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This paper gives both general linear model (GLM) and support vector machine (SVM) analyses of an
experiment concerned with tonality in music. The two forms of analysis are both contrasted and used to
complement each other, and a new technique employing the GLM as a pre-processing step for the SVM is
presented. The SVM is given the task of classifying the stimulus conditions (tonal or atonal) on the basis
of the blood oxygen level-dependent signal of novel data, and the prediction performance is evaluated. In
addition, a more detailed assessment of the SVM performance is given in a comparison of the similarity in
the identification of voxels relevant to the classification of the SVM and a GLM.A high level of similarity
between SVM weight and GLM t-maps demonstrate that the SVM is successfully identifying relevant
voxels, and it is this that allows it to perform well in the classification task in spite of very noisy data
and stimuli that involve higher-order cognitive functions and considerably inter-subject variation in neural
response.
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1. Introduction

Music has attracted a wide spread of research into how and why people create, perform and
listen to music. In this paper, we focus on the study of tonality, which is a major topic in music
theory (Piston and Devoto 1987) and music psychology (Krumhansl 1990), investigating tonal
processing, and in particular the effect of distance along the circle-of-fifths (Shepard 1982) for
key changes within the stimuli. Tonal melodies are complex structures, and cognitive processing
reflects this structure (Narmour 1991). Analysing the neural activity associated with a melody is
therefore particularly useful for determiningwhich areas control higher-order sequence processing
(Tervaniemi 2003).
Previouswork in the area of tonality (Janata et al. 2002)made strong claims about the possibility

of identifying a tonal map in the rostromedial prefrontal cortex. These results have not been
reproduced to our knowledge.We set ourselves a somewhat complementary goal of testingwhether
differences between tonal and atonal stimuli can be detected, as well as differences correlating
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with the distance along the circle-of-fifths as the stimuli change keys, neither of which were
included in the Janata et al. (2002) study.
The central focus of our paper is in developing and testing a new form of analysis for fMRI

data. Machine-learning methods have recently been applied to fMRI analysis (Carlson, Schrater
and He 2003; Cox and Salvoy 2003; Wang, Hutchinson and Mitchell 2003; Mitchell et al. 2004;
Davatzikos et al. 2005; Haynes and Rees 2005; LaConte, Strother, Cherkassky, Anderson and
Hu 2005; Mourao-Miranda, Bokde, Born, Hampel and Stetter 2005; Kriegeskorte, Goebel and
Bandettini 2006) to analyse the relationship between stimulus categories and fMRI responses.
Higher-order cognitive effects are known to be difficult to detect in fMRI due to the presence
of confounds and the nonlinear mapping between cognition and BOLD (blood oxygen level-
dependent) response (the signal measured in fMRI), so fMRI data from a music task that focuses
on such effects provide a significant challenge to machine-learning algorithms. A major focus
of our paper is on the analysis of fMRI data with support vector machines (SVMs), both in
combination with and in comparison to the more conventional and widely used fMRI analsyis
approach employing general linear models (GLMs).
This paper is structured as follows. Section 2 discusses the materials and methods used in

our experiment. This contains an elaboration on the experiment protocol, as well as providing
information about the participants and acquisition of the data. Section 2 ends with a description
of the pre-processing applied to the fMRI data. In Section 3, we first describe the new two-step
procedure for combining the GLM and SVM and describe the haemodynamic response function
(HRF) and how it affects the design matrices used in the analyses. We then go on to present the
GLM analysis, the SVM analysis and a comparison between these two; this forms the main body
of the paper. Finally, Section 4 brings the paper to a close with a brief summary of the analyses
given and ways in which they can be extended.

2. Materials and methods

2.1. Experimental design and stimuli

The experiment was concerned with the tonality of short musical sequences. In particular, the
focus of interest was the effect of relative tonality (the relationship between musical keys). Each
stimulus consisted of 16 isochronous events lasting 500ms each (with each stimulus therefore
lasting 8 s), with no gaps in between; each event consisted of four simultaneous tones forming
a consonant chord recognised in Western tonal music theory. The stimuli were created using
the MIDI protocol, and rendered into audio files using a piano sound patch from the Roland
Sound Canvas© digital samples. An example of the stimuli (in standard music notation) is shown
in Figure 1. The stimuli were divided between tonal stimuli, which were designed to create a
clear sense of key, and atonal stimuli1 that were designed to create no clear sense of key, by
the ordering of the chords, which were nevertheless equally consonant at the individual chord
level in both types of stimuli. In order to verify this sense of key, the MIDI toolbox (Eerola
and Toiviainen 2004) was used to test the stimuli with the Krumhansl–Schmuckler key-finding
algorithm (Krumhansl 1990), This algorithm is based on findings from experimental psychology
which connect the sense of key with the first-order distribution of tones within a melody, in a
process of template matching. Enculturated listeners have a preference and expectation for some
tones more than others in a given key, which allows key profiles to be constructed (Krumhansl
and Kessler 1982); the profile for C major is shown in Figure 2 as an example. Measuring the
inner product between the profile for each key and the distribution of tones within a sequence
gives a vector of relative key likelihoods; the maximum element of this vector identifies the most
likely key, and the strength of this element (scaled from 0 to 1) shows how well the piece matches
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Figure 1. Krumhansl–Kessler (1982) key profile for C major, showing the preference for some tones over others.

Figure 2. A single stimulus from the experiment (initial tonal condition).

the profile, which reflects how strongly the sequence sounds as though it is that particular key
(a certainty rating). Empirical tests demonstrate that this algorithm reliably identifies the key
that listeners actually perceive (Schmuckler and Tomovski 2005). Applying this algorithm to our
stimuli, we obtained µT = 0.93931 and σT = 0.038562 for the tonal stimuli and µA = 0.65857
and σA = 0.13196 for the atonal stimuli, whereµ is the mean of the strongest key certainty ratings
(ranging between 0 and 1) and σ is the standard deviation of these ratings. The tonal and atonal
stimuli were therefore expected to be reliably separable for participants. The experiment also
contained a behavioural task to allow direct verification of this.
Altogether, 8 different tonal stimuli and 24 atonal stimuli were created. For a single run,

stimuli were ordered into 24 groups of three stimuli with no gaps between stimuli or groups.
The first stimulus in each group was always a tonal stimulus presented in the home key of C
major, the second was always a tonal stimulus that could either be in the most distant key (around
the circle-of-fifths) of F# major (first condition), the closest key (around the circle-of-fifths) of
G major (second condition) or the same key of C major (third condition). The third stimulus
in each group was always an atonal stimulus (fourth condition), which also reset the listener’s
sense of key (none of the participants possessed absolute pitch). As a result of the contiguity
of groups, the first stimulus in each group followed the atonal stimulus in the previous group
(except for the first group), which was therefore defined as the initial (fifth) condition. The first
and second conditions therefore define changes from one key to another (distant or close). The
third condition defines no change of key. The fourth condition defines no key present, and the
fifth condition defines a change of no key back to a sense of key. The stimuli were ordered
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such that all tonal stimuli were used an equal number of times, and conditions appeared in all
permutations equally in order to control for order effects; the stimulus protocol is shown in
Figure 3. This stringent order counterbalancing control was preferred to randomisation, and it
also allowed us to determine the limits of within-subject variability across two consecutive runs
within the experimental session without an additional possible contribution from order effects.
The behavioural task for subjects was to click the left mouse button when they heard a change
to a different key (conditions 1, 2 and 5), and right-click the mouse button when they heard a
change from no key to a key (condition 4), in order to concentrate their attention on the tonal
structure of the stimulus stream. The task was explained as clicking in response to a change (since
non-musicians would not know what is meant by a key), and a short training session prior to
scanning was used to ensure that subjects understood which type of change was being referred
to. The behavioural results indicated that subjects clearly understood and were able to carry out
the task.

2.2. Subjects

We tested 16 right-handed subjects with normal hearing (9 female, 7 male; aged 19–31) none of
whom had received any formal musical education. All subjects gave written informed consent to
the study, which was approved by the Ethics Committee of the University of Magdeburg.

2.3. Data acquisition

Functional magnetic resonance imaging data were acquired at the Leibniz Institute of
Neurobiology (Magdeburg, Germany) on a Siemens Trio (Erlangen, Germany) 3T MRI scanner
equipped with an eight-channel head coil. Functional volumes were collected using echo pla-
nar imaging with the following parameters: TE = 30ms; TR = 2000ms; interslice time: 62ms;
slice thickness: 3mm; slice gap thickness: 0.3mm; inplane resolution: 3mm× 3mm (giving
3mm× 3mm× 3mm cubic isovoxels); number of slices: 32; FA: 80◦; FOV: 192mm× 192mm;
matrix size: 64× 64. Stimulus delivery and scanning coordination were controlled with the Pre-
sentation© software (Neurobehavioural Systems Inc., Albany, USA) using a custom-written
script. The perceived scanner noise was attenuated by earplugs (24 dB) and ear muffs (20–
30 dB) in which MRI-compatible electrodynamic headphones were integrated (Baumgart et al.
1998). The loudness of the stimuli was individually adjusted to a comfortable level. Each stim-
ulus block lasted 8 s (4 volumes) and was immediately followed by the next stimulus block.
Two experimental runs were carried out during the session, with 20 s (10 volumes) silence
before each run, and after the final run, to provide a baseline condition. Altogether, each ses-
sion therefore consisted of 606 functional volumes, as well as anatomical data collection and
dummy runs for scanner alignment. Subjects were also given an initial scan-free practice period
on stimuli not used in the functional data collection in order to ensure that they understood
the task.

Figure 3. Stimulus protocol for the experiment, showing the order and timing of the different experiment conditions.
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2.4. Pre-processing

Functional data from each participant in their original brain spacewere co-registeredwith in-plane
anatomical data and pre-processed with 3D motion correction using trilinear interpolation, slice
scan time correction using sinc interpolation, linear trend removal, high-pass temporal filtering
with a cut-off of three cycles throughout the time course, equivalent to 0.00236593Hz and
Gaussian spatial smoothing with an FWHM of 4mm. A correlation analysis was performed
in the original data space following pre-processing to verify its effectiveness. The data were then
co-registered with a high-quality anatomical data set and transformed into AC-PC space using
using cubic spline interpolation and subsequently into Talairach space with trilinear interpolation,
providing a standard brain space for all participants to allow group-level analysis. Finally, a grey
matter mask was estimated individually for each participant using intensity analysis with cortical
probability maps, and these masks were combined on an inclusive basis with a logical ‘OR’ func-
tion so that all voxels that were designated grey matter from one or more participants remained.
All other voxels were screened out, and not included in further analysis; this process reduced
the number of voxels per participant from 131,072 to 54,887. All pre-processing was done using
BrainVoyager QX© (Brain Innovation B.V., Maastricht, The Netherlands). These pre-processed
data formed the basis for all subsequent analyses.

3. Experimental results and analysis

3.1. Overall approach

In order to develop and evaluate an effective machine-learning approach to the analysis of fMRI
data, we focused our attention on one particular aspect of the experiment: tonal vs. atonal stimuli.
This is captured by experimental conditions 4 (atonal) and 5 (initial tonal), so our subsequent
analyses here are concerned entirelywith these two experimental conditions. Two paths of analysis
were taken: a conventional approach using statistical parametricmaps (Friston,Ashburner, Kiebel,
Nichols and Penny 2006) in a mass univariate GLM analysis and a machine-learning approach
using anSVM.There is an important difference between these approaches: theGLMis a regression
analysis and seeks to identify which voxels (volumetric pixels; the individual units of volume in
an fMRI data set) are most relevant given a set of predictor variables that specify which condition
is active at a given time point, whereas the SVM is a classification analysis and seeks to identify
the predictor variables (i.e. which condition is active at a given time point) for a set of unseen
test data after first being trained on other data; this is effectively Bayesian inference. As such,
these two approaches may be seen as complementary. However, they also have a common point
of reference, which is the identification of the relative importance of each voxel to distinguish
between experimental conditions. This provides a means to compare the performance of these
two approaches, and this comparison is the ultimate goal of our analysis here.
BOLD response in fMRI for higher-order cognitive tasks, including the processing of tonality

in music, is notoriously noisy data. In addition, the amount of data (in this experiment 64× 64
voxels per slice, 32 slices per volume, 606 volumes per participant, 16 partipants, which gives
1.2709× 109 data points altogether), while providing ample amounts of training data, poses a
serious challenge to machine-learning algorithms that have to seek for an optimal solution within
a very large search space. It is clear from conventional analyses that only a selection of relatively
small brain areas are relevant for any given task, and by limiting analyses to these areas, the
solution search can be made a lot more efficient. The identification of relevant active areas should
be as inclusive as reasonably possible (i.e. careful not to exclude areas that might be of interest),
and as such a fixed-effects group level analysis is appropriate (see Section 3.3 for more details),
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which includes all voxels that are significant for the subject group as awhole, ignoring the variance
between subjects (thus making it much more inclusive than random effects analysis which also
accounts for between-subject variance). This forms the basis of our overall two-step analytical
procedure, which is as follows.

(1) Perform second-level (group) fixed-effects GLM analysis and create mask based on active
voxels when contrasting conditions 4 (atonal) and 5 (initial tonal), for 15 participants leaving
one out (for each combination of participants, hence 16 masks altogether).

(2a) Perform first-level (individual) GLM analysis for one participant using the mask from the
other 15 participants developed in the first stage (as described in Section 3.3). This is repeated
for each participant in turn.

(2b) Perform SVM analysis, training on 15 participants using the mask from the other 15 partic-
ipants developed in the first stage and testing on the remaining participant (a leave-one-out
strategy) (as described in Section 3.4). This is repeated for each participant in turn.

Finally, the results of the two alternative second-stage analyses (GLM and SVM) are compared,
as described in Section 3.5.

3.2. Haemodynamic response, lag and design matrices

The five experimental conditions, plus a sixth baseline condition, can be treated as dummy vari-
ables in time with a 1 representing the condition being active for a given time point and a 0
otherwise. These can be organised into a 606× 6 design matrix, which provides the core exper-
iment model for both the GLM and SVM analyses. Of the 606 time points, 192 have condition
4 active, 192 have condition 5 active and the remainder are divided between the other three
conditions (which we are not concerned with here).
In order for these to act as predictor variables, however, the lag between the stimulus presenta-

tion, and the neural BOLD response, has to be taken into account. There are essentially two related
ways to do this. One is simply to shift the variables in time, encoding a lag in the designmatrix.An
advantage of this approach is that the essential form of the design matrix, consisting of 0 and 1 s
only and with orthogonal experimental conditions, remains intact. This is important for an SVM
engaged in binary classification of the two conditions, where a ‘correct’ answer of only one active
condition per time point is required for training and performance measurement. However, this
leaves open the question of how long the lag should be. An alternative approach widely adopted
in conventional fMRI analysis is to use an HRF modelled from gamma functions with parameters
determined by biophysical data. Each column in the design matrix is convolved with this function
to provide a set of predictor variables for the expected neural response to the different stimulus
conditions. The HRF used in the design matrix for the GLM is shown in Figure 4. Figure 5 shows
the design matrices for simple lag 0, simple lag 3 and HRF convolution, respectively (first 30
volumes displayed only for space reasons).

3.3. Conventional GLM analysis

The conventional analysis was performed with a GLM using a combination of BrainVoyager QX
1.9© (Brain Innovation B.V.) and MATLAB 7.3© (The Mathworks, Cambridge, MA, USA). A
GLM is a widely used statistical method that is a generalisation of both analysis of variance and
multiple linear regression and subsumes other popular techniques such as t-tests. The central
equation can be written in the matrix form as Y = Xβ + ε, where Y is the measured signal
(an M × N matrix which can be interpreted as N dependent variables each containing M data
records), X is anM × Q design matrix of predictor (independent) variables (see Section 3.2 for
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Figure 4. HRF, showing the typical time course of the BOLD response measured in fMRI. The function shown here is
the one with which the design matrix for the GLM analysis was convolved.

Figure 5. Stimulus protocol for the experiment, showing the order and timing of the different experiment conditions.

details of the design matrices used in our analysis), β are aQ ∗ N set of linear coefficients to be
estimated and ε represents the residual error. The coefficients are estimated using ordinary least
squares (to minimise the residual error), such that β̂ = (XTX)−1XTY = X+Y where X+ is the
Moore–Penrose pseudo-inverse. The estimate for each β coefficient can be considered the mean
of a distribution of possible values for that coefficient, which represents the most probable value
(the one that gives the lowest residual error). Each β coefficient also therefore has an associated
variance (the variance of the estimate distribution, which is also reflected in the variance of the
residuals ε for the variable in question); the larger this variance, the less well the coefficient
value fits for all the data records of the variable the coefficient represents, and therefore the less
statistically significant the estimate is likely to be. In other words, the coefficient variance (strictly,
standard deviation), relative to the size of the coefficient value, gives us a direct measure of the
explanatory power of the coefficient. This is a t-statistic, and is given by tβi

= βi/
√

σ 2βi
for a given

coefficient βi .
For conventional fMRI analysis, each voxel is treated as an independent time series, which

means that amass univariate approach is employed,with a separateGLMestimate ofβ coefficients
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for each voxel. The number of β coefficients is dependent on the the number of explanatory
variables (columns) in the designmatrix. In addition to estimating a t-statistic for eachβ coefficient
individually, the significance of a combination of variables for a given voxel can be examined by
adding or subtracting β coefficients. This leads to the concept of a contrast vector, which is simply
a set of coefficients (typically 1, 0 or−1) that are applied to the β coefficients (and their standard
deviations), to give a t-statistic which reflects the significance of a combination of variables or a
difference of variables for a given voxel. Applying the same contrast vector for all voxels gives a
t-map, also known as a statistical parametric map (Friston, Holmes and Worsley 1995), which is
the core of GLM fMRI analysis. T-maps give a clear indication of which voxels are relevant, and
to what extent, for a given combination of experimental conditions. Our present study exclusively
uses the contrast vector [0 0 0−1 1], which is the contrast tonal vs. atonal where a tonal stimulus
always follows an atonal one, and vice versa, giving the most equitable comparison.
As described in Section 3.1, the GLM analysis was employed in two different ways. A second-

level (group) analysis was performed in stage one, which first involves computing a GLM (per
voxel) for each individual participant, and then taking the statistics from these forward into
a second-level analysis examining the difference between subjects (this is also known as the
summary statistic approach and is much more efficient than computing second-level GLMs for
all voxels and participants simultaneously, while giving identical results; see Boser, Guyon and
Vapnik (1999) for details). An important distinction in second-level analyses is between fixed-
effects and random-effects analyses. Both types of analyses identify voxels that are significantly
active across the groupof participants in the experiment, but random-effects analysis also considers
the variability of the activation of each significant voxel across the participants, only retaining
voxels onwhich participants are significantly in agreement (have low variance across the group, as
well as low variance within each participant). In our present study, we are using group analysis to
identify relevant voxels for further analysis of different types. As such, we use the more inclusive
fixed-effects analysis to identify relevant voxels. T-maps were created as described above, after
which Bonferroni correction for multiple comparisons was applied (to minimise the occurrence
of false positives), and finally a minimum cluster size of 50mm2 was imposed. Figure 6 shows
examples of these correct t-maps for some slices when one given participant is left out, and a
similar example when another participant is left out. Very similar areas of activation can be seen
in both cases: bilateral precentral gyrus (Brodmann’s area 4), as well as the left medial frontal

Figure 6. Bilateral activation of the precentral gyrus for tonal vs. atonal stimuli from a GLM analysis of all participants
except z178 (top) and iq53 (bottom), shown against the anatomical scan for those two participants, respectively.
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gyrus (Brodmann’s area 6; not shown). Masks were produced using this procedure leaving out
each one of the 16 participants in turn.
Following the creation of the leave-one-out masks in stage one, the second stage of the GLM

analysis involved analysing each individual with a GLM with voxels identified by the leave-
one-out analysis for that participant. That is, voxels that were identified as being significantly
involved in the tonal vs. atonal analysis for the other 15 participants were then tested for the
remaining participant using a GLM, in order to see whether or not they were also relevant for this
participant. The results of the GLM analysis are shown in Table 1. The first column identifies the
test participant left out of the group analysis; the number of voxels identified as active for all except
one individual participant is shown in the second column; the number of those voxels that are active
for the participant aswell is shown in the third columnand the average t-statistic for all of the voxels
of the the second column is shown in the fourth column. These results highlight the fact that there
are both significant variations between participants and also that voxels identified as significantly
involved in the processing of tonality for a group of participants are also frequently significantly
involved for a participant not in the original group; in other words, that some generalisation
capability from one group of participants to another participant seems to be possible. It is this
fact that motivates the machine-learning approach of the SVM, described in the next section.

3.4. Machine-learning SVM analysis

In order to test the ability of machine-learning analysis to detect patterns in fMRI data relating
to higher order cognitive tasks, we adopt a machine-learning framework of SVMs (Vapnik 1995;
Cristianini and Shawe-Taylor 2000) for a leave-subject-out analysis, i.e. we learn a discriminatory
task on the combined data of 15 subjects and test on the remaining subject. SVMs are kernel-
based methods that find functions of the data that facilitate classification. They are derived from
statistical learning theory (Vapnik 1995) and have emerged as powerful tools for statistical pattern
recognition (Boser, Guyon andVapnik 1992). In the linear formulation, an SVM finds, during the
training phase, the hyperplane that separates the examples in the input space according to their
class labels. The SVM classifier is trained by providing examples of the form (xa, y), where xa

represents an input and y its class label. Once the decision function has been learned from the
training data, it can be used to predict the class of a new test example. In the present study, xa

Table 1. Results of GLM analysis, showing the number of voxels identified as important in the tonal
vs. atonal contrast, for the group (leaving out the participant in question) and the participant (from
the voxels previously identified), and also showing the average t-statistic for the voxels.

Participant identifier All except voxels Participant voxels Mean t-statistic

au70 213 0 1.1224
di55 122 37 2.2076
dw43 107 47 2.0999
ed32 144 22 1.3644
fi68 142 32 1.817
fv95 147 0 1.0248
ic12 149 18 1.2468
iq53 181 43 1.5525
rn39 158 11 1.4246
sc50 198 9 1.3198
ty16 148 20 1.3627
ue70 135 0 0.93331
us10 110 53 2.3976
uv15 188 13 1.3062
xp38 137 0 1.2127
z178 124 43 2.0716
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represents an fMRI observation and y is the task performed (y = 1 for task 1 (tonal) and y = −1
for task 2 (atonal)). For a detailed description of SVMs, see Cristianini and Shawe-Taylor (2000).
We used a linear kernel SVM that allows direct extraction of the weight vector as an image (i.e. the
discriminating spatial pattern). A parameter C that controls the trade-off between training errors
and smoothness was fixed at C = 1 for all cases (the default value).2
Initial tests of the SVM model on the whole gave near-chance results. From these it was clear

that even when masking to grey-matter only (the spatial-temporal information), to reduce the
dimensionality of the data (from 131,072 to 54,887 voxels per participant), and the subtraction of
the baseline scans (Mourao-Miranda, Bokde, Born, Hampel and Stetter 2005) to further reduce
noise, the finding of a hyperplane that would accurately distinguish between the two tasks was
extremely difficult for the learning algorithm.We hypothesised that in this type of complex stimuli,
a further more precise dimensionality reduction is required. As such, we developed the strategy
to use the GLM analysis on the leave-subject-out routine to generate this new mask, i.e. the GLM
analysis is performed only on the training subjects, as described in Section 3.3. The mask is used
to considerably reduce the dimensionality of the fMRI data used in the SVM learning procedure.
In addition to this, we took an average over the four volumes that made up each stimulus block
in our experiment design (because each stimulus lasted 8 s and each volume was 2 s in duration),
giving us one new data point for each stimulus block. The result of this dimensionality reduction
is that for each participant we originally had 54,887 voxels of interest, each with 384 volumes
(for the two conditions of interest here), and after reduction, we have 100–200 voxels of interest
(depending on which participant is left out; the exact figures are shown in the second column
of Table 1) with 96 volumes each. In addition, we further pre-processed the data by subtracting
from each subject the mean of the volumes representing the control (silence) condition in order
to remove baseline noise from the data.
The exact procedure employed is detailed in the following pseudo-code.

For each leave-subject-out procedure:
1. We use the GLM analysis to produce a voxel mask

2. For each training subject;
2.1 Training subject is loaded and zero meaned (inter subject)
2.2 Mean value computed from the control blocks
2.3 Mean value computed for each block condition
2.4 Subtract 2.2 from 2.3

3. Test subject loaded and zero meaned (inter subject)
3.1 Mean value computed for each block condition
3.2 Subtract 2.2 from 3.1

4. The training data are zero meaned (across subjects)
4.1 The testing data are zero meaned using 4

5. SVM Training/Testing procedure.

We then run four sets of experiments in which we varied the lag encoded in the design matrix
from zero to three (see Section 3.2), in order to evaluate the effect of the lag and to ensure that
our tests included an optimal biophysically plausible lag. Table 2 summarises the SVM results,
and we are able to substantiate our hypothesis that the use of the GLMmask does indeed improve
the results across subjects, with the lag of one volume producing the lowest individual error for
any one participant.
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Table 2. SVM error values from the leave-subject-out experimentation for
different haemodynamic lags (0–3).

Subject Lag 0 Lag 1 Lag 2 Lag 3

au70 0.3646 0.7188 0.6875 0.5938
di55 0.5625 0.3958 0.4479 0.5417
dw43 0.4167 0.3646 0.3333 0.4688
ed32 0.3854 0.4271 0.3750 0.3750
fi68 0.4167 0.2917 0.3438 0.3646
fv95 0.4896 0.4479 0.4583 0.4375
ic12 0.4167 0.3542 0.3646 0.5000
iq53 0.3854 0.4896 0.4688 0.4583
rn39 0.5833 0.6771 0.5833 0.4896
sc50 0.4375 0.3958 0.3333 0.4062
ty16 0.3750 0.2500 0.3542 0.4271
ue70 0.4167 0.4375 0.5000 0.5000
us10 0.3229 0.3542 0.3438 0.3958
uv15 0.5625 0.5208 0.5312 0.5417
xp38 0.3229 0.4167 0.5312 0.5729
z178 0.3646 0.3750 0.3958 0.4062

Note: The lowest error values as well as the subjects who achieved them are shown in bold.

We can see from the SVMresults shown inTable 2, as also seen in theGLMresults (Table 1), that
performance differs considerably between individuals.This is not surprising given the nature of the
experimentwithmusical stimuli.Any significant agreement between individuals (which is implied
by any above-chance performance in a leave-one-out scenario), and any significant agreement
between methods, on such stimuli, can be regarded as indicative of a successful technique. In
the following section, we compare the SVM and GLM results to see whether or not our current
approach fulfils this promise.

3.5. Comparison between GLM and SVM results

As the GLM analysis in the second stage of our overall procedure performs regression, while the
SVM analysis performs classification, it may at first glance seem impossible to directly compare
their performance. However, we can in fact go beyond the relatively simple comparison of correct
percentages for each method and compare the similarity of their performance at the voxel level.
The use of a linear kernel in the SVMmeans that as well as getting performancemeasures in terms
of correct predictions out of the model, we also get a set of weights that can be directly interpreted
as the relevance of each individual voxel in distinguishing between tonal and atonal stimuli. In
other words, we have a way of identifying which voxels are most useful in the classification of
the different stimuli, and a linear measure as to what extent. For the GLM analysis, we saw earlier
that for each voxel we have a t-statistic from the tonal vs. atonal contrast, which also tells us
the relevance of each voxel, and also gives us a linear measure as to what extent. Our approach
is therefore to directly compare these results by measuring the correlation between them, and as
well having t-maps from the GLM,we therefore also have pseudo-t-maps from the SVM (rescaled
according to the mean and standard deviation of the known 15 participants).
The results of our direct comparison are shown in Tables 3 and 4. These tables show the results

for each of lags 0–3 inclusive, in groups of four columns for each lag, plus an initial participant
identifier column. The first column in each group gives the correct predictions proportion from
the SVM; these results are simply 1-error given in Table 2. The correct proportion is simply the
number of correct predictions out of the 96 made for each participant. As this is a two-forced
choice situation (tonal or atonal), chance level is 48 correct (0.5 correct proportion). A Pearson’s
chi-square test at the p <0.05 level with 1 df can be used to determine whether the results differ
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Table 3. Comparison of the SVM and GLM results (for lags 0 and 1), showing the proportion of correct results, a
statistical significance flag for those results, the mean correlation between the SVM weights and GLM t-statistics at the
voxel level and a statistical significance flag for that correlation.

Lag 0 Lag 1

Correlation Correlation
Participant SVM correct Significance with GLM Significance SVM correct Significance with GLM Significance

au70 0.635417 1 −0.006517 0 0.28125 −1 0.03496 0
di55 0.4375 0 0.006987 0 0.604167 1 0.18857 1
dw43 0.583333 0 0.445105 1 0.635417 1 0.459884 1
ed32 0.614583 1 0.379157 1 0.572917 0 0.407643 1
fi68 0.583333 0 0.233451 1 0.708333 1 0.215785 1
fv95 0.510417 0 0.122586 0 0.552083 0 0.234174 1
ic12 0.583333 0 0.408898 1 0.645833 1 0.402016 1
iq53 0.614583 1 0.217314 1 0.510417 0 0.226806 1
rn39 0.416667 0 0.069144 0 0.322917 −1 −0.108302 0
sc50 0.5625 0 0.347325 1 0.604167 1 0.425107 1
ty16 0.625 1 0.327322 1 0.75 1 0.274961 1
ue70 0.583333 0 0.597773 1 0.5625 0 0.523077 1
us10 0.677083 1 0.750951 1 0.645833 1 0.775507 1
uv15 0.4375 0 −0.078438 0 0.479167 0 0.001754 0
xp38 0.677083 1 0.525801 1 0.583333 0 0.580896 1
z178 0.635417 1 0.487857 1 0.625 1 0.539654 1

Table 4. Comparison of the SVM and GLM results (for lags 2 and 3), showing the proportion of correct results, a
statistical significance flag for those results, the mean correlation between the SVM weights and GLM t-statistics at the
voxel level and a statistical significance flag for that correlation.

Lag 2 Lag 3

Correlation Correlation
Participant SVM correct Significance with GLM Significance SVM correct Significance with GLM Significance

au70 0.3125 −1 0.041538 0 0.40625 0 −0.055864 0
di55 0.552083 0 0.184603 1 0.458333 0 0.124819 0
dw43 0.666667 1 0.465121 1 0.53125 0 0.344471 1
ed32 0.625 1 0.4015 1 0.625 1 0.268042 1
fi68 0.65625 1 0.17821 1 0.635417 1 0.137552 0
fv95 0.541667 0 0.277066 1 0.5625 0 0.345436 1
ic12 0.635417 1 0.410925 1 0.5 0 0.256487 1
iq53 0.53125 0 0.256479 1 0.541667 0 0.242307 1
rn39 0.416667 0 −0.229115 −1 0.510417 0 −0.338237 −1
sc50 0.666667 1 0.383195 1 0.59375 0 0.255643 1
ty16 0.645833 1 0.302665 1 0.572917 0 0.139682 0
ue70 0.5 0 0.38429 1 0.5 0 0.243081 1
us10 0.65625 1 0.776727 1 0.604167 1 0.630869 1
uv15 0.46875 0 0.032919 0 0.458333 0 0.046247 0
xp38 0.46875 0 0.576862 1 0.427083 0 0.569061 1
z178 0.604167 1 0.618461 1 0.59375 0 0.572237 1

significantly from the chance level; a flag indicating significant results is shown in column 2 (+1
is significantly above chance, −1 is significantly below chance, 0 is not significantly different
from chance). The third column shows the mean correlation between the SVM weights and the
GLM t-statistics, and the fourth column shows whether the correlation is statistically significant
or not (+1 is a significantly positive correlation,−1 is a significantly negative correlation, 0 is no
significant correlation).
It is clear from these results that there is a very significant amount of agreement between the two

methods, with only two significant negative correlations and 47 significant positive correlations
out of a total of 64. In addition, for all but two of the cases where the SVM has prediction
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Figure 7. Activation maps for participant us10. Top: t-map from the GLM analysis. Bottom: SVM weights for lag 2.

significantly above the chance level, there is also a significant positive correlation between the
SVM weights and the GLM t-statistics. An example of the similarity in the SVM weights and
the GLM t-statistics is shown in the two t-maps in Figure 7 (one from the GLM and one from
the SVM created with the rescaled weight values). Finally, it is apparent that the strongest overall
agreement between the two methods occur for lags 1 and 2 and that the biophysically implausible
lag 0 shows significantly less impressive performance. Overall, this is a clear indication that the
SVM is learning from the 15 participants, successfully predicting which experimental condition
(tonal or atonal) is active at a given time point, and doing so on the basis of voxels which we
know from the GLM analysis are significantly involved in the processing of those experimental
conditions.

4. Discussion

We conducted an fMRI experiment on tonality in music and used this as an opportunity to explore
the relationship between conventionalGLManalysis and anSVMmachine-learning approach.The
detailed neuroanatomical results froma conventionalGLManalysis alone (on all of the experiment
conditions, rather than just the tonal–atonal contrast examined here), and an interpretation of these
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results in the context of the existing literature, is not our purpose here and is reported elsewhere
(Durrant et al. 2008). Our research here suggested that a successful SVM learning process required
a considerable reduction in the very large dimensionality of the data set. As such, we used a
group-level GLM analysis to first identify active voxels from a set of training data (15 of the
participants), and then attempted to predict the prevailing stimulus conditions on the remaining
subject from the BOLD signal alone.We also performed a GLM analysis on the remaining subject
to identify active voxels relevant for the SVM task and obtained t-maps for this for each subject.
Besides getting a measure of prediction performance from the SVM, therefore, we were also
able to analyse at the individual voxel level the extent to which the two methods agreed upon
which voxels were significant to distinguish between the experimental conditions and to what
extent. Our results suggest that SVMs are capable of learning and generalising from fMRI data
and predicting stimulus conditions, even when the data are very noisy (as is almost always the
case for fMRI data), and the experimental task involves higher-order cognitive processing (of
tonality, in the case of our experiment) rather than simple psychoacoustic tasks. This result is
very encouraging for the use of machine learning in the automatic analysis of fMRI data, and
the automatic Bayesian inference provided by the SVM highlights possible applications in the
fledgling field of fMRI biofeedback among others. Many further developments of this technique
are possible, in fine-tuning the algorithm and a more extensive search of the parameter space, in
the possible use of GLM t-maps for prediction or SVMweights for regression and in an extension
of the prediction to more than two conditions (involving multiple decision hyperplanes within the
same weight space). The success of the SVM on this task, both in prediction and identification of
relevant voxels, encourages further research in these areas.
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Notes

1. ‘Atonal’ here is used in the sense of ‘not tonal’, or ‘having no key’. This should not be confused with the usage of
‘atonal’ in historical musicology, where it denotes music in a specific style and from a specific period.

2. The Spider SVM toolbox forMATLABwas used to perform the classifications: http://www.kyb.tuebingen.mpg.de/
bs/people/spider/.

3. LeStruM project website http://www.lestrum.org/.
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