Hierarchical, Statistical Approach to Model Based Development for Medical Imaging Device Development

5th Annual INCOSE Great Lakes Regional Conference November 2011

Chris Unger, Ross Hoggatt, Ron Hockersmith, Jesse Peplinski, and Jose-Antonio Ayoroa <u>GE Healthcare</u>

imagination at work

Agenda / Abstract

Introduction to GE Healthcare **Design Challenges for GE Healthcare** What is Six Sigma? How Does Modeling Fit? Hierchical Modeling Example: CT Detectors Statistical Cost Modelling: CT Detectors Monte Carlo Example: CT Xray Source

The world's best diagnostics company

Technologies

Bio-Sciences

Our Core Competencies...

✓ Engineering / Physics
✓ Information Technology
✓ Chemistry
✓ Biology

Serves Demand...

✓ Application/Disease Focused...
New Indications

✓ Customer Driven... New Products

Page 3 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

Materials Enables Improved Imaging

1913	1970's	1980's	1990's	Amazing Future!
XR Tube	CT HiLight	MR Supercon	Flat Panel	Molecular
	Detector	Magnets	XR Detector	Medicine
Vacuum Tube,	Scintillator –	Superconductivity	α-Si Panel	Chemistry,
Ductile Tungsten	Lumex		Csl Scintillator	Functional Imaging
				Nanotechnology
1 st Medical	1975 Intro,	1983 1 st 1.5T	1 st Flat Panel	Material Sciences
XR tube…	1987 HiLight…	MRI…	Digital	
GE #1	GE #1 Worldwide	GE #1	GE #1	Information
Worldwide	CT supplier	Worldwide MR	Worldwide FPD	Quality
Supplier		supplier	Supplier	Algorithms, CAD, Information

Everywhere...

The Challenge... Energy Conversion & Detection

T-Milestones and Technology Readiness Levels

Four Critical Milestones in Technology Development

- TO: Technology Investigation Launched
- T1: Technology Investigation Plan Complete
- T2: Technical Feasibility Demonstrated
- **T3**: Technical Feasibility Demonstrated and Transition Complete

Platform Breakthrough Lifecycle...

Evolution of Design Technology

imagination at work

Page 7 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

What is Design for Six Sigma (DFSS)?

Design For Six Sigma

- Tools, training & metrics
- Products that meet Customer expectations
 - Technical Requirements
 - Reliability
 - Producibility (cost)
- Predict and improve quality before building prototypes
- Verify using pilot runs, pre-production and production units

A few tools in the DFSS toolkit

Customer CTQs(Ys or WHATs)	spotance	Optimized Normulation	Serie equipment	Delle environest	Stelle respects	counterly formulated respects	locante formulation methods	otal
mactive until use	13	h.	-	-	-			45
No DNA contamination	5		n	n	h.			
Appropriate DNA yield	1.4	- h				1	1	
Equivalent performance in sequencing	4	n.,						25
Low lot to lot variability	4					h	h	73
Fewer batches per year (longer shelf life)	2	h.,						27
Oversight reaction time	1.2	15				1	1	22
-20C storage	1.1	- h						1
Total		180	45	45	45	42	43	

QFD: Translate Customer needs to product reqmts

Scorecards

Accelerated Life

Measurement System Analysis

Design Of Experiments (DoE)

RATING	DECREE OF SEVERITY	DECEMBENCE	ABILITY TO DETECT Surv that the potential failure will be found or prevented before reaching the west conformer				
1.5	Commer will not notice the ad- verse effect or it is insignificant	Eduction of occurrence is tensole					
1	Consume will profind by operation: Low failure rate with sup- parting discumulation: Continue will experience sensory ance due to the slight degradation of performance Low failure rate without supporting discumulation		Almost certain that the potential failure will be found or prevented before reaching the pert contempt				
<i>'</i>			Low blackbood that the priceital failure will reach the next customer anda- tacted				
4	Contronner disentinflaction date to reduced performance	Occasional failures	Controls may detect or prevent the potential fail- ues from reaching the next conteners				
			Construction of the local data and the local data a				

Failure Modes & Effects Analysis

Monte Carlo Simulation (MCS)

Optimization

Page 10 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

What is a CT Detector?

CT Detectors – Mechanical Challenges

Plate Sorting & Stuffing

Painstaking Preparation Manual Assy

Gluing

"Arthroscopic Assembly"

Stresses over 10 Year Life...

- Rotations: 20 million @ 0.35sec
- Start/Stop: 300k cycles.... 972 days Accel./Decel. (0-20Gs)
- **Thermal Cycles**: 4,000 transitions from 15C to 65C
- Airflow: 3 Billion Cubic Ft Air, 6kg of dust

Framework for CT Detector Simulation

ᇬ imagination at work

Page 13 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

Strategy

1. Assemble Detector Simulation Engine

3. Implement Statistical Simulation: Perform yield prediction, optimization using process capabilities

imagination at work

5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

Detector Simulation Engine

- Use real data and capability analyses
- Real or simulations for image reconstruction
- Ability to quickly compare data to test theories

DAS

Parameters

Page 15 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

Can we optimize resolution?

Use of simulations allowed us to optimize the design and manufacturing process with no noticeable impact on customers

Modeling Process Critical to Quality (CTQ) Parameters v Cost

imagination at work

Page 17 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

Why Build a Cost Model Early?

Design Architecture / Early choices lock in most of cost (detailed design decisions have less impact – "80/20" rule)

In face of early uncertainty still be able to quantify cost between design alternatives and cost impact of process alternatives

Drive "cost risk" retirement (reduce uncertainty, focus on big ticket items)

Page 18 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

Model Development Process Steps

- 1) ID Main product components
- 2) Create process flow map
- 3) Create Empty Cost Model in Crystal Ball (CB)
- 4) Verify Model Equations
- 5) Gather Inputs

imagination at work

6) Generate & Analyze outputs

Discussion/ Brainstorm

Case Study - CT Detector "Module"

One Year Prior to Program Start (M0): Simple scale up from prior architecture blows up scrap cost EMBARK ON ALTERNATE PATH

Frequency Comparison

Nine Months Prior to M0: Input into Pugh Matrix for selecting between product architecture alternatives

imagination at work

Seven Months Prior to M0: Deciding factor in "detailed" architecture decision

Page 20 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

X-Ray Sources...

- Temp: >2500C... Steel Melts at 1500C
- Load : 20Gs... Rocket Launch <10Gs
- 60 km/hr; 2 ton force; 50μ stability
- Voltage: 140,000 volts
- Power: 100kW Power for 30 Houses into a 5 liter target
- 10,000 RPM... Porsche engine red-lines @ 9500

Examples of Computer Experiments + Advanced Visualization

Customer CTQs(Ys or WHATs)				
				12

QFD: Translate Customer needs to product reamts

Scorecards

Accelerated Life Tests

Measurement System Analysis

Design Of Experiments (DoE)

RATING			
	Continuer will not notice the ad- verse effect or it is insignificant		
	Consumer will probably experience slight annoyance	Loss failure rate with sup- porting documentation.	
	Continuer will experience annoy- ance due to the slight degradation of performance	Low failure rate without supporting documentation	Low Blatthood that the potential failure will reach the next customer ando- tacted

Failure Modes & Effects Analysis

Monte Carlo Simulation (MCS)

Optimization

Simulation Results and Benefits

Simulation Five Golden Rules

- Validated models
- Good engineering knowledge Vision
- Linked Hierarchical Models
- Visualization tools

Page 24 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

Conclusion

Challenging specs: Micron Tolerance, Quantum Noise Levels, 10's of G-Forces 10²⁵ Variation in Scales (eg. Energy) Continued Cost Containment Pressures from Governments Worldwide Competition Drives Time to Market

