
	

https://sifevivotogipi.xeltuve.com/gdy?utm_term=difference+between+divide+and+conquer+and+dynamic+programming+pdf

Difference	between	divide	and	conquer	and	dynamic	programming	pdf

ReadDiscussCoursesPracticeImprove	Article	Save	Article	Like	Article	Greedy	algorithm,	divide	and	conquer	algorithm,	and	dynamic	programming	algorithm	are	three	common	algorithmic	paradigms	used	to	solve	problems.	Here’s	a	comparison	among	these	algorithms:Approach:Greedy	algorithm:	Makes	locally	optimal	choices	at	each	step	with	the
hope	of	finding	a	global	optimum.Divide	and	conquer	algorithm:	Breaks	down	a	problem	into	smaller	subproblems,	solves	each	subproblem	recursively,	and	then	combines	the	solutions	to	thesubproblems	to	solve	the	original	problem.Dynamic	programming	algorithm:	Solves	subproblems	recursively	and	stores	their	solutions	to	avoid	repeated
calculations.Goal:Greedy	algorithm:	Finds	the	best	solution	among	a	set	of	possible	solutions.Divide	and	conquer	algorithm:	Solves	a	problem	by	dividing	it	into	smaller	subproblems,	solving	each	subproblem	independently,	and	then	combining	thesolutions	to	the	subproblems	to	solve	the	original	problem.Dynamic	programming	algorithm:	Solves	a
problem	by	breaking	it	down	into	smaller	subproblems	and	solving	each	subproblem	recursively.Time	complexity:Greedy	algorithm:	O(nlogn)	or	O(n)	depending	on	the	problem.Divide	and	conquer	algorithm:	O(nlogn)	or	O(n^2)	depending	on	the	problem.Dynamic	programming	algorithm:	O(n^2)	or	O(n^3)	depending	on	the	problem.Space
complexity:Greedy	algorithm:	O(1)	or	O(n)	depending	on	the	problem.Divide	and	conquer	algorithm:	O(nlogn)	or	O(n^2)	depending	on	the	problem.Dynamic	programming	algorithm:	O(n^2)	or	O(n^3)	depending	on	the	problem.Optimal	solution:Greedy	algorithm:	May	or	may	not	provide	the	optimal	solution.Divide	and	conquer	algorithm:	May	or	may
not	provide	the	optimal	solution.Dynamic	programming	algorithm:	Guarantees	the	optimal	solution.Examples:Greedy	algorithm:	Huffman	coding,	Kruskal’s	algorithm,	Dijkstra’s	algorithm,	etc.Divide	and	conquer	algorithm:	Merge	sort,	Quick	sort,	binary	search,	etc.Dynamic	programming	algorithm:	Fibonacci	series,	Longest	common	subsequence,
Knapsack	problem,	etc.In	summary,	the	main	differences	among	these	algorithms	are	their	approach,	goal,	time	and	space	complexity,	and	their	ability	to	provide	the	optimal	solution.	Greedy	algorithm	and	divide	and	conquer	algorithm	are	generally	faster	and	simpler,	but	may	not	always	provide	the	optimal	solution,	while	dynamic	programming
algorithm	guarantees	the	optimal	solution	but	is	slower	and	more	complex.	Greedy	Algorithm:Greedy	algorithm	is	defined	as	a	method	for	solving	optimization	problems	by	taking	decisions	that	result	in	the	most	evident	and	immediate	benefit	irrespective	of	the	final	outcome.	It	is	a	simple,	intuitive	algorithm	that	is	used	in	optimization
problems.Divide	and	conquer	is	an	algorithmic	paradigm	in	which	the	problem	is	solved	using	the	Divide,	Conquer,	and	Combine	strategy.	

A	typical	Divide	and	Conquer	algorithm	solve	a	problem	using	the	following	three	steps:Divide:	This	involves	dividing	the	problem	into	smaller	sub-problems.Conquer:	Solve	sub-problems	by	calling	recursively	until	solved.Combine:	Combine	the	sub-problems	to	get	the	final	solution	of	the	whole	problem.Dynamic	Programming:Dynamic	Programming
is	mainly	an	optimization	over	plain	recursion.	Wherever	we	see	a	recursive	solution	that	has	sometimes	repeated	calls	for	the	same	input	states,	we	can	optimize	it	using	Dynamic	Programming.	The	idea	is	to	simply	store	the	results	of	subproblems	so	that	we	do	not	have	to	re-compute	them	when	needed	later.	This	simple	optimization	reduces	time
complexities	from	exponential	to	polynomial.Greedy	Algorithm	vs	Divide	and	Conquer	Algorithm	vs	Dynamic	Algorithm:Sl.NoGreedy	AlgorithmDivide	and	conquerDynamic	Programming	1Follows	Top-down	approachFollows	Top-down	approachFollows	bottom-up	approach2Used	to	solve	optimization	problemUsed	to	solve	decision	problemUsed	to
solve	optimization	problem3The	optimal	solution	is	generated	without	revisiting	previously	generated	solutions;	thus,	it	avoids	the	re-computationSolution	of	subproblem	is	computed	recursively	more	than	once.The	solution	of	subproblems	is	computed	once	and	stored	in	a	table	for	later	use.4It	may	or	may	not	generate	an	optimal	solution.	It	is	used
to	obtain	a	solution	to	the	given	problem,	it	does	not	aim	for	the	optimal	solutionIt	always	generates	optimal	solution.5Iterative	in	nature.Recursive	in	nature.Recursive	in	nature.6	efficient	and	fast	than	divide	and	conquer.	
For	instance,	single	source	shortest	path	finding	using	Dijkstra’s	Algo	takes	O(ElogV)	timeless	efficient	and	slower.more	efficient	but	slower	than	greedy.	For	instance,	single	source	shortest	path	finding	using	Bellman	Ford	Algo	takes	O(VE)	time.7extra	memory	is	not	required.some	memory	is	required.more	memory	is	required	to	store	subproblems
for	later	use.8Examples:	Fractional	Knapsack	problem,	Activity	selection	problem,	Job	sequencing	problem.Examples:	Merge	sort,	Quick	sort,	Strassen’s	matrix	multiplication.Examples:	0/1	Knapsack,	All	pair	shortest	path,	Matrix-chain	multiplication.Last	Updated	:	17	Mar,	2023Like	Article	Save	Article	In	this	article	I’m	trying	to	explain	the
difference/similarities	between	dynamic	programming	and	divide	and	conquer	approaches	based	on	two	examples:	binary	search	and	minimum	edit	distance	(Levenshtein	distance).The	ProblemWhen	I	started	to	learn	algorithms	it	was	hard	for	me	to	understand	the	main	idea	of	dynamic	programming	(DP)	and	how	it	is	different	from	divide-and-
conquer	(DC)	approach.	When	it	gets	to	comparing	those	two	paradigms	usually	Fibonacci	function	comes	to	the	rescue	as	great	example.	But	when	we’re	trying	to	solve	the	same	problem	using	both	DP	and	DC	approaches	to	explain	each	of	them,	it	feels	for	me	like	we	may	lose	valuable	detail	that	might	help	to	catch	the	difference	faster.	And	these
detail	tells	us	that	each	technique	serves	best	for	different	types	of	problems.I’m	still	in	the	process	of	understanding	DP	and	DC	difference	and	I	can’t	say	that	I’ve	fully	grasped	the	concepts	so	far.	But	I	hope	this	article	will	shed	some	extra	light	and	help	you	to	do	another	step	of	learning	such	valuable	algorithm	paradigms	as	dynamic	programming
and	divide-and-conquer.Dynamic	Programming	and	Divide-and-Conquer	SimilaritiesAs	I	see	it	for	now	I	can	say	that	dynamic	programming	is	an	extension	of	divide	and	conquer	paradigm.I	would	not	treat	them	as	something	completely	different.	

Because	they	both	work	by	recursively	breaking	down	a	problem	into	two	or	more	sub-problems	of	the	same	or	related	type,	until	these	become	simple	enough	to	be	solved	directly.	The	solutions	to	the	sub-problems	are	then	combined	to	give	a	solution	to	the	original	problem.So	why	do	we	still	have	different	paradigm	names	then	and	why	I	called
dynamic	programming	an	extension.	It	is	because	dynamic	programming	approach	may	be	applied	to	the	problem	only	if	the	problem	has	certain	restrictions	or	prerequisites.	And	after	that	dynamic	programming	extends	divide	and	conquer	approach	with	memoization	or	tabulation	technique.Let’s	go	step	by	step…Dynamic	Programming
Prerequisites/RestrictionsAs	we’ve	just	discovered	there	are	two	key	attributes	that	divide	and	conquer	problem	must	have	in	order	for	dynamic	programming	to	be	applicable:Once	these	two	conditions	are	met	we	can	say	that	this	divide	and	conquer	problem	may	be	solved	using	dynamic	programming	approach.Dynamic	Programming	Extension	for
Divide	and	ConquerDynamic	programming	approach	extends	divide	and	conquer	approach	with	two	techniques	(memoization	and	tabulation)	that	both	have	a	purpose	of	storing	and	re-using	sub-problems	solutions	that	may	drastically	improve	performance.	

For	example	naive	recursive	implementation	of	Fibonacci	function	has	time	complexity	of	O(2^n)	where	DP	solution	doing	the	same	with	only	O(n)	time.Memoization	(top-down	cache	filling)	refers	to	the	technique	of	caching	and	reusing	previously	computed	results.	The	memoized	fib	function	would	thus	look	like	this:memFib(n)	{	if	(mem[n]	is
undefined)	if	(n	<	2)	result	=	n	else	result	=	memFib(n-2)	+	memFib(n-1)	mem[n]	=	result	return	mem[n]	}Tabulation	(bottom-up	cache	filling)	is	similar	but	focuses	on	filling	the	entries	of	the	cache.	Computing	the	values	in	the	cache	is	easiest	done	iteratively.	The	tabulation	version	of	fib	would	look	like	this:	tabFib(n)	{	mem[0]	=	0	mem[1]	=	1	for	i
=	2...n	mem[i]	=	mem[i-2]	+	mem[i-1]	return	mem[n]	}You	may	read	more	about	memoization	and	tabulation	comparison	here.The	main	idea	you	should	grasp	here	is	that	because	our	divide	and	conquer	problem	has	overlapping	sub-problems	the	caching	of	sub-problem	solutions	becomes	possible	and	thus	memoization/tabulation	step	up	onto	the
scene.So	What	the	Difference	Between	DP	and	DC	After	AllSince	we’re	now	familiar	with	DP	prerequisites	and	its	methodologies	we’re	ready	to	put	all	that	was	mentioned	above	into	one	picture.Dynamic	programming	and	divide	and	conquer	paradigms	dependencyLet’s	go	and	try	to	solve	some	problems	using	DP	and	DC	approaches	to	make	this
illustration	more	clear.Divide	and	Conquer	Example:	Binary	SearchBinary	search	algorithm,	also	known	as	half-interval	search,	is	a	search	algorithm	that	finds	the	position	of	a	target	value	within	a	sorted	array.	Binary	search	compares	the	target	value	to	the	middle	element	of	the	array;	if	they	are	unequal,	the	half	in	which	the	target	cannot	lie	is
eliminated	and	the	search	continues	on	the	remaining	half	until	the	target	value	is	found.	

If	the	search	ends	with	the	remaining	half	being	empty,	the	target	is	not	in	the	array.ExampleHere	is	a	visualization	of	the	binary	search	algorithm	where	4	is	the	target	value.Binary	search	algorithm	logicLet’s	draw	the	same	logic	but	in	form	of	decision	tree.Binary	search	algorithm	decision	treeYou	may	clearly	see	here	a	divide	and	conquer	principle
of	solving	the	problem.	We’re	iteratively	breaking	the	original	array	into	sub-arrays	and	trying	to	find	required	element	in	there.Can	we	apply	dynamic	programming	to	it?	No.	It	is	because	there	are	no	overlapping	sub-problems.	Every	time	we	split	the	array	into	completely	independent	parts.	And	according	to	divide	and	conquer
prerequisites/restrictions	the	sub-problems	must	be	overlapped	somehow.Normally	every	time	you	draw	a	decision	tree	and	it	is	actually	a	tree	(and	not	a	decision	graph)	it	would	mean	that	you	don’t	have	overlapping	sub-problems	and	this	is	not	dynamic	programming	problem.The	CodeHere	you	may	find	complete	source	code	of	binary	search
function	with	test	cases	and	explanations.	function	binarySearch(sortedArray,	seekElement)	{	let	startIndex	=	0;	let	endIndex	=	sortedArray.length	-	1;	while	(startIndex	<=	endIndex)	{	const	middleIndex	=	startIndex	+	Math.floor((endIndex	-	startIndex)	/	2);	//	If	we've	found	the	element	just	return	its	position.	if	(sortedArray[middleIndex]	===
seekElement))	{	return	middleIndex;	}	//	Decide	which	half	to	choose:	left	or	right	one.	if	(sortedArray[middleIndex]	<	seekElement))	{	//	Go	to	the	right	half	of	the	array.	startIndex	=	middleIndex	+	1;	}	else	{	//	Go	to	the	left	half	of	the	array.	

endIndex	=	middleIndex	-	1;	}	}	return	-1;	}Dynamic	Programming	Example:	Minimum	Edit	DistanceNormally	when	it	comes	to	dynamic	programming	examples	the	Fibonacci	number	algorithm	is	being	taken	by	default.	But	let’s	take	a	little	bit	more	complex	algorithm	to	have	some	kind	of	variety	that	should	help	us	to	grasp	the	concept.Minimum
Edit	Distance	(or	Levenshtein	Distance)	is	a	string	metric	for	measuring	the	difference	between	two	sequences.	Informally,	the	Levenshtein	distance	between	two	words	is	the	minimum	number	of	single-character	edits	(insertions,	deletions	or	substitutions)	required	to	change	one	word	into	the	other.ExampleFor	example,	the	Levenshtein	distance
between	“kitten”	and	“sitting”	is	3,	since	the	following	three	edits	change	one	into	the	other,	and	there	is	no	way	to	do	it	with	fewer	than	three	edits:ApplicationsThis	has	a	wide	range	of	applications,	for	instance,	spell	checkers,	correction	systems	for	optical	character	recognition,	fuzzy	string	searching,	and	software	to	assist	natural	language
translation	based	on	translation	memory.Mathematical	DefinitionMathematically,	the	Levenshtein	distance	between	two	strings	a,	b	(of	length	|a|	and	|b|	respectively)	is	given	by	function	lev(|a|,	|b|)	whereNote	that	the	first	element	in	the	minimum	corresponds	to	deletion	(from	a	to	b),	the	second	to	insertion	and	the	third	to	match	or	mismatch,
depending	on	whether	the	respective	symbols	are	the	same.ExplanationOk,	let’s	try	to	figure	out	what	that	formula	is	talking	about.	Let’s	take	a	simple	example	of	finding	minimum	edit	distance	between	strings	ME	and	MY.	Intuitively	you	already	know	that	minimum	edit	distance	here	is	1	operation	and	this	operation	is	“replace	E	with	Y”.	But	let’s
try	to	formalize	it	in	a	form	of	the	algorithm	in	order	to	be	able	to	do	more	complex	examples	like	transforming	Saturday	into	Sunday.To	apply	the	formula	to	ME>MY	transformation	we	need	to	know	minimum	edit	distances	of	ME>M,	M>MY	and	M>M	transformations	in	prior.	Then	we	will	need	to	pick	the	minimum	one	and	add	+1	operation	to
transform	last	letters	E?Y.So	we	can	already	see	here	a	recursive	nature	of	the	solution:	minimum	edit	distance	of	ME>MY	transformation	is	being	calculated	based	on	three	previously	possible	transformations.	Thus	we	may	say	that	this	is	divide	and	conquer	algorithm.To	explain	this	further	let’s	draw	the	following	matrix.Simple	example	of	finding
minimum	edit	distance	between	ME	and	MY	stringsCell	(0,	1)	contains	red	number	1.	It	means	that	we	need	1	operation	to	transform	M	to	empty	string:	delete	M.	This	is	why	this	number	is	red.Cell	(0,	2)	contains	red	number	2.	
It	means	that	we	need	2	operations	to	transform	ME	to	empty	string:	delete	E,	delete	M.Cell	(1,	0)	contains	green	number	1.	It	means	that	we	need	1	operation	to	transform	empty	string	to	M:	insert	M.	This	is	why	this	number	is	green.Cell	(2,	0)	contains	green	number	2.	It	means	that	we	need	2	operations	to	transform	empty	string	to	MY:	insert	Y,
insert	M.Cell	(1,	1)	contains	number	0.	It	means	that	it	costs	nothing	to	transform	M	to	M.Cell	(1,	2)	contains	red	number	1.	It	means	that	we	need	1	operation	to	transform	ME	to	M:	delete	E.And	so	on…This	looks	easy	for	such	small	matrix	as	ours	(it	is	only	3×3).	But	how	we	could	calculate	all	those	numbers	for	bigger	matrices	(let’s	say	9×7	one,
for	Saturday>Sunday	transformation)?The	good	news	is	that	according	to	the	formula	you	only	need	three	adjacent	cells	(i-1,	j),	(i-1,	j-1),	and	(i,	j-1)	to	calculate	the	number	for	current	cell	(i,	j)	.	All	we	need	to	do	is	to	find	the	minimum	of	those	three	cells	and	then	add	+1	in	case	if	we	have	different	letters	in	i-s	row	and	j-s	columnSo	once	again	you
may	clearly	see	the	recursive	nature	of	the	problem.Recursive	nature	of	minimum	edit	distance	problemOk	we’ve	just	found	out	that	we’re	dealing	with	divide	and	conquer	problem	here.	But	can	we	apply	dynamic	programming	approach	to	it?	Does	this	problem	satisfies	our	overlapping	sub-problems	and	optimal	substructure	restrictions?	Yes.	Let’s
see	it	from	decision	graph.Decision	graph	for	minimum	edit	distance	with	overlapping	sub-problemsFirst	of	all	this	is	not	a	decision	tree.	It	is	a	decision	graph.	You	may	see	a	number	of	overlapping	subproblems	on	the	picture	that	are	marked	with	red.	Also	there	is	no	way	to	reduce	the	number	of	operations	and	make	it	less	then	a	minimum	of	those
three	adjacent	cells	from	the	formula.Also	you	may	notice	that	each	cell	number	in	the	matrix	is	being	calculated	based	on	previous	ones.	Thus	the	tabulation	technique	(filling	the	cache	in	bottom-up	direction)	is	being	applied	here.	You’ll	see	it	in	code	example	below.Applying	these	principles	further	we	may	solve	more	complicated	cases	like	with
Saturday	>	Sunday	transformation.Minimum	edit	distance	to	convert	Saturday	to	SundayThe	CodeHere	you	may	find	complete	source	code	of	minimum	edit	distance	function	with	test	cases	and	explanations.	function	levenshteinDistance(a,	b)	{	const	distanceMatrix	=	Array(b.length	+	1)	.fill(null)	.map(()	=>	Array(a.length	+	1).fill(null));	for	(let	i	=
0;	i	<=	a.length;	i	+=	1)	{	distanceMatrix[0][i]	=	i;	}	for	(let	j	=	0;	j	<=	b.length;	j	+=	1)	{	distanceMatrix[j][0]	=	j;	}	for	(let	j	=	1;	j	<=	b.length;	j	+=	1)	{	for	(let	i	=	1;	i	<=	a.length;	i	+=	1)	{	const	indicator	=	a[i	-	1]	===	b[j	-	1]	?	0	:	1;	distanceMatrix[j][i]	=	Math.min(distanceMatrix[j][i	-	1]	+	1,	//	deletion	distanceMatrix[j	-	1][i]	+	1,	//	insertion
distanceMatrix[j	-	1][i	-	1]	+	indicator,	//	substitution);	}	}	return	distanceMatrix[b.length][a.length];	}ConclusionIn	this	article	we	have	compared	two	algorithmic	approaches	such	as	dynamic	programming	and	divide-and-conquer.	We’ve	found	out	that	dynamic	programming	is	based	on	divide	and	conquer	principle	and	may	be	applied	only	if	the
problem	has	overlapping	sub-problems	and	optimal	substructure	(like	in	Levenshtein	distance	case).	Dynamic	programming	then	is	using	memoization	or	tabulation	technique	to	store	solutions	of	overlapping	sub-problems	for	later	usage.I	hope	this	article	hasn’t	brought	you	more	confusion	but	rather	shed	some	light	on	these	two	important
algorithmic	concepts!	You	may	find	more	examples	of	divide	and	conquer	and	dynamic	programming	problems	with	explanations,	comments	and	test	cases	in	JavaScript	Algorithms	and	Data	Structures	repository.Happy	coding!Dynamic	programming	and	divide-and-conquer	are	two	commonly	used	algorithms	design	techniques	that	can	be	used	to
solve	a	variety	of	problems.Dynamic	Programming	is	a	technique	used	for	solving	problems	by	breaking	them	down	into	smaller	overlapping	subproblems	and	storing	the	results	of	these	subproblems	to	avoid	redundant	computation.	It	is	used	when	the	problem	exhibits	optimal	substructure,	meaning	that	the	optimal	solution	can	be	constructed	from
optimal	solutions	of	subproblems.	It	is	well-suited	for	problems	that	have	an	inherent	sequence,	such	as	making	a	sequence	of	decisions.	Some	common	examples	of	problems	solved	using	dynamic	programming	include	finding	the	longest	common	subsequence,	the	shortest	path	in	a	graph,	and	the	Fibonacci	sequence.Divide-and-Conquer	is	a
technique	used	for	solving	problems	by	breaking	them	down	into	smaller	subproblems	that	can	be	solved	independently	and	then	combining	these	solutions	to	obtain	the	solution	to	the	original	problem.	It	is	used	when	the	problem	can	be	divided	into	smaller	subproblems	that	are	similar	to	the	original	problem,	and	the	solution	to	the	subproblems
can	be	combined	to	form	a	solution	to	the	original	problem.	Some	common	examples	of	problems	solved	using	divide-and-conquer	include	the	quick	sort	algorithm,	binary	search,	and	the	merge	sort	algorithm.In	summary,	dynamic	programming	is	used	when	the	problem	has	an	optimal	substructure	and	can	be	solved	using	a	bottom-up	approach,
while	divide-and-conquer	is	used	when	the	problem	can	be	divided	into	smaller	subproblems	that	are	similar	to	the	original	problem	and	solved	using	a	top-down	approach.

