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Abstract. We use Kernel Canonical Correlation Analysis (KCCA) to ireain activity in functional MRI by
learning a semantic representation of fMRI brain scans laeid &ssociated activity signal. The semantic space
provides a common representation and enables a comparsmedn the fMRI and the activity signal. We
compare the approach against Canonical Correlation AisalCA) by localising “activity” on a simulated
null data set. Finally we present an approach to reconsamictctivity signal from a testing-set fMRI scans
(both simulated and real), a method which allows us to vedidar initial analysis.

1 Introduction

Understanding the functional processes of the brain issstiew and difficult task. Functional Magnetic Reso-
nance Imaging (fMRI) is a relatively new tool with the purpasf mapping the sensor, motor and cognitive tasks
to specific regions in the brain. The underlying mechanidhisftechnique is in the regulation of the blood flow as
an excess of oxygen is supplied to active neurones causimg@ase in oxygenated blood surrounding the tissue
of the active brain region. This effected is referred to ad B@Blood Oxygenation Level Dependent) signal.

We present a Kernel CCA (KCCA) approach to measure the a&giens of the brain using fMRI scans and their
activity signal. Friman et. al [1] have shown that CCA canegiwus the ability to introduce several time-courses
as the BOLD response has been shown to vary both betweerepmagbrain regions. In previous work [2] we
have shown that applying kernel methods [3] can increaspéhfermance of CCA. Finally we show that due to
the properties of KCCA [4] we are able to use this approackdtomstruct the activity signal from an “unknown”
testing-set fMRI scans a process that allows us to validategrior analysis.

The paper is divided as follows, Section 2 gives a brief itiction the method used and the baseline compar-
ison. Section 3 describes the experiments taken place anidi$é brings forward final discussion.

2 Method

Proposed by H. Hotelling in 1936 [5], Canonical correlatmnalysis seeks a pair of linear transformations one for
each of the sets of variables such that when the set of vasalé transformed the corresponding co-ordinates are
maximally correlated [6]. Let

W, Cyy Wy

= max 1
p W Wy /W Cx W W) Cyywy, @)

the maximum canonical correlation is the maximunpaftith respect tow, andw,. We represent the two time-
courses as a linear combination of pixel time-course

x(t)wx = 21 (H)wy, + ... + T (H)wy,,
and any chosen time sequence to represent the fMRI modal
y®)wy =yi(t)wy,, + ...+ ym(t)wy,,.

CCA may not extract useful descriptors of the data becausts dihearity. Kernel CCA offers an alternative
solution by first projecting the data into a higher dimenaideature space (where< N)

d:x=(X1,...Xp) — O(x) = (P1(X),...,0n(X))

before performing CCA in the new feature space, essentiadlying from the primal to the dual representation
approach.
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Definition 1. {-,-) denotes the Euclidean inner product of the vectgysand is equal toc’y. Where we used’
to denote the transpose of a vector or mattix

Kernels are methods of implicitly mapping data into a higtiienensional feature space, a method known as the
“kernel trick”. A kernel is a functionk’, such that for alle, z € X

K(z,2) = (¢(x), ¢(2)) )

where¢ is a mapping from¥ to a feature spacé. The weights can be written as a linear combination of the
training examples, let

we = p(x)o. (3)
Hence we obtain from CCA (for details [4, 6]) the dual repreadon
/
p = max _ Qe KoKy 4)

a,B /O/Kgozﬁ’KyQﬂ-

As KCCA requires two views we providk, as a kernel from the fMRI brain scan aid, as a kernel from the
chosen time-sequence. In [6] we observe that with full ragerk&l matrices maximal correlation can be obtained,
suggesting that learning is trivial. To force non-triviahlning we introduce a control on the flexibility of the
projection mappings by penalising the norms of the assediateights (detailed description of CCA and KCCA
can be found in [4]), we obtain

o' K, K, 3
\/(a’Kga + ko Kpo) (8" K28 + kB Ky B) -

(5)

p = max, g

3 Experiments

3.1 Activity Localisation

We compare KCCA to the baseline CCA as presented in [1, 7r&rivity we refer the reader to the papers for
details on the CCA method]. The regularisation parametieom equation (5) is computed a priori as described
in [2, 6]. In the following experiment we use the correlati@ues computed by CCA though in KCCA we prefer
to compute the weights associated to the pixels, as thisigarug more information on the activity of each pixel,

this step can also be done with CCA although we do not compuatg this approach is not as intuitive as with

KCCA.

As it is impossible to tell which method is better when realadia used, we experiment with controlled simu-
lated data. We embed square-wave “activity” in a nulldata(ise brain activity). The paradigm of the applied
activity is 10 images rest]0 images activity and so forth. Resulting wi2h0 time points. As we know the acti-
vation period we use for our time sequence a square-waveseptation of activityl() and rest 1) over the200
time-course. We use a linear kernel for both the fMRI datathedsquare-wave “activity”.

In figure 1 the found true-positive and false-positive pixesing CCA are plotted we are able to observe that
although there is a decline in the number of false-positixelp located, the number of false-positive outnumbers
the number of true-positive pixels. At a threshold0of4 we are able to observe in figure 1(right plot) that the
rate of false-positive drop below that of the true-positivg not in a significant measure. In figure 2 the found
true-positive and false positive pixels using KCCA are f@ldt As expected the number of false-positive pixels
start at a much higher rate then that found with CCA as with K@ take into account all the pixels in the image.
Although this worse start we are able to observe a sharp drtgeinumber of false positive pixels accompanied
with a stedy and slower drop in the number of true-positivelsi We also find that the number of true-positive
pixels located surpasses the number of false-positive, avielatively low threshold. This suggests that KCCA is
able to extract a better ratio of true to false positive pExel

3.2 Statistical Reconstruction

In the following section we present an approach of staifijiczeconstructing a signal from the fMRI scans. This
reconstruction approach will allow us to determine thedigliof our prior analysis for if we have learnt the
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Figure 1. Left: CCA Found True/False-Positives Right: Same Plot, Zoomed-In.
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Figure 2. Left: KCCA Found True/False-Positives Right: Same Plot, Zoomed-In.

appropriate function we will be able to reconstruct it. Détbe the fMRI training examples and; the fMRI
testing exampleg; be the training activity time sequence aridhe testing activity signal we want to reconstruct.
Let

Juwe,wy = [ Xw, — waH2 (6)

whereg,, «», ~ 0 as we want the featur&w, from one view of the data to be identical to the featlie,
obtained from the second view of the data, this will be truetlmn training data if there is a high correlation
between the two views. Therefor we can rewrite equationg6) a

| Xw, — Yy | 0 )
Xwy, =~ Yuwy (8)

%

We divide the fMRI data into a training and testing set. Ontth@ing data we compute the KCCA coefficients

a, B. Let K, = (X, X) be the fMRI testing kernel anft,, = (Y;,Y") be the time sequence testing kernel. [4]

have shown that this equivalence can be held true also faestiag data using efficient regularisation. Hence we
justify the usage of equation (8) and equation (3) to define

Xw, ~ Yw,
K, a =~ Y/Yp.

As we are interested in finding the testing-set unknown #igtilme sequence we can rearrange the equation to
Yy~ (Kpa- (Y)Y, ©)

As we are no longer interested in the weight vector but in do®nstruction of the signal, we are not confined to
the usage of inner product kernels, in the following expenitnwve compare the success rate between the linear
kernel as used, to the Gaussian kernel (defined in equat®h (1

— i — ;1

K(z;,xj) = exp =

(10)



usingo as the minimum distance between the different labelled asag

We test our approach using the square-wave time sequeraepfesenting activity and 1 representing rest for
both the simulated and real data experiments. The real slatamiprised of mental calculation, the adding of two
numbers, and right hand index finger flexing. For the simdlatata and mental calculation we use the fig
scans for training and the remainif@ for testing, while with the finger flexing we use the fit0 for training
and the remainingo0 for testing. We randomise the examples prior to the traiaimgjtesting separation. Once we
obtain the reconstructeid we threshold it byl’ = 0, i.e. LetY” be the thresholded reconstructed signal

e {1ifYtZO

~ 1 0 otherwise

Table 1 shows the average overall results of successfudynstructing the activity time sequence for the testing
fMRI data overl00 repeats using both a linear & Gaussian kernels. We are alskectthat the linear kernel per-
forms better then the Gaussian. It is important to stat atgtdage the difference between CCA and kernel CCA
(KCCA) with a linear kernel. The former uses a larger numifefeatures than in CCA, which are computed
implicitly in the kernel.

Table 1. Success rate in reconstructing the test activity time secpie

Data-Set Linear | Gaussian
Simulated data | 97.4% | 95.8%
Finger flexing | 75.25%| 69.25%
Mental calculation| 48.6% | 41.55%

We provide an initial experiment in attempt to learn the raéptocess prier to the finger flexing by setting the
square-wave sequence such that the three images beforettia¢ fnger flexing were considered as active and
all the remaining images were considered as inactive. We baned as before using a linear kernel and at-
tempted to reconstruct this new square-wave sequencemeeesage of00 random repeats. We find that we can

successfully reconstruct the signal with an success agartR$.3%.

4 Discussion

For future work we would like to try more elaborate time bdsisctions and to experiment on different data types
(emotional, mental and other motor data) and tailored Rerioe better extracting the activity/signal. A further

interesting avenue would be to observe the performancepyiag our KCCA approach to other techniques of
brain analysis and also to more complex tasks. We also sedhlat KCCA would be able to handle a multiple
task fMRI scenario.
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