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ABSTRACT
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IMAGE, SPEECH AND INTELLIGENT SYSTEMS GROUP

by David R. Hardoon, John S. Shawe-Taylor & Ola Friman1

We use Kernel Canonical Correlation Analysis (KCCA) to infer brain activity in func-

tional MRI by learning a semantic representation of fMRI brain scans and their associ-

ated activity signal. The semantic space provides a common representation and enables

a comparison between the fMRI and the activity signal. We compare the approach

against Canonical Correlation Analysis (CCA) and the more commonly used Ordinary

Correlation Analysis (OCA) by localising “activity” on a simulated null data set. We

also compare performance of the methods on the localisation of brain regions which

control finger movement and regions that are involved in mental calculation. Finally

we present an approach to reconstruct an activity signal from an “unknown” testing-set

fMRI scans. This is used to validate the learnt semantics as non-trivial.
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Chapter 1

Introduction

Understanding the functional processes of the brain is still a new and difficult task.

Functional Magnetic Resonance Imaging (fMRI) is a relatively new tool for the purpose

of mapping the sensor, motor and cognitive tasks to specific regions in the brain. The

underlying mechanics of this technique is in the regulation of the blood flow, as an excess

of oxygen is supplied to active neurones via an increase in oxygenated blood surrounding

the tissue of the active brain region. The oxygenation difference can be measured using

an MR scanner which uses the different magnetic properties of oxygenated and deoxy-

genated blood. This effect is referred to as the Blood Oxygenation Level Dependent

signal (BOLD). A more detailed description of the BOLD signal and its usage in MR

scanners can be found in Friman (2003).

We present a Kernel-CCA (KCCA) approach to measure the active regions of the brain

using fMRI scans and their activity signal. Friman et al. (2001b) have shown that CCA

can gives us the ability to introduce several time-courses as the BOLD response has

been shown to vary both between people and brain regions. In previous work (Hardoon

and Shawe-Taylor, 2003; Vinokourov et al., 2003) we have shown that applying ker-

nel methods (Cristianini and Shawe-Taylor, 2000) can increase the performance and

computational power of CCA. Finally we show that due to the properties of KCCA

(Shawe-Taylor and Cristianini, 2004) we are able to use this approach to validate the

learnt semantics as non-trivial by reconstructing the activity signal from an “unknown”

testing-set fMRI scans.

The paper is divided as follows; In section 2.1 we give an overview of the time frequency

used to emulate the brain-task activity where in section 3.2 a background description

of the theory is given. In section 4 we present three experiments which have been con-

ducted comparing the baseline CCA and OCA approach to our KCCA method. We

present the statistical reconstruction of a signal in section 5 and in section 6 we draw

our final conclusions.
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Chapter 2

fMRI

Functional magnetic resonance imaging or fMRI, is a relatively new imaging technique

with the goal of mapping different sensor, motor and cognitive functions to specific

regions in the brain. fMRI allows one to carry out specific non-invasive studies within a

given subject while providing an important insight to the neural basis of masses of brain

processes. Neurons, which are the basic functional unit of the brain, consume a higher

level of oxygen when active. To achieve this, blood with a higher level of oxygenation

is supplied. fMRI makes an indirect use of this effect to detect areas of the brain which

have an elevated consumption of oxygen. This effect can be used to pin-point areas of

the brain functions. In order to determine the elevation of oxygen consumption during a

task, images acquired during a resting state are required. We obtain several slices from

the brain as demonstrated in figure 2.1, each slice has a series of images which correspond

to the time-sequence (figure 2.2). In order to keep the alternation between activity, a

reference time-course is needed, where the resting and active states are embedded. A

commonly used reference time-course is the square-wave time-course as plotted in figure

2.3 while in the following next subsection we present a more elaborate time-course which

can take into account various delays that occur in the brain while performing a task.

Although we only make use of the more complicated time-course for the experiments

presented in section 4.2, in all other experiments we use the square-wave time-course

(figure 2.3).

2.1 Time Frequency

The BOLD response evoked by a stimulus varies between different brain areas and be-

tween different test subjects (Aguirre et al., 1998; Glover, 1999). A common approach to

the BOLD response is the usage of a square-wave signal, although in order to maximise

detection sensitivity, such variations must be accounted for. For example, there is a delay

between stimulus presentation and the onset of the BOLD response which lie in a range

5



6 Chapter 2 fMRI

Figure 2.1: Extracted slices (from different depths) of the brain.
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Figure 2.2: The time-sequence as an image sequence.
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Figure 2.3: The commonly used square-wave reference time-course.



Chapter 2 fMRI 7

of several seconds (Saad et al., 2001). A computationally and theoretically tractable

approach is to capture the BOLD response variations in a linear subspace spanned by a

set of temporal basis functions. An example of such a subspace is the truncated Fourier

subspace, which is spanned by a set of sine and cosine functions. These basis functions

are especially useful when a blocked experimental design is utilized. The frequencies

of the sine and cosine functions are then chosen to the fundamental frequency of the

paradigm and a few harmonic frequencies. Within this subspace we find smooth models

of the BOLD response in any phase position. Hence, we can find good matches to BOLD

responses with any time delay.

Let

y(t) =



















sin(wt)

cost(wt)
...

sin(kwt)

cos(kwt)



















w =
π

T
, t = 1 . . . N

where T is the period of time-course reference, N is the number of observation (i.e.

frames per slice) and k = 1 . . . 4.





Chapter 3

Theory

3.1 Ordinary Correlation Analysis

The most commonly used approach for fMRI analysis is known as ordinary correlation

analysis. In this approach we assume N acquisitions of several brain slices. We define a

model time-course y(t), a possible choice is the square-wave which is used as a reference

time-course. We obtain for each pixel a time-course of the different intensity values x(t).

Using x(t) and y(t) we compute the correlation using Pearson’s correlation for zero mean

random variables

ρ =
E[xy]

√

E[x2]E[y2]
.

Therefore the sample correlation is calculated as

ρ =

∑N
t=1

x(t)y(t)
√

∑N
t=1

x(t)2
∑N

t=1
y(t)2

this results in a correlation map of the fMRI scan. A drawback of this approach is

that we are confined to model the BOLD response by a single time-course. The BOLD

response has been shown to vary between brain regions and people, and may have delays.

We would like to be able to model a BOLD response with any delay. We address this

issue in the following section where we introduce multidimensional variables on both

sides.

3.2 Canonical Correlation Analysis

Proposed by Hotelling (1936), Canonical correlation analysis can be seen as the problem

of finding basis vectors for two sets of variables such that the correlation between the

9



10 Chapter 3 Theory

projections of the variables onto these basis vectors are mutually maximised. Correlation

analysis is dependent on the co-ordinate system in which the variables are described, so

even if there is a very strong linear relationship between two sets of multidimensional

variables, depending on the co-ordinate system used, this relationship might not be visi-

ble as a correlation. Canonical correlation analysis seeks a pair of linear transformations

one for each of the sets of variables such that when the set of variables are transformed

the corresponding co-ordinates are maximally correlated (Hardoon et al., 2003).

Definition 3.1. We use A′ to denote the transpose of a vector or matrix A.

Let

max
wx,wy

ρ =
w′

xCxywy
√

w′

xCxxwxw′

yCyywy

(3.1)

the maximum canonical correlation is the maximum of ρ with respect to wx and wy.

We represent the two time-courses as a linear combination of pixel time-course

w′

x
x(t) = wxm

x1(t) + . . . + wxm
xm(t)

and basis functions, as described in the previous section 2.1

w′

y
y(t) = wym

y1(t) + . . . + wym
ym(t).

Observe that the covariance matrix of (x,y) is

C(x,y) = Ê

[(

x

y

)(

x

y

)

′
]

=

[

Cxx Cxy

Cyx Cyy

]

= C. (3.2)

The total covariance matrix C is a block matrix where the within-sets covariance ma-

trices are Cxx and Cyy and the between-sets covariance matrices are Cxy = C ′

yx
.

Figure 3.1 shows how CCA can be applied on the fMRI scans Friman et al. (2001a).

We create a correlation mask by computing the correlation value for each 3 × 3 region

and assign the correlation value to the middle pixel x5. After computing the correla-

tion mask we can threshold it to extract interesting pixels, though we could display the

correlation mask without thresholding. The threshold can be computed using statistical

approaches as described in Friman (2003).

Although there have been various methods of using feature selection techniques as an

analysis tool for fMRI (McIntosh et al., 1996; Friston et al., 1995; Lange et al., 1999) and

what seems to be a direct extension of CCA as described in Friston et al. (1995); Lange

et al. (1999). We choose to extend CCA based on Kernel methodology in an attempt to
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Figure 3.1: CCA between a set of fMRI time-courses and a region of pixels.

combine Machine Learning with fMRI analysis techniques. We describe the essence of

Kernel Methods in the following section.

3.3 Kernel Methods

Kernel methodology is an approach to deal with data, which cannot be separated in

a linear fashion and with algorithms that are restricted to handling linearly separable

data. Kernels are a method of implicitly mapping data into a higher dimensional feature

space, a method known as the “kernel trick”. The implicit approach to the mapping

implies that the functional form of the mapping does not need to be known. With

suitable choice of kernel, non-separable data can become separable in the feature space,

although we may map the data into an alternative dimensional space to obtain a better

representation.

Definition 3.2. 〈·, ·〉 denotes the Euclidean inner product of the vectors x,y and is

equal to x′y.

A kernel is a function K, such that for all x, z ∈ X

K(x, z) = 〈φ(x), φ(z)〉 (3.3)

where φ is a mapping from X to a feature space F

φ : X → F.

The transformation to feature space F allows us to deal with the problem using linear

algebra. It lets us define a similarity measure from the dot product in F . The projec-

tion mapping also gives us the freedom to modify the mapping φ so as to change the

representation of the input data into one that is more suitable for a given problem and

learning algorithm. Kernels offer a great deal of flexibility, as they can be generated

from other kernels. In the kernel the data only appears through entries in the Gram
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matrix, therefore this approach gives a further advantage as the number of tuneable

parameters and updating time does not depend on the number of attributes being used.

3.4 Kernel canonical correlation analysis

CCA may not extract useful descriptors of the data because of its linearity. Kernel

CCA offers an alternative solution by first projecting the data into a higher dimensional

feature space (where n < N)

φ : x = (x1, . . . xn) 7→ φ(x) = (φ1(x), . . . , φN (x))

before performing CCA in the new feature space, essentially moving from the primal

to the dual representation approach. Hence we obtain from CCA (for details Hardoon

et al. (2003)) the dual representation

ρ = max
α,β

α′KxKyβ
√

α′K2
xαβ′K2

yβ
. (3.4)

In Hardoon et al. (2003) we observe that with full rank kernel matrices maximal corre-

lation can be obtained, suggesting that learning is trivial. To force non-trivial learning

we introduce a control on the flexibility of the projection mappings using Partial Least

Squares (PLS) to penalise the norms of the associated weights. We convexly combine

the PLS term with the KCCA term in the denominator (detailed description of CCA

and KCCA can be found in Hardoon et al. (2003)), we obtain from equation 3.4

ρ = maxα,β

α′KxKyβ
√

(α′K2
xα + κα′Kxα)(β′K2

yβ + κβ′Kyβ)
. (3.5)

Each fMRI frame is a l× l image matrix. We transform the matrix representation to a l2

vector representation. Let Xi be each fMRI slice, of size l2 ×M where M is the number

of frames in the slice (i.e. our number of samples). Let X̂i be our sample in the feature

space, we are able to compute a kernel per slice or we can combine all the slices such

that let X̂ = [X̂1 . . . X̂i] and kernelise the global information of the brain and similarly

let Ŷ be the selected time sequence that corresponds to the fMRI frames. Therefore we

can encapsulate all the information in the fMRI by kernelising X̂ and similar with the

time-courses Ŷ

Kx =
〈

X̂, X̂
〉

Ky =
〈

Ŷ , Ŷ
〉
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due to the kernel trick we obtain Kx and Ky are of size M×M . Due to that α, β and the

correlation values ρ are in the dual representation we need to “step back” to the primal

weighting (Hardoon et al., 2003) such that we can recreate the original slice image with

weights. Pixels that are associated with high correlation will have a high weight value

while those associated with low correlation will have a corresponding low weight value.

Let

wxi
= Xiα (3.6)

KCCA has a direct advantage over CCA in the ability of computing the correlation,

activation weights values, on all slices simultaneously due to the usage of the kernel

methodology, which represent the scans as a Gram matrix. As we are now transforming

the fMRI data to the dual representation using the kernel trick we are not limited only

to the usage of a linear kernel as used in our experiments. We are able to create tailored

kernels to better extract the different image elements, though as we are interested in

preserving the weight vector, we are limited to the usage of inner product kernels.





Chapter 4

Experiments

We compare the KCCA approach to the baseline CCA and OCA as presented in Friman

et al. (2001a,b); Friman (2003) using three separate experiments, which are presented

in the following subsections. We start by demonstrating the performance of KCCA on

simulated data in subsection 4.1 as it is extremely hard to tell which method is better

when using real fMRI analysis. In subsection 4.2 we present two tasks where the first

was a flexing of the index finger of the right hand and the second was of a mental cal-

culation. In these two tasks the time frequency used was as described in section 2.1. In

all the figures the right side of the image is the left hemisphere and vice versa. This is

the radiology convention of showing brain images (looking at the images from beneath

or from the patient’s feet). We compute the regularisation parameter κ from equation

(3.5) for the experiments a priori as described in Hardoon and Shawe-Taylor (2003);

Hardoon et al. (2003).

In the following experiments we use the correlation values computed by CCA and OCA.

Although in KCCA we prefer to compute the weights associated with the pixels, as we

hypothesise that this can give us more information. This step can also be done with

CCA although we do not do so as this approach is not as intuitive and straightforward

as with KCCA. In OCA this can not be done as there are no weights.

4.1 Simulated Data

As it is impossible to tell which method is better when real data is used, we first experi-

ment with controlled simulated data. We embed square-wave “activity” in a null-data set

(no brain activity), figure 4.1 shows the square-wave that was embedded. The paradigm

of the applied activity is 10 images rest, 10 images activity and so forth, resulting with

200 time points. As the frame size was 100 × 100 we create a 1002 × 200 matrix and

compute the kernel as described in section 3.4. As we know the activation period we

15



16 Chapter 4 Experiments

use for our time sequence a square-wave representation of activity 1 and rest −1 over

the 200 time-course. As we are using a simulated data with no delays in the time-course

(we use the square-wave) the true potential of KCCA and CCA will not be apparent.

Figure 4.2 presents the found correlation values on the simulated data, we are able
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Figure 4.1: The square-wave “activity” embedded in the null brain scan.

to observe that the embedded activity was found. In figure 4.3 we view the correlation
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Figure 4.2: OCA correlation on the test brain scan

result from CCA. Active regions according to the embedded square-wave in figure 4.3(a)

have been found, though we observe that the active pixels have a tendency to overflow

to nearby pixels and that some objects get distorted from their original shape. This

problem may be solved by thresholding. In figure 4.4 we view the KCCA found pixel

weights. We find that our inital assumption that using the weights rather than the

correlation is somewhat reassured when comparing the KCCA pixel weights to the OCA
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Figure 4.3: CCA correlation on the test brain scan

pixel correlation. The presented figures 4.2, 4.3 and 4.4 are to give us a visual result of
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Figure 4.4: KCCA weights on the test brain scan

the different methods. As due to the fact that we use correlation in the baseline methods

and weights in KCCA may imply that we are unable to compare them directly visibly.

Therefore we attempt to statistically verify the advantage of KCCA over baseline meth-

ods by computing the true-positive voxels, the pixels which are found and really are

active, and the false-positive voxels, the pixels which are found to be active but in fact

are not. This comparison has to be done via thresholding of the image. We compute the
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threshold values by taking all the positive pixel values from both images by decreasing

order.

In the following figures we plot the true-positive and false-positive pixels found.
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Figure 4.5: OCA Found True/False-Positives.
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Figure 4.6: CCA Found True/False-Positives.
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Figure 4.7: KCCA Found True/False-Positives.

In figure 4.5 we plot the results as found by OCA, in figure 4.6 by CCA and last in

figure 4.7 the found true-positive and false positive pixels using KCCA are plotted. We
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are able to observe that OCA and KCCA are very similar to each other where using

a certain threshold, the number of false-positive pixels drops below that of the true-

positive. This does not happen with CCA where the ratio of false-positive pixels are

greater then true-positive.

Finally we plot a recall vs. precision of the positive pixels extracted by the differ-

ent methods. Here we look at the true-positive pixel ratio and hence expect CCA to

arise more successfully then other methods as the ’overflowing’ will assure that all true-

positive pixels are located. Although as observed in figure 4.6 this does not assure us

that the false-positive will also be low, which as visible is not the case. We compute the

recall and precision as follows

recall =
true − positive

all − positive

precision =
true − positive

(true − positive) + (false− positive)

As we observe in figure 4.8 OCA and KCCA share the same pattern of behaviour
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Figure 4.8: Recall vs. Precision.

where OCA is able to find a little more true-positive pixels then KCCA. CCA presents

an interesting behaviour pattern which could be interpreted as a sharp drop in true-

positive pixels to false-positive pixel followed with a steady line of true-positive found

pixels while the false-positive pixels drop. This reaches a crossing point with OCA

and KCCA, which also passes the other two methods. This informs us that the overall

number of true-positive pixels found from this point are greater then those found in OCA

and CCA, although as stated already this does not indicate the number of false-positive

pixels found as well.
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4.2 Finger Flexing & Mental Calculation

In the following two real experiments we present the visual results as the statistical ver-

ification, as done with the simulated data, is unavailable (we have no ground truth). It

is important to emphasis that a direct comparison may not be adequate as KCCA uses

weights while CCA and OCA use the actual correlation values. Although we feel that

it may still be reasonable to present this as the weights represent the information given

in the correlation (throughout the figures presented blue represents the negative side of

the spectrum while red represents activity). As real fMRI is used in the experiments

we use for the KCCA and CCA methods the time-course as a set of basis functions as

described in subsection 2.1 and the regular square-wave time-course (figure 2.3) for the

OCA method.

In the first experiment we attempt to find the active regions for a finger flexing task.

As described in Friman et al. (2001a), a volunteer flexed his finger inside a MR scanner

while image slices of the brain were acquired. The time-course is 10 frames rest, 10

frames flexing and so forth. Resulting in 200 acquisitions per depth slice, there were an

overall of 12 slices.

Figure 4.9 presents the correlation values found using OCA. We are able to observe

that although the expected active regions for the finger flexing task are highlighted,

there are many regions highlighted as well, making the distinguishing between the ac-

tive and non-active region difficult. In figure 4.10 the correlation image using CCA is

presented where the image is clearer then that of OCA. The active region is highlighted

in contrast to those that are not, making the separation clear. In Figure 4.11 the
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Figure 4.9: for slice 12.
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Figure 4.10: Finger flexing activity detection using CCA for slice 12.
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Figure 4.11: Finger flexing activity detection using KCCA for slice 12.

weighted image is displayed computed by KCCA. We view that the expected active

region is also found with more information than that displayed in figure 4.10 though

clearer than that displayed in figure 4.9.

In the second experiment, the task given to the volunteer was to compute the sum

of two numbers that were projected onto a wall in the scanner room. The time-course is

15 frames rest, 15 frames performing the task and so forth, resulting in 180 acquisitions

per slice. There are 12 slices. We attempt to infer the active brain regions during a
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mental calculation task.

Figure 4.12 presents the results as obtained by OCA, as we observe no useful information

can be extracted from the image. In Figure 4.13 we can view the CCA correlation mask

of slice 12 for the mental calculation task, we find that in this image a clear separation

between active and non-active regions are found. In these types of experiments neuro-

logical interpretation is hard to obtain. In Figure 4.14 we observe the active regions
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Figure 4.12: Mental task activity detection using OCA for slice 12.
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Figure 4.13: Mental task activity detection using CCA for slice 12.
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Figure 4.14: Mental task activity detection using KCCAfor slice 12.

for slice 12 as produced from KCCA. We find that the active regions located are similar

to those located in figure 4.13 although 3 − 4 regions are deep blue suggesting negative

correlation. The negative correlation, or de-activation, found in the KCCA figure 4.14

is due to a higher activity during the rest periods than during the “active” periods. We

believe that this is not located in CCA due to the small world view, analysing a section

at a time, while in KCCA we apply to procedure on the whole brain.
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Signal Reconstruction

In the following section we present an approach of statistically reconstructing a signal

from the fMRI scans. This reconstruction approach will allow us to determine the

validity of our prior analysis for if we have learnt the appropriate function we will be

able to reconstruct it. Let X be the fMRI training examples and Xt the fMRI testing

examples, Y be the training activity time sequence and Yt the testing activity signal we

want to reconstruct. Let

gwx,wy
= ‖Xwx − Y wy‖

2 (5.1)

where gwx,wy
≈ 0 as we want the feature Xwx from one view of the data to be identical

to the feature Y wy obtained from the second view of the data, this will be true on the

training data if there is a high correlation between the two views. Therefore we can

rewrite equation (5.1) as

‖Xwx − Y wy‖
2 ≈ 0 (5.2)

Xwx ≈ Y wy (5.3)

We divide the fMRI data into a training and testing set. On the training data we

compute the KCCA coefficients α, β. Let Kxt
= 〈Xt,X〉 be the fMRI testing kernel and

Kyt
= 〈Yt, Y 〉 be the time sequence testing kernel. Shawe-Taylor and Cristianini (2004)

have shown that this equivalence can be held true also for the testing data using efficient

regularisation. Hence we justify the usage of equation (5.3) and equation (3.6) to define

Xtwx ≈ Ytwy

Kxt
α ≈ Y ′

t Y β.

25
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As we are interested in finding the testing-set unknown activity time sequence we can

rearrange the equation to

Yt ≈ (Kxt
α · (Y β)−1)′. (5.4)

As we are no longer interested in the weight vector but in the reconstruction of the signal,

we are not confined to the usage of inner product kernels. In the following experiment

we compare the success rate between the linear kernel as used, to the Gaussian kernel

(defined in equation (5.5))

K(xi, xj) = exp
−‖xi − xj‖

2

σ2
(5.5)

using σ as the minimum distance between the different labelled images.

We test our approach using the square-wave time sequence of 1 representing activity and

−1 representing rest for both the simulated and real data experiments. The real data is

comprised of mental calculation, the adding of two numbers, and right hand index finger

flexing. For the simulated data and mental calculation we use the first 160 scans for

training and the remaining 20 for testing, while with the finger flexing we use the first

180 for training and the remaining 20 for testing. We randomise the examples prior to

the training and testing separation. Once we obtain the reconstructed Yt we threshold

it by T = 0, i.e. Let Ŷ be the thresholded reconstructed signal

Ŷ =

{

1 if Yt ≥ 0

0 otherwise

Table 5.1 shows the average overall results of successfully reconstructing the activity

time sequence for the testing fMRI data over 10 repeats using both a linear & Gaussian

kernels. We are able to see that the linear kernel performs better then the Gaussian. It

is important to state at this stage the difference between CCA and kernel CCA (KCCA)

with a linear kernel. The former uses a larger number of features than in CCA, which

are computed implicitly in the kernel.

Table 5.1: Success rate in reconstructing the test activity time sequence

Data-Set Linear Gaussian
Average Standard Deviation Average Standard Deviation

Simulated data 96% 5.16% 93.5% 8.18%

Finger flexing 70.5% 10.12% 63.5% 8.83%

Mental calculation 51% 9.36% 44.5% 7.24%

We attempt to learn the relationship between the mental process prior to the motor

process (finger flexing) by setting the square-wave sequence such that the three images

before the actual finger flexing were considered as active and all the remaining images
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were considered as inactive (see figure 5.1). We separate the data and train as before

using only a linear kernel and attempt to reconstruct this new square-wave sequence

over an average of 10 random repeats. We find that we can successfully reconstruct the

signal with a success average of 68.5% ± 9.14%. This implies that the mental process

prior to the actual motor process is sufficient to capture the functionality in the brain.
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Figure 5.1: Activity plot of mental process prior to motor process.





Chapter 6

Conclusions

We have presented an extension to CCA analysis of fMRI based on Kernel Methods

(KCCA). We show that KCCA has a computational advantage over CCA and OCA.

The presented preliminary results show that KCCA can compute the activated regions

with a finer precision even when using a simple linear kernel. We find that by using the

found KCCA weights we return to the OCA original pixel by pixel analysis although

unlike OCA where KCCA enables us to use new processing power within the kernel.

Also as shown in the results OCA was not successful with real fMRI where noise is

ramped in the fRMI while KCCA was able to distinguish active and non-active regions

clearly.

We also present a methodology to reconstruct an activity signal from a fMRI scan

that is of a similar activity process. This methodology uses the baseline concept that

the two views used in KCCA are as close as possible. The proposed approach can be

used as a validation technique for the original analysis. Further work on fMRI labelling

using other machine learning methods is currently being completed in a different study.

For future work we would like to try more elaborate time basis functions and to ex-

periment on different data types (emotional, mental and other motor fMRI data) and

tailored kernels for better extracting the active regions in the brain. A further inter-

esting avenue would be to observe the performance of applying our KCCA approach to

other techniques of brain analysis and also to more complex tasks. We also speculate

that KCCA would be able to handle a multiple task fMRI scenario (i.e. a scan with

a few tasks at once) where baseline methods, such as CCA, require scans of individual

tasks and can not handle a multiple task situation.
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