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Abstract

Recently machine learning methodology has been used increasing to analyze the relation-
ship between stimulus categories and fMRI responses [2, 14, 15, 11, 13, 8, 9, 1, 12, 7].
Here, we introduce a new unsupervised machine learning approach to fMRI analysis ap-
proach, in which the simple categorical description of stimulus type (e.g. type of task)
is replaced by a more informative vector of stimulus features. We compared this new
approach with a standard Support Vector Machine (SVM) analysis of fMRI data using a
categorical description of stimulus type.

The following study differs from conventional unsupervised approaches in that we make
use of the stimulus characteristics. We use kernel Canonical Correlation Analysis (KCCA)
to learn the correlation between the fMRI volume and the corresponding stimulus features
presented at a particular time point. CCA can be seen as the problem of finding basis
vectors for two sets of variables such that the correlation of the projections of the variables
onto these basis vectors are mutually maximised. KCCA first projects the data into a higher
dimensional feature space before performing CCA in the new feature space.

To classify a new stimulus we compute the kernel between the test and the training samples
and project that kernel onto the learned semantic space. The output gives a score which can
be thresholded to allocate a category to each test example.

CCA [3, 4] and KCCA [5] have been used in previous work for fMRI analysis using only
conventional categorical stimulus descriptions and did not explore the possibility of using
the complex characteristics of the stimuli as the base for the feature selection in the fMRI
data.

The fMRI data used is from an experiment in which we studied the responses to stimuli de-
signed to evoke different types of emotional responses (pleasant/unpleasant). The pleasant
images consisted of women in swimsuits while the unpleasant images comprised image of



skin diseases. For experiment details see [7]. Each stimulus image was represented using
Scale Invariant Feature Transformation (SIFT) [10] features, which are used in a similar
fashion to the bag-of-words (word-frequency) models for text documents.

The complete dataset consisted of 1344 fMRI volumes and their corresponding image-
stimuli. From this dataset, we used 670 fMRI volumes (517, 845 voxels per volume) and
their corresponding image-stimuli for training and the remaining 674 for testing. In both
training and testing datasets half the stimuli were Pleasant and half Unpleasant, hence a
random classifier would achieve 50% accuracy. The experiments are repeated ten times,
each with a random permutation of the training-testing set. We use linear, centralised,
kernels in our KCCA framework.

The KCCA regularisation parameter [6] is computed using 2—fold cross validation on the
training data. KCCA achieves an accuracy of 81.34% + 3.29% while the supervised SVM
attains an accuracy of 90.28% =+ 0.93%. These classifications accuracy’s are significantly
different than of chance expectation #-test p << 0.0001. The unthresholded weights vec-
tors for both methods are displayed in 1. The similarities in the patterns of the weight
vectors obtained by the two classification methods provides reassurance of the validity of
the KCCA analysis, which is effectively obtaining the categorical stimulus type directly
from the data.

Figure 1: The unthresholded weight values showing the contrast between viewing Pleasant vs.
Unpleasant. We use the blue scale for negative (Unpleasant) values and the red scale for the positive
values (Pleasant). Top figure: The discrimination analysis on the training data was performed with
labels (+1/ — 1). Bottom figure: The discrimination analysis on the training data was performed
without labels. The class discrimination is automatically extracted from the analysis.
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