groups of eight subjects and the correlation
f the resulting analysis between the two groups was computed. This process was
epeated 100 times and is reported with the standard deviation.

To avoid overinterpreting our results due to the small sample
ize, we confine ourselves to a plot in Fig. 1 representing each
NP’s largest contributing (absolute) genotype value. This allows
s to visualise the overall influence each SNP has on the grey and
hite matter. We normalise the 94 SNP vector so that we are able

o compare between the grey and white resulting weight vectors.
he individual allele contribution for each of the SNP weightings
s given in Fig. 2. While there is a difference between the genetic
nfluence on white and grey matter it is not apparent. We separate
he individual genotypes weights and plot a direct comparison in
ig. 3.

The current study presented a method for the analysis of com-
lex gene-MRI associations. We aimed to explore whether KCCA
ould usefully be applied to genetic (SNPs in genes thought to
e related to human brain volume) and neuroimaging (grey and
hite matter extracted from structural MRI) data to detect multi-

ariate correlations between genetic and structural imaging data.
he results of the study are shown in two contexts: (1) the impact
f genetic variability at each SNP on structural variation in grey or
hite matter volume and (2) the individual weightings of voxels in
rey and white matter in terms of how much their variability was
orrelated with SNP variability across all SNPs.

Fig. 1 shows the SNP “loading” profiles with voxelwise volume
ariation of grey and white matter, e.g. the relative correlations of
ifferent SNPs with voxelwise volumetric variation within grey and

each SNP the allele with the largest, absolute, value is given.
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Fig. 2. Genotype (AA, AB, BB) contributions to changes in grey and white matter volume.
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Fig. 3. The differences between influences on gre

hite matter areas of the brain. We heuristically threshold at 0.16 so
o give the top ≈ 10% of SNP with the largest influence. The SNP’s
ith the largest apparent correlations with volumetric variation
re shown in Table 2. Figs. 4 and 5 shows the voxel-wise loadings in
rey and white matter volume of SNP correlations, e.g. how much
hese voxels are under the combined genetic influence of all the
NPs studied. The maps were displayed using AFNI.3 The colour bar

3 http://afni.nimh.nih.gov/.

a
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r

white matter volume by genotype (AA, AB, BB).

ndicates mapping from the KCCA weights to colours. To generate a
olour bar that is symmetric around zero the values in the weight
aps are rescaled in such a way that the absolute maximum is

ssign the value of +1 and the colour scale runs from −1 to +1.
he absolute maximum was 12.74 for the gray matter weight and
5.73 for the white matter weight. Both weights were normalised

normalised w = (w/(‖w‖2))) and multiplied by 1000. For each map
he threshold corresponded a 20% of their respective maximum.

We should be very conservative in our interpretations of the
esults from a small, preliminary study. However, it appears (a) the

http://afni.nimh.nih.gov/
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Fig. 4. Weighted MRI of genetic influence on grey matter volume. The colour bar indicates mapping from the KCCA weights to colours. The blue and red represent opposite
change influence where blue is the negative values and red is the positive values. (For interpretation of the references to colour in this figure legend, the reader is referred to
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he web version of the article.)

ethod enables us to place some ranking on the possible impor-
ance of SNPs in driving structural brain change and (b) that the
rain areas under apparent SNP-related influence fall into a num-

er of broad regions. The regions shown in red and blue are affected

n opposite directions but we do not at present read these as
ncreases and decreases in grey or white matter volume. Consid-
ring our voxel size and a relatively coarse smoothing kernel in
he present analysis, the results should be applied as representing

able 2
NPs with a weight influence greater than 0.16 on grey or white matter.

NP (grey) SNP weight
(grey)

SNP (white) SNP weight
(white)

45) rs17076812 0.1664 (19) rs909525 0.1713
47) rs1129703 0.1664 (21) rs6609257 0.1635
48) rs1129706 0.1664 (64) rs2515477 0.1601
49) rs2034143 0.1664 (80) rs2442572 0.1665
51) rs2440399 0.1608 (84) rs2959802 0.1676
52) rs12674488 0.1652 (86) rs2959799 0.1681
72) rs2515493 0.1717 (87) rs2013938 0.1634
80) rs2442572 0.1745 (88) rs1057090 0.1676

(90) rs2911968 0.1676

he SNP number in parentheses corresponds to the numbering of the SNPs in the
rder as they are presented.
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ssociations between genes and large-scale volumetric variations.
or fine-grained volumetric variations a higher image resolution
i.e. 1 × 1 × 1) with smaller smoothing kernel (e.g. 6 mm) should
e applied.

Broadly speaking, the red areas include cerebellum, occip-
tal cortex, anterior cingulate and lateral frontal regions. The
lue regions include posterior cingulate, parietal cortex and some
emporal regions. We refrain at present from placing firm interpre-
ations on these results pending replication and extension to larger
roups. With this caveat in mind, however, it is of interest to note
hat all except two (rs909525 and rs6609257) SNPs with a weight
nfluence of more than 0.16 (see Table 2) are from the microcephalin
MCPH1) gene. MCPH1 is thought to be involved in the regulation
f human brain size [4] and has been shown to be associated with
ranial volume in a recent study [15]. However, it should be borne
n mind that linkage disequilibrium amongst SNPs in the same gene
s common; this potential problem should be addressed in future
tudies.

We conclude by arguing that KCCA with a linear kernel has

otential to investigate the interactional effects of multiple genetic

nfluences on brain structure. We hope that the possibilities raised
y this method will be usefully exploited to clarify the nature of
ultiple gene influences on brain structure and function in large

amples of healthy and diseased subjects.



286 D.R. Hardoon et al. / Neuroscience Letters 450 (2009) 281–286

F dicat
c or inte
t

A

0
p
(
e
e

R [

[

[

[

ig. 5. Weighted MRI of genetic influence on white matter volume. The colour bar in
hange influence where blue is the negative values and red is the positive values. (F
he web version of the article.)
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