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We introduce a new unsupervised fMRI analysis method based on
kernel canonical correlation analysis which differs from the class of
supervised learning methods (e.g., the support vector machine) that
are increasingly being employed in fMRI data analysis. Whereas
SVM associates properties of the imaging data with simple specific
categorical labels (e.g., −1, 1 indicating experimental conditions 1 and
2), KCCA replaces these simple labels with a label vector for each
stimulus containing details of the features of that stimulus. We have
compared KCCA and SVM analyses of an fMRI data set involving
responses to emotionally salient stimuli. This involved first training the
algorithm (SVM, KCCA) on a subset of fMRI data and the
corresponding labels/label vectors (of pleasant and unpleasant), then
testing the algorithms on data withheld from the original training
phase. The classification accuracies of SVM and KCCA proved to be
very similar. However, the most important result arising form this
study is the KCCA is able to extract some regions that SVM also
identifies as the most important in task discrimination and these are
located manly in the visual cortex. The results of the KCCA were
achieved blind to the categorical task labels. Instead, the stimulus
category is effectively derived from the vector of image features.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Recently, machine learning methodologies have been increas-
ingly used to analyse the relationship between stimulus categories
and fMRI responses (Cox and Savoy, 2003; Carlson et al., 2003;
Wang et al., 2003; Mitchell et al., 2004; LaConte et al., 2005;
Mourao-Miranda et al., 2005, in press; Haynes and Rees, 2005;
Davatzikos et al., 2005; Kriegeskorte et al., 2006). In this paper, we
introduce a new unsupervised machine learning approach to fMRI
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analysis, in which the simple categorical description of stimulus
type (e.g., type of task) is replaced by a more informative vector of
stimulus features. We compare this new approach with a standard
support vector machine (SVM) analysis of fMRI data using a
categorical description of stimulus type.

The methodology underlying the present study originates from
earlier research carried out in the domain of image annotation
(Hardoon et al., 2006), where an image annotation methodology
learns a direct mapping from image descriptors to keywords.
Previous attempts at unsupervised fMRI analysis have been based
on Kohonen self-organising maps, fuzzy clustering (Wismuller et
al., 2004; Ngan and Hu, 1999) and non-parametric estimation
methods of the hemodynamic response function, such as the
general method described in Ciuciu et al. (2003), kernel-PCA
(Thirion and Faugeras, 2003) and probabilistic ICA/PCA analysis
(Beckmann and Smith, 2004). A more recent attempt has been
undertaken by Faisan et al. (2005) with the application of hidden
Markov event sequence models to fMRI. These Markov events are
a special class of hidden Markov models (HMMs) dedicated to the
modeling and analysis of event-based random processes. O'Toole
et al. (2005) have reported an interesting study which showed that
the discriminability of PCA basis representations of images of
multiple object categories is significantly correlated with the
discriminability of PCA basis representation of the fMRI volumes
based on category labels.

The current study differs from previous approaches to fMRI
analysis principally in that we do not apply categorical labels (e.g.,
−11 contrasts) to stimuli. We employ natural images rather than
simple low level objects and transform each image to a vector
representation summarising its main features. We then employ
kernel canonical correlation analysis to associate the vector
representations of image features with their corresponding fMRI
image volumes. In general, canonical correlation analysis can be
seen as the problem of finding basis vectors for two sets of
variables such that the correlations of the projections of the
variables onto corresponding basis vectors are maximised. KCCA
differs from this in that it first projects the data into a higher
dimensional feature space before performing CCA. CCA (Friman
et al., 2001, 2003) and KCCA (Hardoon et al., 2004a) have been
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used in previous fMRI analysis, but using only conventional cate-
gorical stimulus labels. In contrast, in this work we are interested in
learning the association between complex image representations
and fMRI responses to characterise these associations. The fMRI
data used in the following study originated from an experiment in
which the responses to stimuli were designed to evoke different
types of emotional responses, pleasant or unpleasant. The pleasant
images consisted of women in swimsuits while the unpleasant
images were a collection of images of skin diseases. Each stimulus
image was represented using Scale Invariant Feature Transforma-
tion (SIFT) (Lowe, 1999) features.

We have shown that KCCA is able to extract some of the brain
regions identified by supervised methods such as SVM in task
discrimination (mainly in the visual cortex) and to achieve similar
levels of accuracy. We discuss some of the challenges in
interpreting the results given the complex input feature vectors
used by KCCA in place of categorical labels.

The paper is structured as follows. Section 2 gives a review of
the fMRI data acquisition as well as the experimental design and
the pre-processing. These are followed by a brief description of the
scale invariant feature transformation in Section 2.5. The SVM is
briefly described in Section 2.6.1 while Section 2.6.2 elaborates on
the KCCA methodology. Our analysis procedure is given in
Section 2.7 and the results in Section 3. We conclude with a
discussion in Section 4.

Materials and methods

Subjects

fMRI data were acquired from 16 right-handed healthy US
college male students (aged 20–25). According to self-report,
participants did not have any history of neurological or psychiatry
illness. All subjects had normal vision. All subjects gave written
informed consent to participate in the study after the study was
explained to them. The study was performed in accordance with
the local Ethics Committee of the University of North Carolina.
Table 1
Examples of pleasant image stimulus
Data acquisition

The data for this study were collected at the Magnetic
Resonance Imaging Research Center at the University of North
Carolina on a 3-T Allegra Head-only MRI system (Siemens,
Erlangen, Germany). The fMRI runs were acquired using a T2⁎
sequence with 43 axial slices (slice thickness, 3 mm; gap between
slices, 0 mm; TR=3 s; TE=30 ms; FA=80°; FOV=192×192 mm;
matrix, 64×64; voxel dimensions, 3×3×3 mm). In each run 254
functional volumes were acquired.

Experimental design

The stimuli were presented in a block fashion. There were three
different active conditions: viewing unpleasant (dermatological
diseases), neutral (people) and pleasant images (female models in
swimsuits) and a control condition (fixation). There were 42
imagers per category. Examples of pleasant and unpleasant are
given in Tables 1 and 2, respectively (we do not show natural and
fixation as we do not use these instances in our work). During the
experiment, there were 6 blocks of each active condition (each
consisting of 7 images volumes) alternating with control blocks
(fixation) of 7 images volumes. It is important to note that
throughout the paper we associate pleasant with positive and
unpleasant with negative.

Pre-processing

The data was pre-processed using SPM2 (Wellcome Depart-
ment of Cognitive Neurology, London, UK). We used the default
SPM2 pre-processing settings. All the scans were realigned to
remove residual motion effects, transformed into standard space
(Talairach and Tournoux, 1988) and smoothed in space using an 8-
mm Gaussian filter (FWHM). The time series of each voxel was
detrended using a straight-line fit linear function. In addition, we
applied a mask to select voxels defining intracerebral voxels over
the whole group.



Table 2
Examples of unpleasant image stimulus
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Scale invariant feature transformation

The image representation is an important part of the analysis as
we would like to extract as much detailed information as possible
for the learning process. Various approaches have previously been
suggested such as color moments and Gabor texture descriptors
(Sebe et al., 2003) as well as scale invariant interest points
(Mikolajczyk and Schmid, 2001) and the affine invariant interest
point detector (Mikolajczyk and Schmid, 2002).

Scale Invariant Feature Transformation (SIFT) was introduced
by Lowe (1999) and shown to be superior to other descriptors
(Mikolajczyk and Schmid, 2003). This is due to the SIFT
descriptors being designed to be invariant to small shifts in
position of salient (i.e., prominent) regions. SIFT transforms the
image data into scale invariant coordinates relative to local
features. The underlying idea is to extract distinctive invariant
features from an image such that they can be used to perform
reliable matching between different views of an object or scene. An
example of SIFT is given in Fig. 1 where SIFT features on a rotated
object are linked to matching SIFT features on a new image. This
representation was ideal for our earlier research, which was aimed
at learning the association between keywords to an object. These
could appear in different angles and scenes. Our current problem
Fig. 1. Example of SIFT featu
has a similar aim, of learning the association between image
features and activity patterns. Therefore we believe SIFT to be an
appropriate image representation.

Calculation of the SIFT vector begins with a scale space search
in which local minima and maxima are identified in each image
(so-called key locations). The properties of the image at each key
location are then expressed in terms of gradient magnitude and
orientation. A canonical orientation is then assigned to each key
location to maximise rotation invariance. Robustness to reorienta-
tion is introduced by representing local image regions around key
locations in a number of orientations. A reference key vector is
then computed over all images and the data for each image are
represented in terms of distance from this reference. Interestingly,
some of the properties of the SIFT representation have been
modeled on the properties of complex neurons in the visual cortex.
Although not specifically exploited in the current paper, future
studies may be able to utilise this property to probe aspects of brain
function such as modularity.

Image processing
Let f i

l be the SIFT features vector for image i, where l is the
number of features. Each image i has a different number of SIFT
features l, making it difficult to directly compare two images. To
res similarity mapping.
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overcome this problem, we apply K-means to cluster the SIFT
features into a uniform frame. Using K-means clustering, we find
K classes and their respective centers oj, where j=1,…, K. The
feature vector xi of an image stimuli i is K dimensional with jth
component xi,j. The feature vectors are computed as the Gaussian
measure of the minimal distance between the SIFT features f i

l to
the centre oj. This can be represented as

xi;j ¼ exp� minvaf li dðv;ojÞ2ð Þ ð2:1Þ

where d(.,.) is the Euclidean distance.
For simplicity, the number of centres is set to be the smallest

number of SIFT features computed, which was found to be 300.
We use all images to compute the 300 centres and therefore after
processing each image, we will have a 300-dimensional feature
vector representing its relative distance from the cluster centres.
Methods

Support vector machines
Support vector machines are kernel-based methods that find

functions of the data that facilitate classification. They are derived
from statistical learning theory (Vapnik, 1995) and have emerged
as powerful tools for statistical pattern recognition (Boser et al.,
1992). In the linear formulation an SVM finds, during the training
phase, the hyperplane that separates the examples in the input
space according to their class labels. The SVM classifier is
trained by providing examples of the form (xa, y), where xa
represents an input and y as its class label. Once the decision
function has been learned from the training data it can be used to
predict the class of a new test example. In the present study, xa
represents an fMRI observation and y is the task performed (y=1
for task 1 (pleasant) and y=−1 for task 2 (unpleasant)). For a
detailed description of SVMs, see Cristianini and Shawe-Taylor
(2000). We used a linear kernel SVM that allows direct extraction
of the weight vector as an image (i.e., the discriminating spatial
pattern). A parameter C that controls the trade-off between
training errors and smoothness was fixed at C=1 for all cases
(default value).1

Kernel canonical correlation analysis
Proposed by Hotelling in 1936, Canonical Correlation Analysis

(CCA) is a technique for finding pairs of basis vectors that maximise
the correlation between the projections of paired variables onto their
corresponding basis vectors. Correlation is dependent on the chosen
coordinate system; therefore, even if there is a very strong linear
relationship between two sets of multidimensional variables this
relationship may not be visible as a correlation. CCA seeks a pair of
linear transformations one for each of the paired variables such that
when the variables are transformed the corresponding coordinates
are maximally correlated.

Consider the linear combination x=wa′x and y=wb′y. Let x and
y be two random variables from a multidimensional distribution,
with zero mean. The maximisation of the correlation between x
and y corresponds to solving maxwa,wb ρ=wa′Cabwb subject to wa′
Caawa=wb′Cbbwb=1. Caa and Cbb are the non-singular within-set
covariance matrices and Cab is the between-sets covariance matrix.
1 The LibSVM toolbox for Matlab was used to perform the classifications
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
We suggest using the kernel variant of CCA (Fyfe and Lai,
2001) since due to the linearity of CCA useful descriptors may not
be extracted from the data. This may occur as the correlation
could exist in some non-linear relationship. The kernelising of
CCA offers an alternate solution by first projecting the data into a
higher dimensional feature space ϕ: x=(x1,…, xn)→ϕ(x)= (ϕ1

(x),…, ϕN (x)) (N≥n) before performing CCA in the new feature
space.

Given the kernel functions κa and κb letKa=XaXa′ andKb=XbXb′
be the kernel matrices corresponding to the two representations of
the data, where Xa is the matrix whose rows are the vectors ϕa(xi),
i=1,…S , from the first representation (fMRI Volume) whileXb is the
matrix with rows ϕb(xi) from the second representation (image
stimulus). The weights wa and wb can be expressed as a linear
combination of the training examples wa=Xaα and wb=Xbβ.
Substituting into the primal CCA equation gives the optimisation
maxα,β,ρ=α′KaKbβ subject to α′Ka

2α=β′Kb
2β=1. This is the dual

form of the primal CCA optimisation problem given above, which
can be cast as a generalised eigenvalue problem and for which the
first k generalised eigenvectors can be found efficiently. Both CCA
and KCCA can be formulated as an eigenproblem.

The theoretical analysis shown in Hardoon et al. (2004b) (and
later in Shawe-Taylor and Cristianini (2004), Hardoon (2006))
suggests the need to regularise kernel CCA as it shows that the
quality of the generalisation of the associated pattern function is
controlled by the sum of the squares of the weight vector norms.
We refer the reader to Hardoon et al. (2004b), Shawe-Taylor and
Cristianini (2004) and Hardoon (2006) for a detailed analysis and
the regularised form of KCCA.

Although there are advantages in using kernel CCA, which
have been demonstrated in various experiments across the
literature. We must clarify that in this particular work, as we are
using a linear kernel2 in both views, regularised CCA is exactly the
same as regularised a linear KCCA (since the former and latter are
linear). Although using KCCAwith a linear kernel has advantages
over CCA, the most important of which is in our case speed,
together with the regularisation as well.3

Analysis

Using linear kernels as to allow the direct extraction of the
weights, KCCA performs the analysis by projecting the fMRI
volumes into the found semantic space defined by the eigenvector
corresponding to the largest correlation value (these are outputted
from the eigenproblem). We classify a new fMRI volume as
follows; Let αi be the eigenvector corresponding to the largest
eigenvalue, and let ϕ(x̂) be the new volume. We project the fMRI
into the semantic space w=Xa′αi (these are the training weights,
similar to that of the SVM) and using the weights we are able to
classify the new example as

ŵ ¼ /ð ̂xÞw
where ŵ is a weighted value (score) for the new volume. The score
can be thresholded to allocate a category to each test example. To
avoid the complications of finding a threshold, we zero-mean the
outputs (independently from the training or testing data) and
2 i.e., Ka=XaXa′.
3 The KCCA toolbox used was from http://www.homepage.mac.com/

davidrh/Code.html.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.homepage.mac.com/davidrh/Code.html
http://www.homepage.mac.com/davidrh/Code.html


Fig. 2. The unthresholded weight values for the SVM approach showing the contrast between viewing pleasant vs. unpleasant. We use the blue scale for negative
(unpleasant) values and the red scale for the positive values (pleasant). The discrimination analysis on the training data was performed with labels (+1/−1).
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threshold the scores at zero, where ŵb0 will be associated with
unpleasant (a label of −1) and ŵ≥0 will be associated with
pleasant (a label of 1).

We hypothesis that KCCA is able to derive additional activities
that may exist a priori, but possibly previously unknown, in the
experiment. By projecting the fMRI volumes into the semantic
space using the remaining eigenvectors corresponding to lower
correlation values. We have attempted to corroborate this
hypothesis on the existing data but found that the additional
semantic features that cut across pleasant and unpleasant images
did not share visible attributes. We have therefore confined our
discussion here to the first eigenvector.

KCCA and SVM

In order to compare the weight maps of the KCCA and SVM we
evaluated the overlap between the peaks of both maps. The peaks
were defined as areas above the threshold. For each approach the
threshold was computed by training the KCCA/SVM with random
labels4 to generate the distribution of weight values under the null
hypothesis of no relationship between the class labels and the
global structure of the fMRI volumes. The threshold then was
defined as the value correspondent to the 1st percentile of the null
distribution, i.e., using this threshold one assumes a probability of
0.01% of getting a weight values greater or equal to the threshold
by chance.

Results

Experiments were run on a leave-one-out basis where in each
repeat a block of positive and negative fMRI volumes was withheld
for testing. Data from the 16 subjects was combined. Giving a sum
4 In KCCA, we randomise the image stimulus for the training data and for
SVM we randomise the categorical labels.
total of 96 blocks in each category and each block consisting of 7
fMRI volumes. This amounted, per run, in 1330 training and 14
testing fMRI volumes, each set evenly split into positive and
negative volumes (these positive/negative splits were not known to
KCCA but simply ensured equal number of images with both types
of emotional salience). The analyses were repeated 96 times.
Centralised linear kernels were used throughout. The KCCA
regularisation parameter was found using 2-fold cross validation on
the training data, where the optimisation criterion was classification
performance.

Initially, we describe the fMRI activity analysis (the maps were
computed on the training data). After training the SVM, we are able
to extract and display the SVM weights as a representation of the
brain regions important in the pleasant/unpleasant discrimination. A
thorough analysis is presented in Mourao-Miranda et al. (in press).
We are able to view the results in Figs. 2 and 3 where in both figures
the weights are not thresholded and show the contrast between
viewing pleasant vs. unpleasant. We use the blue scale for negative
(unpleasant) values and the red scale for the positive values
(pleasant). The weight value of each voxel indicates the importance
of the voxel in differentiating between the two brain states. In Fig. 2,
the unthresholded SVM weight maps are given. Similarly with
KCCA, once learning the semantic representation we are able to
project the fMRI data into the learnt semantic feature space
producing the primal weights. These weights, like those generated
from the SVM approach, could be considered as a representation of
the fMRI activity. Fig. 3 displays the KCCAweights.

Figs. 4 and 5 display the overlap of voxels above the threshold
in the SVM weight and in the KCCA weight. Voxels with positive
weights in both KCCA and SVM are shown in Fig. 4 and voxels
with negative weights in both are shown in Fig. 5. Values above the
threshold in both approaches are colored in red, voxels above the
threshold only in the KCCAweight are colored in blue and voxels
above the threshold only in the SVM are colored in green. The
brain areas corresponding to the clusters above the threshold are
listed in Table 3 (positive values) and Table 4 (negative values).



Fig. 3. The unthresholded weight values for the KCCA approach showing the contrast between viewing pleasant vs. unpleasant. We use the blue scale for
negative (unpleasant) values and the red scale for the positive values (pleasant). The discrimination analysis on the training data was performed without labels.
The class discrimination is automatically extracted from the analysis.
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As the KCCA weights are not driven by simple categorical
image descriptors (pleasant/unpleasant) but by complex image
feature vectors it is of great interest that in the visual cortex, many
regions, found by SVM are also highlighted by the KCCA. We
interpret this similarity as indicating that many important
components of the SIFT feature vector are associated with
pleasant/unpleasant discrimination. Other features outside of the
visual cortex are much less reproducible between SVM and KCCA
Fig. 4. Overlap of voxels with positive values above the threshold in the SVMweigh
colored in red, voxels above the threshold only in the KCCAweight are colored in
indicating that many brain regions detect image differences not
rooted in the major emotional salience of the images.

In order to validate the activity patterns found in Fig. 3, we
show that the learnt semantic space can be used to correctly
discriminate withheld (testing) fMRI volumes.

Table 5 shows the average and median performance of SVM
and KCCA on the testing of pleasant and unpleasant fMRI
blocks. Our proposed unsupervised approach had achieved an
t and in the KCCAweight. Values above the threshold in both approaches are
blue and voxels above the threshold only in the SVM are colored in green.



Table 4
Cluster suprathreshold weights (negative values)

Cluster Area Talairach coordinates Method

1 Right medial 40, 2, −22 SVM and KCCA

Fig. 5. Overlap of voxels with negative values above the threshold in the SVM weight and in the KCCAweight. Values above the threshold in both approaches
are colored in red, voxels above the threshold only in the KCCAweight are colored in blue and voxels above the threshold only in the SVM are colored in green.
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average accuracy of 87%, slightly less than the 91% of the SVM.
Although, both methods had the same median accuracy of 92, the
results demonstrate that the activity analysis is meaningful. To
further confirm the validity of the methodology we repeat the
experiments with the image stimuli randomised, hence breaking
the relationship between fMRI volume and stimuli. Table 5
shows that the randomisation reduced the KCCA average
performance to 49% and the SVM to 52% (both had a median
result of 50%). This is equivalent to the performance of a random
classifier.

In Table 6, we further validated the method with a leave-one-
subject-out approach to verify the generalisation ability of the
proposed method. These are repeated for all subjects and averaged
across. The results demonstrate that it is possible to generalise to a
subject-based approach.
Table 3
Clusters suprathreshold weights (positive values)

Cluster Area Talairach
coordinates

Method

1 Right fusiform gyrus 45, −46, −26 SVM and KCCA
2 Inferior frontal gyrus −34, 10, −16 KCCA
3 Nucleus accumbens −6, 2, −10 SVM and KCCA
4 Right inferior

occipital gyrus
45, −80, −4 SVM and KCCA

5 Left inferior
occipital gyrus

−43, −88, −4 SVM

6 Fornix −2, −4, 2 KCCA
7 Hippocampus gyrus −11, −42, 6 SVM and KCCA
8 Right medial

temporal gyrus
53, −70, 10 SVM and KCCA

9 Left medial
occipital gyrus

−53, −78, 10 SVM and KCCA

10 Right superior
frontal gyrus

18, 46, 30 KCCA
In Table 7, we present the number of overlapping and non-
overlapping voxels between the methods. There are more non-
overlapping than overlapping voxels. From Figs. 4 and 5, we can
see that the most of the overlapping voxels are in visual area. The
fact that we are detecting only 12% and 6.8% overlap is not
surprising given that the process of SIFT vector construction is in
no way dependent on emotional salience per se. The latter is a
complex human interpretation of image features that is not
incorporated in any way in the SIFT is computed. The SIFT
temporal gyrus
2 Left medial temporal

gyrus
−53, 8, −22 KCCA

3 Right medial
temporal gyrus

26, −52, −18 SVM

4 Left fusiform gyrus −28, −50, −18 SVM
5 Right fusiform gyrus 47, −34, −12 KCCA
6 Anterior cingulate 6, 10, −12 KCCA
7 Right lingual gyrus 8, −88, −10 SVM
8 Hypothalamus 2, −8, −6 KCCA
9 Right fusiform gyrus 30, −56, −4 SVM and KCCA
10 Lingual gyrus 2, −80, −4 SVM and KCCA
11 Right medial

frontal gyrus
30, 48, 22 SVM and KCCA

12 Right postcentral gyrus 53, −14, 22 KCCA
13 Right medial

frontal gyrus
32, 44, 24 KCCA

14 Right
parieto-occipital sulcus

0, −86,40 SVM

15 Right lateral
parietal lobule

−34, −36, 42 KCCA



Table 7
Overlap analysis

Positive
values

Negative
values

Voxels above the threshold in SVM
and KCCA (overlapping voxels)

402 177

Voxels above the threshold only in
SVM (non-overlapping voxels)

1735 1379

Voxels above the threshold only in
KCCA (non-overlapping voxels)

758 1033

Total of voxels used in the analyses 211,034

Table 5
KCCA and SVM results on the leave one out block experiment

Method Average Median

KCCA 0.87 0.92
SVM 0.91 0.92
Random KCCA 0.49 0.50
Random SVM 0.52 0.50

Average and median performance over 96 repeats. The value represents
accuracy, hence higher is better.
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process reveals that a small, but significant (in terms of overlap
with visual SVM weight vector concentrations) set of image
features in the SIFT are correlating with emotional salience. As
SIFT is based on describing orientation and gradient information
around prominent image features and there is no clear way that we
can envisage a simple transformation between emotional content of
an image and the SIFT type of representation. In view of this fact,
there must be many elements of the SIFT vector that probably
reflect image features that have no correlation whatsoever with
emotional salience. It is also clear however that SIFT must contain
some image features that, although not directly computed from
emotional salience of images, must correlate emotional salience
and thus that there are features of the pleasant/unpleasant images
which correlate with gradient/orientation information around major
image features. We thus regard the regions “detected” by KCCA as
being derived from many features of the SFIT vector not associated
or correlated with emotional salience and a smaller number that do
have such associations/correlations.
Discussion

In this paper we present a novel unsupervised methodology for
fMRI activity analysis in which a simple categorical description of
a stimulus type is replaced by a more informative vector of
stimulus (SIFT) features.

Previous studies investigated the pattern of response of the visual
cortex to difference categories of stimuli (Haxby et al., 2001;
O'Toole et al., 2005). They aimed to investigate modular versus
distributed neural hypotheses. Themodular hypothesis proposes that
ventral temporal cortex contains a limited number of areas that are
specialised categories of stimuli (e.g., Kanwisher et al. (1997)). In
contrast, the distributed hypothesis proposes that the representations
of different categories of visual stimuli (e.g., faces, objects, etc.) are
widely distributed and overlapping (Haxby et al., 1999; Ishai et al.,
2000). To address this issue (Haxby et al., 2001) measured the
pattern of response with fMRI in six subjects while they viewed
pictures of faces, cats, five categories of man-made objects and
scrambled images. The data of each subject were split in two sets
(namely even and odd runs) and the correlations between the
Table 6
KCCA and SVM results on the leave-one-subject-out experiment

Method Average Median

KCCA 0.79 0.79
SVM 0.84 0.86
Random KCCA 0.48 0.47
Random SVM 0.48 0.48

Average and median performance over 16 repeats. The value represents
accuracy, hence higher is better.
patterns of fMRI responses within and between categories were
computed. They found higher within-category correlations and
using this procedure were able to predict the type of stimuli that the
subjects were viewing at a level significantly better than chance.
O'Toole et al. (2005) re-analysed the (Haxby et al., 2001) data set
and found a high correlation between brain map and stimulus
discriminability. The discriminability of brainmaps and stimuli were
computed independently. In each case, the discriminability was
evaluated by projecting the data (e.g., brain maps or stimuli) onto
PCA bases and training a linear discriminant (LD) using a subset of
the PCs (i.e., the most accurate PCs). Our work differs from these
previous works in a number of points. First, we used a non-
supervised method (i.e., no explicit information about the stimulus
category was provided to KCCA) aiming to find the correlations
between the fMRI volumes and its corresponding stimulus features
described by the SIFT feature vector. KCCA “finds” areas in the
brain that are correlatedwith the features in the SIFT vector regardless
of the stimulus category. Because many features of the stimuli were
associated with the pleasant/unpleasant categories, we were able to
use the KCCA results to classify the fMRI images between these
categories. In the current study, it is difficult to address the issue of
modular versus distributed neural coding as the complexity of the
stimuli (and consequently of the SIFT vector) is very high.

The most interesting aspect of KCCA is its ability to extract
visual regions very similar to those found to be important in
categorical image classification using supervised SVM (red
clusters in Figs. 4 and 5). According to the SVM results the most
discriminating regions are in the visual cortex. However, there are
also dissimilarities (blue and green clusters in Figs. 4 and 5).
KCCA is able to extract visual processing features characteristic of
the differences between the unpleasant/pleasant images blind to the
existence of this categorical difference and to assign the same
directional weights to these features (i.e., negative for the striate
visual cortex, positive for the extrastriate visual cortex). We take
this to indicate that the emotional saliences of the pleasant/
unpleasant images are associated with basic visual features
identified by KCCA. KCCA and SVM also show concordance in
identifying other regions in the frontal (cluster 11 in Table 4 and
Fig. 5) and temporal cortices (cluster 8 in Table 3 as well as the
nucleus accumbens (cluster 6 in Table 3 and Fig. 4) that might
reflect rewarding aspects of the pleasant images. The identification
of these regions by KCCA as well as SVM suggests that the visual
aspects of these emotional saliences contribute significantly to the
feature set used by KCCA. There are however many differences
between the regions given large weights by KCCA (blue clusters in
Figs. 4 and 5) and those with high weights on the SVM pleasant/
unpleasant discrimination (green clusters in Figs. 4 and 5). It can
be speculated that they relate to processing of differences not
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determined by the basic stimulus categories (pleasant/unpleasant)
but to other properties of the images. The answer to these questions
will require association of particular brain regions with particular
elements of the SIFT vector.

We use kernel canonical correlation analysis using an implicit
representation of a complex state label to make use of the stimulus
characteristics. The results are very promising. In terms of ability to
correctly classify stimuli into different categories KCCA performs
almost equivalently to SVM. We show that some of the regions
detected by SVM with the largest weight vectors are also present in
the KCCA maps. In the main, these are in the visual cortex. This is
not unprecedented as there is a considerable number of papers
showing modulation of responses in the fusiform gyrus and other
visual regions by the strength of emotion represented in a stimulus
(for a recent review, see Vuilleumier and Driver, 2007). Potentially,
there is the possibility that there are visual areas that process fairly
basic image features but are also modulated by emotion
(Vuilleumier and Driver, 2007). It might thus be the case that there
is not a clear boundary between areas that process basic visual data
and areas modulated by emotion. Future studies should be done to
clarify this. The current study has indicated that this might be an
issue by classifying on two different dimensions (emotion and
image properties) and showing overlaps. As two images cannot
have different emotional content and be identical, then the
possibility always exists that SIFT will include any differences that
are present.

A further interesting possible application of KCCA relates to
the detection of “inhomogeneities” in stimuli of a particular type
(e.g., happy/sad/disgusting emotional stimuli). If KCCA analysis
revealed brain regions strongly associated with substructure within
a single stimulus category this could be valuable in testing whether
a certain type of image was being consistently processed by the
brain and designing stimuli for particular experiments.

There are many open-ended questions that have not been
explored in our current research, which has primarily been focused
on fMRI analysis and discrimination capacity. KCCA is a bi-
directional technique and therefore are also able to compute a
weight map for the stimuli from the learned semantic space. This
capacity has the potential of greatly improving our understanding
as to the link between fMRI analysis and stimuli by potentially
telling us which image features were important. Finally, KCCA
also has the potential of performing unsupervised multiactivity
analysis, we have taken the eigenvector corresponding to the
largest correlation value although remaining eigenvectors may
correspond to further sub-tasks (if such exist in the stimulus).
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