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Abstract. We introduce a new unsupervised fMRI analysis method
based on Kernel Canonical Correlation Analysis which differs from the
class of supervised learning methods that are increasingly being employed
in fMRI data analysis. Whereas SVM associates properties of the imaging
data with simple specific categorical labels, KCCA replaces these sim-
ple labels with a label vector for each stimulus containing details of the
features of that stimulus. We have compared KCCA and SVM analyses
of an fMRI data set involving responses to emotionally salient stimuli.
This involved first training the algorithm ( SVM, KCCA) on a subset
of fMRI data and the corresponding labels/label vectors, then testing
the algorithms on data withheld from the original training phase. The
classification accuracies of SVM and KCCA proved to be very similar.
However, the most important result arising from this study is that KCCA
in able in part to extract many of the brain regions that SVM identifies
as the most important in task discrimination blind to the categorical
task labels.
Keywords: Machine learning methods; Kernel canonical correlation anal-
ysis; Support vector machines; Classifiers; Functional magnetic resonance
imaging data analysis

1 Introduction

Recently, machine learning methodologies have been increasingly used to analyse
the relationship between stimulus categories and fMRI responses [1–10]. In this
paper, we introduce a new unsupervised machine learning approach to fMRI
analysis, in which the simple categorical description of stimulus type (e.g. type of
task) is replaced by a more informative vector of stimulus features. We compare
this new approach with a standard Support Vector Machine (SVM) analysis of
fMRI data using a categorical description of stimulus type.
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The technology of the present study originates from earlier research car-
ried out in the domain of image annotation [11], where an image annotation
methodology learns a direct mapping from image descriptors to keywords. Pre-
vious attempts at unsupervised fMRI analysis have been based on Kohonen
self-organising maps, fuzzy clustering [12] and nonparametric estimation meth-
ods of the hemodynamic response function, such as the general method described
in [13]. [14] have reported an interesting study which showed that the discrim-
inability of PCA basis representations of images of multiple object categories is
significantly correlated with the discriminability of PCA basis representation of
the fMRI volumes based on category labels.

The current study differs from conventional unsupervised approaches in that
it makes use of the stimulus characteristics as an implicit representation of a
complex state label. We use kernel Canonical Correlation Analysis (KCCA) to
learn the correlation between an fMRI volume and its corresponding stimulus.
Canonical correlation analysis can be seen as the problem of finding basis vectors
for two sets of variables such that the correlations of the projections of the
variables onto corresponding basis vectors are maximised. KCCA first projects
the data into a higher dimensional feature space before performing CCA in the
new feature space. CCA [15, 16] and KCCA [17] have been used in previous
fMRI analysis using only conventional categorical stimulus descriptions without
exploring the possibility of using complex characteristics of the stimuli as the
source for feature selection from the fMRI data.

The fMRI data used in the following study originated from an experiment in
which the responses to stimuli were designed to evoke different types of emotional
responses, pleasant or unpleasant. The pleasant images consisted of women in
swimsuits while the unpleasant images were a collection of images of skin dis-
eases. Each stimulus image was represented using Scale Invariant Feature Trans-
formation (SIFT) [18] features. Interestingly, some of the properties of the SIFT
representation have been modeled on the properties of complex neurons in the
visual cortex. Although not specifically exploited in the current paper, future
studies may be able to utilize this property to probe aspects of brain function
such as modularity.

In the current study, we present a feasibility study of the possibility of gener-
ating new activity maps by using the actual stimuli that had generated the fMRI
volume. We have shown that KCCA is able to extract brain regions identified by
supervised methods such as SVM in task discrimination and to achieve similar
levels of accuracy and discuss some of the challenges in interpreting the results
given the complex input feature vectors used by KCCA in place of categorical
labels. This work is an extension of the work presented in [19].

The paper is structured as follows. Section 2 gives a review of the fMRI data
acquisition as well as the experimental design and the pre-processing. These
are followed by a brief description of the scale invariant feature transformation
in Section 2.1. The SVM is briefly described in Section 2.2 while Section 2.2
elaborates on the KCCA methodology. Our results in Section 3. We conclude
with a discussion in Section 4.



3

2 Materials and Methods

Due to the lack of space we refer the reader to [10] for a detailed account of the
subject, data acquisition and pre-processing applied to the data as well as to the
experimental design.

2.1 Scale Invariant Feature Transformation

Scale Invariant Feature Transformation (SIFT) was introduced by [18] and shown
to be superior to other descriptors [20]. This is due to the SIFT descriptors be-
ing designed to be invariant to small shifts in position of salient (i.e. prominent)
regions. Calculation of the SIFT vector begins with a scale space search in which
local minima and maxima are identified in each image (so-called key locations).
The properties of the image at each key location are then expressed in terms of
gradient magnitude and orientation. A canonical orientation is then assigned to
each key location to maximize rotation invariance. Robustness to reorientation
is introduced by representing local image regions around key voxels in a number
of orientations. A reference key vector is then computed over all images and the
data for each image are represented in terms of distance from this reference.
Interestingly, some of the properties of the SIFT representation have been mod-
eled on the properties of complex neurons in the visual cortex. Although not
specifically exploited in the current paper, future studies may be able to utilize
this property to probe aspects of brain function such as modularity.

Image Processing Let f l
i be the SIFT features vector for image i where l is

the number of features. Each image i has a different number of SIFT features l,
making it difficult to directly compare two images. To overcome this problem we
apply K-means to cluster the SIFT features into a uniform frame. Using K-means
clustering we find K classes and their respective centers oj where j = 1, . . . , K.
The feature vector xi of an image stimuli i is K dimensional with j’th component
xi,j . The feature vectors is computed as the Gaussian measure of the minimal
distance between the SIFT features f l

i to the centre oj . This can be represented
as

xi,j = exp
−

„

min
v∈fl

i
d(v,oj)

2

«

(1)

where d(., .) is the Euclidean distance. The number of centres is set to be the
smallest number of SIFT features computed (found to be 300). Therefore after
processing each image, we will have a 300 dimensional feature vector representing
its relative distance from the cluster centres.

2.2 Methods

Support Vector Machines Support vector machines[21] are kernel-based
methods that find functions of the data that facilitate classification. They are
derived from statistical learning theory [22] and have emerged as powerful tools
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for statistical pattern recognition [23]. In the linear formulation a SVM finds,
during the training phase, the hyperplane that separates the examples in the
input space according to their class labels. The SVM classifier is trained by pro-
viding examples of the form (x, y) where x represents a input and y it’s class
label. Once the decision function has been learned from the training data it can
be used to predict the class of a new test example. We used a linear kernel SVM
that allows direct extraction of the weight vector as an image. A parameter C,
that controls the trade-off between training errors and smoothness was fixed at
C = 1 for all cases (default value).3

Kernel Canonical Correlation Analysis Proposed by Hotelling in 1936,
Canonical Correlation Analysis (CCA) is a technique for finding pairs of basis
vectors that maximise the correlation between the projections of paired vari-
ables onto their corresponding basis vectors. Correlation is dependent on the
chosen coordinate system, therefore even if there is a very strong linear relation-
ship between two sets of multidimensional variables this relationship may not
be visible as a correlation. CCA seeks a pair of linear transformations one for
each of the paired variables such that when the variables are transformed the
corresponding coordinates are maximally correlated. Consider the linear combi-
nation x = w′

ax and y = w′
by. Let x and y be two random variables from a

multi-dimensional distribution, with zero mean. The maximisation of the corre-
lation between x and y corresponds to solving maxwa,wb

ρ = w′
aCabwb subject

to w′
aCaawa = w′

bCbbwb = 1. Caa and Cbb are the non-singular within-set
covariance matrices and Cab is the between-sets covariance matrix.

We suggest using the kernel variant of CCA [24] since due to the linearity
of CCA useful descriptors may not be extracted from the data. This may occur
as the correlation could exist in some non linear relationship. The kernelising of
CCA offers an alternate solution by first projecting the data into a higher dimen-
sional feature space φ : x = (x1, . . . , xn) → φ(x) = (φ1(x), . . . , φN (x)) (N ≥ n)
before performing CCA in the new feature space. Given the kernel functions κa

and κb let Ka = XaX
′
a and Kb = XbX

′
b be the kernel matrices corresponding to

the two representations of the data, where Xa is the matrix whose rows are the
vectors φa(xi), i = 1, . . . , ℓ from the first representation while Xb is the matrix
with rows φb(xi) from the second representation. The weights wa and wb can
be expressed as a linear combination of the training examples wa = Xaα and
wb = Xbβ. Substituting into the primal CCA equation gives the optimisation
maxα,β ρ = α′KaKbβ subject to α′K2

aα = β′K2
b
β = 1. This is the dual form

of the primal CCA optimisation problem given above, which can be cast as a
generalised eigenvalue problem and for which the first k generalised eigenvec-
tors can be found efficiently. Both CCA and KCCA can be formulated as an
eigenproblem.

The theoretical analysis shown in [25, 26] suggests the need to regularise
kernel CCA as it shows that the quality of the generalisation of the associated

3 The LibSVM toolbox for Matlab was used to perform the classifications
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.
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pattern function is controlled by the sum of the squares of the weight vector
norms. We refer the reader to [25, 26] for a detailed analysis and the regularised
form of KCCA. Although there are advantages in using kernel CCA, which
have been demonstrated in various experiments across the literature. We must
clarify that in this particular work, as we are using a linear kernel in both views,
regularised CCA is the same as regularised linear KCCA (since the former and
latter are linear). Although using KCCA with a linear kernel has advantages
over CCA, the most important of which is in our case speed, together with the
regularisation.4

Using linear kernels as to allow the direct extraction of the weights, KCCA
performs the analysis by projecting the fMRI volumes into the found semantic
space defined by the eigenvector corresponding to the largest correlation value
(these are outputted from the eigenproblem). We classify a new fMRI volume as
follows; Let αi be the eigenvector corresponding to the largest eigenvalue, and let
φ(x̂) be the new volume. We project the fMRI into the semantic space w = X′

aαi

(these are the training weights, similar to that of the SVM) and using the weights
we are able to classify the new example as ŵ = φ(x̂)w where ŵ is a weighted value
(score) for the new volume. The score can be thresholded to allocate a category
to each test example. To avoid the complications of finding a threshold, we zero-
mean the outputs and threshold the scores at zero, where ŵ < 0 will be associated
with unpleasant (a label of −1) and ŵ ≥ 0 will be associated with pleasant (a
label of 1). We hypothesis that KCCA is able to derive additional activities
that may exist a-priori, but possibly previously unknown, in the experiment.
By projecting the fMRI volumes into the semantic space using the remaining
eigenvectors corresponding to lower correlation values. We have attempted to
corroborate this hypothesis on the existing data but found that the additional
semantic features that cut across pleasant and unpleasant images did not share
visible attributes. We have therefore confined our discussion here to the first
eigenvector.

3 Results

Experiments were run on a leave-one-out basis where in each repeat a block of
positive and negative fMRI volumes was withheld for testing. Data from the 16
subjects was combined. This amounted, per run, in 1330 training and 14 testing
fMRI volumes, each set evenly split into positive and negative volumes (these
pos/neg splits were not known to KCCA but simply ensured equal number of
images with both types of emotional salience). The analyses were repeated 96
times. Similarly, we run a further experiment of leave-subject-out basis where
15 subjects were combined for training and one left for testing. This gave a
sum total of 1260 training and 84 testing fMRI volumes. The analyses was re-
peated 16 times. The KCCA regularisation parameter was found using 2-fold
cross validation on the training data.

4 The KCCA toolbox used was from http://homepage.mac.com/davidrh/Code.html
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Initially we describe the fMRI activity analysis. After training the SVM we
are able to extract and display the SVM weights as a representation of the brain
regions important in the pleasant/unpleasant discrimination. A thorough analy-
sis is presented in [10]. We are able to view the results in Figures 1 and 2 where
in both figures the weights are not thresholded and show the contrast between
viewing Pleasant vs. Unpleasant. The weight value of each voxel indicates the
importance of the voxel in differentiating between the two brain states. In Figure
1 the unthresholded SVM weight maps are given. Similarly with KCCA, once
learning the semantic representation we are able to project the fMRI data into
the learnt semantic feature space producing the primal weights. These weights,
like those generated from the SVM approach, could be considered as a represen-
tation of the fMRI activity. Figure 2 displays the KCCA weights.

In Figure 3 the unthresholded weights values for the KCCA approach with
the hemodynamic function applied to the image stimuli (i.e. applied to the SIFT
features prior to analysis) are displayed. The hemodynamic response function is
the impulse response function which is used to model the delay and dispersion
of hemodynamic responses to neuronal activation[27]. The application of the
hemodynamic function to the images SIFT features allows for the reweighting
of the image features according to the computed delay and dispersion model.
We compute the hemodynamic function with the SPM2 toolbox with default
parameter settings.

As the KCCA weights are not driven by simple categorical image descriptors
(pleasant/unpleasant) but by complex image feature vectors it is of great inter-
est that many regions, especially in the visual cortex, found by SVM are also
highlighted by the KCCA. We interpret this similarity as indicating that many
important components of the SIFT feature vector are associated with pleas-
ant/unpleasant discrimination. Other features in the frontal cortex are much
less reproducible between SVM and KCCA indicting that many brain regions
detect image differences not rooted in the major emotional salience of the images.

Fig. 1. The unthresholded weight values for the SVM approach showing the contrast
between viewing Pleasant vs. Unpleasant. We use the blue scale for negative (Unpleas-

ant) values and the red scale for the positive values (Pleasant). The discrimination
analysis on the training data was performed with labels (+1/ − 1).
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Fig. 2. The unthresholded weight values for the KCCA approach showing the contrast
between viewing Pleasant vs. Unpleasant. We use the blue scale for negative (Unpleas-

ant) values and the red scale for the positive values (Pleasant). The discrimination
analysis on the training data was performed without labels. The class discrimination
is automatically extracted from the analysis.

Fig. 3. The unthresholded weight values for the KCCA approach with the hemody-
namic function applied to the image stimuli showing the contrast between viewing
Pleasant vs. Unpleasant. We use the blue scale for negative (Unpleasant) values and
the red scale for the positive values (Pleasant).

In order to validate the activity patterns found in Figure 2 we show that the
learnt semantic space can be used to correctly discriminate withheld (testing)
fMRI volumes. We also give the 2−norm error to provide an indication as to
the quality of the patterns found between the fMRI volumes and image stimuli
from the testing set by ‖Kaα−Kbβ‖2 (normalised over the number of volumes
and analyses repeats). The latter is especially important when the hemodynamic
function has been applied to the image stimuli as straight forward discrimination
is no longer possible to compare with.

Table 1 shows the average and median performance of SVM and KCCA
on the testing of pleasant and unpleasant fMRI blocks for the leave-two-block-
out experiment. Our proposed unsupervised approach had achieved an average
accuracy of 87.28%, slightly less than the 91.52% of the SVM. Although, both
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Table 1. KCCA & SVM results on the leave-two-block-out experiment. Average and median per-
formance over 96 repeats. The value represents accuracy, hence higher is better. For norm−2 error
lower is better.

Method Average Median Average ‖ · ‖2 error Median ‖ · ‖2 error
KCCA 87.28 92.86 0.0048 0.0048
SVM 91.52 92.86 - -

Random KCCA 49.78 50.00 0.0103 0.0093
Random SVM 52.68 50.00 - -

KCCA with HF - - 0.0032 0.0031
Random KCCA with HF - - 1.1049 0.9492

Table 2. KCCA & SVM results on the leave-one-subject-out experiment. Average and median
performance over 16 repeats. The value represents accuracy, hence higher is better. For norm−2
error lower is better.

Method Average Median Average ‖ · ‖2 error Median ‖ · ‖2 error
KCCA 79.24 79.76 0.0025 0.0024
SVM 84.60 86.90 - -

Random KCCA 48.51 47.62 0.0052 0.0044
Random SVM 48.88 48.21 - -

KCCA with HF - - 0.0016 0.0015
Random KCCA with HF - - 0.5869 0.0210

methods had the same median accuracy of 92.86%. The results of the leave-
subject-out experiment are given in Table 2, where our KCCA has achieved an
average accuracy of 79.24% roughly 5% less than the supervised SVM method.
In both tables the Hemodynamic Function is abbreviated as HF. We are able to
observe in both tables that the quality of the patterns are better than random.

The results demonstrate that the activity analysis is meaningful. To further
confirm the validity of the methodology we repeat the experiments with the
image stimuli randomised, hence breaking the relationship between fMRI volume
and stimuli. Table 1 and 2 KCCA and SVM both show performance equivalent
to the performance of a random classifier. It is also interesting to observe that
when applying the hemodynamic function the random KCCA is substantially
different, and worse than, the non random KCCA. Implying that the spurious
correlations are found.

4 Discussion

In this paper we present a novel unsupervised methodology for fMRI activity
analysis in which a simple categorical description of a stimulus type is replaced by
a more informative vector of stimulus (SIFT) features. We use kernel canonical
correlation analysis using an implicit representation of a complex state label to
make use of the stimulus characteristics. The most interesting aspect of KCCA
is its ability to extract visual regions very similar to those found to be important
in categorical image classification using supervised SVM. KCCA “finds” areas
in the brain that are correlated with the features in the SIFT vector regardless
of the stimulus category. Because many features of the stimuli were associated
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with the pleasant/unpleasant categories we were able to use the KCCA results
to classify the fMRI images between these categories. In the current study it is
difficult to address the issue of modular versus distributed neural coding as the
complexity of the stimuli (and consequently of the SIFT vector) is very high.

A further interesting possible application of KCCA relates to the detection
of “inhomogeneities” in stimuli of a particular type (e.g happy/sad/disgusting
emotional stimuli). If KCCA analysis revealed brain regions strongly associated
with substructure within a single stimulus category this could be valuable in
testing whether a certain type of image was being consistently processed by the
brain and designing stimuli for particular experiments. There are many open-
ended questions that have not been explored in our current research, which has
primarily been focused on fMRI analysis and discrimination capacity. KCCA is
a bi-directional technique and therefore are also able to compute a weight map
for the stimuli from the learned semantic space. This capacity has the potential
of greatly improving our understanding as to the link between fMRI analysis
and stimuli by potentially telling us which image features were important.
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