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Abstract. We use Kernel Canonical Correlation Analysis (KCCA) to infer brain activity in functional MRI by
learning a semantic representation of fMRI brain scans and their associated activity signal. The semantic space
provides a common representation and enables a comparison between the fMRI and the activity signal. We
compare the approach against Canonical Correlation Analysis (CCA) by localising “activity” on a simulated
null data set. Finally we present an approach to reconstructan activity signal from a testing-set fMRI scans
(both simulated and real), a method which allows us to validate our initial analysis.

1 Introduction

Understanding the functional processes of the brain is still a new and difficult task. Functional Magnetic Reso-
nance Imaging (fMRI) is a relatively new tool with the purpose of mapping the sensor, motor and cognitive tasks
to specific regions in the brain. The underlying mechanics ofthis technique is in the regulation of the blood flow as
an excess of oxygen is supplied to active neurones causing anincrease in oxygenated blood surrounding the tissue
of the active brain region. This effected is referred to as BOLD (Blood Oxygenation Level Dependent) signal.

We present a Kernel CCA (KCCA) approach to measure the activeregions of the brain using fMRI scans and their
activity signal. Friman et. al [1] have shown that CCA can gives us the ability to introduce several time-courses
as the BOLD response has been shown to vary both between people and brain regions. In previous work [2] we
have shown that applying kernel methods [3] can increase theperformance of CCA. Finally we show that due to
the properties of KCCA [4] we are able to use this approach to reconstruct the activity signal from an “unknown”
testing-set fMRI scans a process that allows us to validatedour prior analysis.

The paper is divided as follows, Section 2 gives a brief introduction the method used and the baseline compar-
ison. Section 3 describes the experiments taken place and Section 4 brings forward final discussion.

2 Method

Proposed by H. Hotelling in 1936 [5], Canonical correlationanalysis seeks a pair of linear transformations one for
each of the sets of variables such that when the set of variables are transformed the corresponding co-ordinates are
maximally correlated [6]. Let

ρ = max
wx,wy

w′
xCxywy

√

w′
xCxxwxw

′
yCyywy

(1)

the maximum canonical correlation is the maximum ofρ with respect towx andwy. We represent the two time-
courses as a linear combination of pixel time-course

x(t)wx = x1(t)wxm
+ . . . + xm(t)wxm

and any chosen time sequence to represent the fMRI modal

y(t)wy = y1(t)wym
+ . . . + ym(t)wym

.

CCA may not extract useful descriptors of the data because ofits linearity. Kernel CCA offers an alternative
solution by first projecting the data into a higher dimensional feature space (wheren < N )

φ : x = (x1, . . .xn) 7→ φ(x) = (φ1(x), . . . , φN (x))

before performing CCA in the new feature space, essentiallymoving from the primal to the dual representation
approach.
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Definition 1. 〈·, ·〉 denotes the Euclidean inner product of the vectorsx,y and is equal tox′y. Where we useA′

to denote the transpose of a vector or matrixA.

Kernels are methods of implicitly mapping data into a higherdimensional feature space, a method known as the
“kernel trick”. A kernel is a functionK, such that for allx, z ∈ X

K(x, z) = 〈φ(x), φ(z)〉 (2)

whereφ is a mapping fromX to a feature spaceF . The weights can be written as a linear combination of the
training examples, let

wx = φ(x)α. (3)

Hence we obtain from CCA (for details [4,6]) the dual representation

ρ = max
α,β

α′KxKyβ
√

α′K2
xαβ′K2

yβ
. (4)

As KCCA requires two views we provideKx as a kernel from the fMRI brain scan andKy as a kernel from the
chosen time-sequence. In [6] we observe that with full rank kernel matrices maximal correlation can be obtained,
suggesting that learning is trivial. To force non-trivial learning we introduce a control on the flexibility of the
projection mappings by penalising the norms of the associated weights (detailed description of CCA and KCCA
can be found in [4]), we obtain

ρ = maxα,β

α′KxKyβ
√

(α′K2
xα + κα′Kxα)(β′K2

yβ + κβ′Kyβ)
. (5)

3 Experiments

3.1 Activity Localisation

We compare KCCA to the baseline CCA as presented in [1, 7, 8, for brevity we refer the reader to the papers for
details on the CCA method]. The regularisation parameterκ from equation (5) is computed a priori as described
in [2,6]. In the following experiment we use the correlationvalues computed by CCA though in KCCA we prefer
to compute the weights associated to the pixels, as this can give us more information on the activity of each pixel,
this step can also be done with CCA although we do not compute it as this approach is not as intuitive as with
KCCA.

As it is impossible to tell which method is better when real data is used, we experiment with controlled simu-
lated data. We embed square-wave “activity” in a nulldata set (no brain activity). The paradigm of the applied
activity is 10 images rest,10 images activity and so forth. Resulting with200 time points. As we know the acti-
vation period we use for our time sequence a square-wave representation of activity (1) and rest (−1) over the200
time-course. We use a linear kernel for both the fMRI data andthe square-wave “activity”.

In figure 1 the found true-positive and false-positive pixels using CCA are plotted we are able to observe that
although there is a decline in the number of false-positive pixels located, the number of false-positive outnumbers
the number of true-positive pixels. At a threshold of0.74 we are able to observe in figure 1(right plot) that the
rate of false-positive drop below that of the true-positivebut not in a significant measure. In figure 2 the found
true-positive and false positive pixels using KCCA are plotted. As expected the number of false-positive pixels
start at a much higher rate then that found with CCA as with KCCA we take into account all the pixels in the image.
Although this worse start we are able to observe a sharp drop in the number of false positive pixels accompanied
with a stedy and slower drop in the number of true-positive pixels. We also find that the number of true-positive
pixels located surpasses the number of false-positive, with a relatively low threshold. This suggests that KCCA is
able to extract a better ratio of true to false positive pixels.

3.2 Statistical Reconstruction

In the following section we present an approach of statistically reconstructing a signal from the fMRI scans. This
reconstruction approach will allow us to determine the validity of our prior analysis for if we have learnt the
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Figure 1. Left: CCA Found True/False-Positives. Right: Same Plot, Zoomed-In.
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Figure 2. Left: KCCA Found True/False-Positives. Right: Same Plot, Zoomed-In.

appropriate function we will be able to reconstruct it. LetX be the fMRI training examples andXt the fMRI
testing examples,Y be the training activity time sequence andYt the testing activity signal we want to reconstruct.
Let

gwx,wy
= ‖Xwx − Y wy‖

2 (6)

wheregwx,wy
≈ 0 as we want the featureXwx from one view of the data to be identical to the featureY wy

obtained from the second view of the data, this will be true onthe training data if there is a high correlation
between the two views. Therefor we can rewrite equation (6) as

‖Xwx − Y wy‖
2 ≈ 0 (7)

Xwx ≈ Y wy (8)

We divide the fMRI data into a training and testing set. On thetraining data we compute the KCCA coefficients
α, β. Let Kxt

= 〈Xt, X〉 be the fMRI testing kernel andKyt
= 〈Yt, Y 〉 be the time sequence testing kernel. [4]

have shown that this equivalence can be held true also for thetesting data using efficient regularisation. Hence we
justify the usage of equation (8) and equation (3) to define

Xtwx ≈ Ytwy

Kxt
α ≈ Y ′

t Y β.

As we are interested in finding the testing-set unknown activity time sequence we can rearrange the equation to

Yt ≈ (Kxt
α · (Y β)−1)′. (9)

As we are no longer interested in the weight vector but in the reconstruction of the signal, we are not confined to
the usage of inner product kernels, in the following experiment we compare the success rate between the linear
kernel as used, to the Gaussian kernel (defined in equation (10))

K(xi, xj) = exp
−‖xi − xj‖

2

σ2
(10)



usingσ as the minimum distance between the different labelled images.
We test our approach using the square-wave time sequence of1 representing activity and−1 representing rest for
both the simulated and real data experiments. The real data is comprised of mental calculation, the adding of two
numbers, and right hand index finger flexing. For the simulated data and mental calculation we use the first160
scans for training and the remaining20 for testing, while with the finger flexing we use the first180 for training
and the remaining20 for testing. We randomise the examples prior to the trainingand testing separation. Once we
obtain the reconstructedYt we threshold it byT = 0, i.e. LetŶ be the thresholded reconstructed signal

Ŷ =

{

1 if Yt ≥ 0
0 otherwise

Table 1 shows the average overall results of successfully reconstructing the activity time sequence for the testing
fMRI data over100 repeats using both a linear & Gaussian kernels. We are able tosee that the linear kernel per-
forms better then the Gaussian. It is important to stat at this stage the difference between CCA and kernel CCA
(KCCA) with a linear kernel. The former uses a larger number of features than in CCA, which are computed
implicitly in the kernel.

Table 1. Success rate in reconstructing the test activity time sequence
Data-Set Linear Gaussian

Simulated data 97.4% 95.8%
Finger flexing 75.25% 69.25%

Mental calculation 48.6% 41.55%

We provide an initial experiment in attempt to learn the mental process prier to the finger flexing by setting the
square-wave sequence such that the three images before the actual finger flexing were considered as active and
all the remaining images were considered as inactive. We have trained as before using a linear kernel and at-
tempted to reconstruct this new square-wave sequence over an average of100 random repeats. We find that we can
successfully reconstruct the signal with an success average of83.3%.

4 Discussion

For future work we would like to try more elaborate time basisfunctions and to experiment on different data types
(emotional, mental and other motor data) and tailored kernels for better extracting the activity/signal. A further
interesting avenue would be to observe the performance of applying our KCCA approach to other techniques of
brain analysis and also to more complex tasks. We also speculate that KCCA would be able to handle a multiple
task fMRI scenario.
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