A Systematic Approach to Technical Design Reviews for Distributed Development Teams

5th Annual INCOSE Great Lakes Regional Conference November 2011

Chris Unger GE Healthcare

imagination at work

Page 1 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission Introduction to GE HealthcareWhy Technical Design Reviews?5 Key Elements of TDR DeploymentSustaining Mechanisms

GE Healthcare

\$17B global business unit of GE
30,000 employees worldwide
\$1B+/year in R&D investment
Core strengths in bio-sciences,
technology, business

Page 3 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

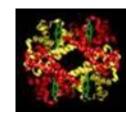
A global company with engineering teams aligned regionally to provide customer-focused solutions

Americas

EuropeJapanMiddle EastChinaIndia

Broad solutions for healthcare

Broad-based Technologies


Diagnostic imaging & surgery technologies

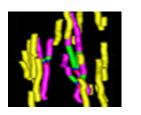
Information

Technology

Integrated admin. & clinical

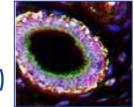
Discovery tools

Life


Sciences

Clinical products

Electronic medical records


Protein & cell sciences

Medical diagnostics

Picture Archiving System (PACS)

Clinical tissue biomarkers

Page 5 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

Putting the TECHNICAL in Technical Design Review

- Senior TCP oversee the work of other engineers to ensure the quality of the design, and
- Engineering should employ statistical tools in the design process

Delivering products whose performance, safety, and reliability are maintained despite variability in customer usage and environment

Five Key Elements of TDR Deployment

Program Level

1. Good Technical Review plan and follow-up

Individual TDR Level

2. Subject Matter Expert engagement, asking good questions

- 3. Use of functional excellence in design, including Design for Six Sigma
- 4. Reviews are well organized and executed

Product Team / Business Level

5. Subject matter experts are available, inputs are valued, and future experts are mentored

How to Populate the TDR Calendar?

Select the Most Critical Areas; Risk Based

- Outputs that are changing
- Anything that has a high risk for failure and/or safety
- Any design/system aspects, which are driving key program deliverables, such as schedule, cost, reliability, customer requirements, human factors/usability, software interfaces, etc.

Select Items Based on Design Complexity

- Larger, more complex designs should have multiple, phased reviews with specific focused topics
- Include the need to review complex sourced designs at intermediate points of the vendor's development
- Consider the need to re-review (or not) any ATD (Advanced Technology Development) project delivery or <u>reused</u> subsystem <u>in the context of the</u> <u>requirements and environment of the pulling program</u>

Timing: When should a review be held?

Reviews should focus on affecting the critical design decisions being made within the program. *If you hold the review too soon, there is little to review. If you hold it too late, you have committed to the design.*

Hold the review:

Soon enough to affect the design (multiple options still being considered)

Late enough to have something to review (design concepts, some design analysis, possibly some test results)

The GE Healthcare TDR Calendar Template

The template is grouped into two sections:

TDR Plan Content (slowly changing)

- Review 'area' or group,
- Review name
- Specific detailed critical review topics
- Review Type, or TDR Phase
- Review Owner
- TCP Approver
- Required reviewer(s)

TDR Plan Status (will be updated throughout the project life)

- Review Planning Status (review date, if desired)
- Review Record location
- Tracking number of issues, actions

Review the plan 'content' like any other design deliverable... It has huge 'leverage'

TDR Reviewer Development

3 necessary components for an effective TDR Reviewer:

- Functional Excellence
- Design for Six Sigma Skills
- Leadership Skills

The TCP Progression:

Learning => Technical skills
 Doing => Execution skills
 Leading => Planning and delegating skills
 Guiding => Vision casting and influencing skills
 Shaping Focus here

Sample Six Sigma Curriculum

Module 1 - Introduction
Module 2 - VoC, QFD, CTQ Flowdown
Module 3 - Tradeoffs and Risk Planning
Module 4-6 - Design of Experiments
Module 7 - Tolerance Analysis &
Allocation
Module 8 - Optimize Design w/
constraints
Module 9 - Std Process, Mistake Proofing
Module 10 - MSA/ GRR
Module 11 - Sample Size
Module 12 - Scorecards, Process Control

Follow apprenticeship (mentoring) model -

- I do, you watch invite attendance to TR's (shadowing)
- We do together participate in TR's, responsible for portions
- You do, I watch lead TRs, participate as reviewer (w/mentoring)
- You do lead TRs, participate as approver,

The Ideal Technical Design Review Membership

Enabling Six Sigma toolset

- 6 σ Master BB Tool Usage (Guide)
- 6 σ BB Tool Usage (Coach)
- 6 σ GB Level Tool Usage (User)

Presenter / Design Lead

Should you use an 'external/independent' reviewer?

Pros

- Brings new viewpoints, special skills
- Encourages linkages across teams

Cons

- Has less ownership than internal
- Needs 'education' on application
- Harder to find for followup

Use Selectively

Page 12 5th Annual INCOSE Great Lakes Regional Conference Copyright ©2011 by GEHC. Published and used by INCOSE with permission

Centralized vs. Distributed Model?

Differing needs

- From web based service software to Life Support Systems... allow local approval of deviations by senior technical staff
- **Customization vs. Chaos**
 - Standardized tools & training...but product team pull
 - Standard self-evaluation matrix...have 'best in class' reviewed with self-rated 'needs improvement'

Example: Japan		Example: China	
<u>Situation</u>	Response	<u>Situation</u>	Response
Strong Experts	DRBFM	Weak Experts	Use global experts
Disciplined Hierarchical	Purchase of Japanese Best Practices	Excited Use of High Turnover	•

Sustaining Mechanisms

Metrics: Four Timelines

- Before Design Freeze
- Design Freeze Product Ship
- Product Ship + 6-12 months
- Installed Base

Systems and Structures

- Self-assessment benchmark
- Regular reviews with senior management
- Celebrations of wins
- Continuous Improvement (corrective and preventive actions

A technical review should:

Leverage Expertise

Increase Interaction

Operate at the Right Level

Enhance Learning

 ✓ <u>Involve experts</u> in the review process
 ✓ Take advantage of the <u>experts across the</u> <u>business</u>

- ✓ An in-depth technical review where <u>engineer to</u> <u>engineer dialogue is key</u>
- ✓ The presenter must be well prepared and ready to <u>answer tough questions</u>
- ✓ Reviews conducted at system level capture interface design challenges
- ✓ Technical reviews should go to PWB, code unit, and small mechanical assembly levels
- ✓ Provide opportunity for engineers to <u>learn new</u> <u>technologies and/or processes</u>

✓ Accelerate the development of engineers

