Modeling and Simulation at GE Healthcare

Chris Unger

Chief Systems Engineer, GE Healthcare Co-lead, INCOSE Healthcare WG christopher.unger@med.ge.com

Broad solutions for healthcare

Broad-b Techno	based logies	Info Teo	ormation hnology	S	Life ciences
	Diagnos imaging surgery technolog	tic y & y gies	Integrate admin. a clinical	ed & I	Discovery tools
	Clinical product	s	Electronio medical records	c	Protein & cell science
	Medica diagnosti	ics	Picture Archivin System (Pr	e ng ACS)	Clinical tissue biomarker

100

The Challenge... Energy Conversion & Detection

Vision

Design is a human activity Fail early, fail often...in virtual space Enable greater creativity... "Predictive Directed Exploration" Business Outcomes Reduced Cycle time Optimal designs (explore design space) Predictability (better decisions earlier)

Behavior **Business Integration Physics/Performance** Image/Signal Quality Parts stock/warranty reserve Systems – SysML/UML Control loops **Acoustics** Workflow Reliability MFG capacity Predictive, multi-variable design models enabling characterization, understanding of interactions and margin Electrical performance Vibration Safety Thermal Structure/Stress/Stiffness Lifing

Design Space Exploration

Method	Latin Hypercube Sampling	Monte Carlo	Factorial DOE Full/Fractional		
Example	Variable B	Variable B Variable B X	Variable B X X X X X X X		
Cost	Lowest	Variable / Higher	Highest (per space explored)		
Where used	Sparsely filling a large design space	Exploring a broad design space	Optimizing response near a design point		
Why used	Finds response function	Finding unexpected design optima	Finds local response function		
When used	Medium priors Semi-expensive sims	Low prior knowledge Inexpensive simulation	High prior knowledge Expensive simulation		

Robust Design using "Space Filling" computer experiments

Y5 = Power

Robustness: move design to center of feasible range

Optimality: move design along Pareto Optimal Edge to maximize a third Figure of Merit

Needs: Efficient Simulation, Automated Parameterization, <u>Great</u> Visualization tools

Behavioral Modeling in Computed Tomography

Moderately complex system with complex behavior

- ~5,000 parts
- ~5M lines of code
- Triple nested control loops
 - Axial, Cradle, mA/kV

- Feature analysis and simulation in SIMULINK
- Auto-generation of code

Computed Tomography

MBSE techniques are used to perform behavioral analysis of key system features and functions.

- discover and verify system requirements
- identify and detail subsystem functions and interfaces
- seed FMEA analysis
- develop system test scenarios

Challenges to Adapting MBSE

Key Industry Challenges for MBSE adoption

What are the most critical barriers to faster adoption of MBSE? High barrier to entry with uncertain payback

- ROI Assured cost, Unquantified return
 - Fear of the unknown no clear success stories with a business case
 - Many best practices...you pay for the tools and then need to pay for a consultant to tailor a process
 - How to introduce on an existing product how to start?
 - Many things don't scale...need an incredible investment...hard to justify
- Concerns about regulatory (FDA) acceptance
 - If we have to capture everything in textual requirements anyway (for audits), what is the advantage of the model?
 - Do the tools support validated archive and approval processes?

Lowering the barrier to entry

Management is confronted with many competing priorities for investment

Biggest cost is not the tool...need a way to make 'the pill easier to swallow'

- Big bang: full in on one project, with a complete strategy...needs business case for upper management to justify the investment
- Get your feet wet: partial implementation (one feature, one subsystem)...needs cookbook on how best to integrate a partial MBSE implementation with prior processes and tools

Start small, develop an internal success to build on

Regulatory Acceptance

One concern is that regulations can impede progress toward higher quality processes

- Auditors can be unclear on what is acceptable in a model, and where to poke for quality gaps
- FDA has guidance on computational (quantitative) modelling for industry and
- Gives guidance on what to include...in general, and for four types of models

A consistent approach on how to summarize, review, and document modeling and simulation

• Good reference for internal reports...not just those submitted to regulators!

Reporting of computational modeling studies in medical device submissions

Guidance for Industry and FDA Staff, Sep 2016

https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance /GuidanceDocuments/UCM381813.pdf

Contact: Tina M. Morrison, Ph.D., tina.morrison@fda.hhs.gov.

Scope		1
Outline	of the Report	2
I.	Executive Report Summary	2
II.	Background/Introduction	3
III.	System Configuration	3
IV.	Governing Equations/Constitutive Laws	4
V.	System Properties	4
VI.	System Conditions	4
VII.	System Discretization	5
VIII.	Numerical Implementation	5
IX.	Validation	5
Χ.	Results	6
XI.	Discussion	6
XII.	Limitations	6
XIII.	Conclusions	6
Glossary	I	7
Subject	Matter Appendix I – Computational Fluid Dynamics and Mass Transport	9
Subject	Matter Appendix II – Computational Solid Mechanics	18
Subject	Matter Appendix III – Computational Electromagnetics and Optics	28
Subject	Matter Appendix IV – Computational Ultrasound	35
Subject	Matter Appendix V – Computational Heat Transfer	40

Examples of Modelling Reliability Modeling

Solder joint reliability

Once a board is designed, what is its reliability?

- Solution 1: perform reliability testing under accelerated conditions (~3 months)
- Solution 2: perform computer modeling (<1wk)
 - Provides quick response to make board changes
 - Choose different IC packages
 - Change component locations

ine fo	mowing bear	properties are based on the currently d	letined board outline and the indi	vidual layer p	roperties show	n below:					
		Board Dimension:	240 x 105 mm [9.4 x 4.1 in]	CTExy:	18.189 ppm/0		Board Weigh	t: 155.2 gran	ns		
		Board Thickness:	2.301 mm [90.6 mil]	CTE2:	62.405 ppm/0	Tot	al Part Weigh	t 607.6 gran	ns		
		Board Density:	2.7332 glcc		33,989 MPa	Mount Point Weight:		t: 0 grams			
		Conductor Layers:	16	Ez:	Ez: 4,167 MPa		Fixture Weight				
Doubl	e click any ro to replace al	w to edit the properties for that layer or s I layers using a given PCB thickness an	elect one or more rows and pres d default layer properties.	s the Edit Se	lected button b	elow to edit p	operties for a	batch of layer	s. Press the G	Generate Stac	kup Laye
Doubl button Layer	e click any ro to replace al Type	w to edit the properties for that layer or s layers using a given PCB thickness an Material	elect one or more rows and pres d default layer properties.	s the Edit Se	lected button b	elow to edit pr	operties for a Density	batch of layer	s. Press the G	Generate Stac	kup Laye
Doubl button Layer	e click any ro to replace al Type SIGNAL	w to edit the properties for that layer or s layers using a given PCB thickness an Material COPPER (29.6%) / COPPER-RESIN	elect one or more rows and pres d default layer properties.	s the Edit Se	lected button b	elow to edit p Thickness 0.5 cz	operties for a Density 3.9016	CTExy 40.410	s. Press the G CTEz 40.410	Generate Stac Exy 35,912	kup Laya Ez 35
Doubl button Layer 1 2	e click any ro to replace al Type SIGNAL Laminate	w to edit the properties for that layer or s I layers using a given PCB thickness and Material COPPER (29.6%) / COPPER-RESIN Generic FR-4	elect one or more rows and pres d default layer properties.	s the Edit Se	lected button b	Thickness 0.5 oz 4.92 mil	Density 3.9016 1.9000	CTExy 40.410 17.000	cTEz 40.410 70.000	Exy 35,912 24,804	kup Laye Ez 35
Doubl button Layer 1 2 3	e click any ro to replace al Type SIGNAL Laminate POWER	who edit the properties for that layer or s layers using a given PCB thickness an Material COPPER (29.6%) / COPPER-RESIN Generic FR-4 COPPER (86.9%) / COPPER-RESIN	elect one or more rows and pres d default layer properties.	s the Edit Se	lected button b	Thickness 0.5 oz 4.92 mil 1.0 oz	operties for a Density 3.9016 1.9000 7.9699	CTExy 40.410 17.000 21.844	cTEz 40.410 70.000 21.844	Exy 35,912 24,804 98,656	kup Laya Ez 35 98
Doubl button Layer 1 2 3 4	e click any ro to replace al Type SIGNAL Laminate POWER Laminate	who edit the properties for that layer or s layers using a given PCB thickness and Material COPPER (29.6%) / COPPER-RESIN Generic FR-4 COPPER (86.9%) / COPPER-RESIN Generic FR-4	elect one or more rows and pres d default layer properties.	s the Edit Se	lected button b	Thickness 0.5 oz 4.92 mil 1.0 oz 4.92 mil	Density 3,9016 1,9000 7,9699 1,9000	CTExy 40.410 17.000 21.844 17.000	CTEz 40.410 70.000 21.844 70.000	Exy 35,912 24,804 98,656 24,804	kup Laye Ez 35 98 3
Doubl button Layer 1 2 3 4 5	e dick any ro to replace al Type SIGNAL Laminate POWER Laminate SIGNAL	wib edit the properties for that layer or a layers using a given PCB thickness an Material COPPER (20.6%) / COPPER-RESIN Generic FR-4 COPPER (86.5%) / COPPER-RESIN Generic FR-4 COPPER (31.7%) / COPPER-RESIN	elect one or more rows and pres d default layer properties.	s the Edit Se	lected button b	Thickness 0.5 oz 4.92 mil 1.0 oz 4.92 mil 0.5 oz	operties for a Density 3.9016 1.9000 7.9699 1.9000 4.0507	CTExy 40.410 17.000 21.844 17.000 39.729	5. Press the G CTEz 40.410 70.000 21.844 70.000 39.729	Env 35,912 24,804 98,656 24,804 38,212	kup Laye Ez 35 98 3 38
Doubl button Layer 1 2 3 4 5 6	e click any ro to replace al Type SIGNAL Laminate POWER Laminate SIGNAL Laminate	W to edit the properties for that layer or s layers using a given PCB thickness an latertal COPPER (20.6%) / COPPER-RESIN Generic RR-4 COPPER (31.7%) / COPPER-RESIN Generic FR-4	elect one or more rows and pres d default layer properties.	s the Edit Se	lected button b	Thickness 0.5 oz 4.92 mil 1.0 oz 4.92 mil 0.5 oz 4.92 mil	Density 3.9016 1.9000 7.9699 1.9000 4.0507 1.9000	CTExy 40.410 17.000 21.844 17.000 39.729 17.000	CTEz 40.410 70.000 21.844 70.000 39.729 70.000	Eny 35,912 24,804 98,656 24,804 38,212 24,804	kup Laye S5 35 98 38 38 38 38 38
Doubl button Layer 1 2 3 4 5 6 7	e click any ro to replace al Type SIGNAL Laminate POWER Laminate SIGNAL Laminate SIGNAL	No edit the properties for that layer or a layere using a priven PCB thickness an laterte using a priven PCB thickness an laterte the layer of the layer of the laterte the layer of the layer of the Competer (13 Ma) Competer Research Competer (13 Ma) Competer Research Competer (13 Ma) Competer Research	elect one or more rows and pres d default layer properties.	s the Edit Se	lected button b	elow to edit pr Thickness 0.5 oz 4.92 mil 1.0 oz 4.92 mil 0.5 oz 4.92 mil 0.5 oz	Density 3.9016 1.9000 7.9699 1.9000 4.0507 1.9000 3.8874	CTExy 40.410 17.000 21.844 17.000 39.729 17.000 40.474	CTEz 40.410 70.000 21.844 70.000 39.729 70.000 40.474	Env 35,912 24,804 98,656 24,804 38,212 24,804 35,693	Ez 35 38 38 38 33 35
Doubl button Layer 1 2 3 4 5 6 7 8	e click any ro to replace al Type SIGNAL Laminate POWER Laminate SIGNAL Laminate SIGNAL Laminate	No edit the properties for that layer or a layers using a given PCB thickness an Material COPPER 203 (%) COPPER RESIN Connec RF4 COPPER 05 %) COPPER RESIN Connec RF4 COPPER 03 %) COPPER RESIN Connec RF4 COPPER 03 %) COPPER RESIN Connec RF4	elect one or more rows and pres d default layer properties.	s the Edit Se	lected button b	Thickness 0.5 oz 4.92 mil 1.0 oz 4.92 mil 0.5 oz 4.92 mil 0.5 oz 4.92 mil 0.5 oz 4.92 mil	Density 3.9016 1.9000 7.9699 1.9000 4.0507 1.9000 3.8874 1.9000	CTExy 40.410 17.000 21.844 17.000 39.729 17.000 40.474 17.000	CTEz 40.410 70.000 21.844 70.000 39.729 70.000 40.474 70.000	Exy 35,912 24,804 98,856 24,804 38,212 24,804 35,693 24,804	kup Laye Ez 35 38 38 38 35 35 35
Doubl button Layer 1 2 3 4 5 6 7 8 9	e click any ro to replace al Type SIGNAL Laminate POWER Laminate SIGNAL Laminate SIGNAL Laminate POWER	to edit the properties for that layer or a layers using a power PCB biokness an layers using a power PCB biokness an layers and the layers of the layers and competer (BS 5%) COPPER RESIN Competer (BS 5%) COPPER RESIN Competer (BS 1%) COPPER RESIN Competer (BS 1%) COPPER RESIN Competer (BS 1%) COPPER RESIN Competer (BS 1%) COPPER RESIN	elect one or more roves and pres d default layer properties.	s the Edit Se	lected button b	Thickness 0.5 oz 4.92 mil 1.0 oz 4.92 mil 0.5 oz 4.92 mil 0.5 oz 4.92 mil 0.5 oz 4.92 mil 0.5 oz	Density 3.9016 1.9000 7.9699 1.9000 4.0507 1.9000 3.8874 1.9000 7.9841	CTExy 40.410 17.000 21.844 17.000 39.729 17.000 40.474 17.000 21.780	CTEz 40.410 70.000 21.844 70.000 39.729 70.000 40.474 70.000 21.780	Exy 35,912 24,804 98,656 24,804 38,212 24,804 35,693 24,804 96,874	kup Laya Ez 35 398 38 38 38 35 35 399

Solder joint reliability simulations

Life estimation (cycles to failure) based on computer modeling

						ACCELERATE	D TESTING		USE CONDITIONS		
ID	PACKAGE	MODEL		MATERIAL	PN	CY 0 100C	CY -40 125C	AF1	YRS 20 45C	CY 20 45	AF2
U12	BGA-128	BGA	TOP	LAMINATE-BGA	5505464	1259	329	3.8	88	32061	97.5
U14	BGA-144	BGA	TOP	LAMINATE-BGA	5499296	4106	1071	3.8	286	104244	97.3
U4	QFN-40 (MO-251AFFB-1)	QFN	TOP	OVERMOLD-QFN	5504797	9272	2415	3.8	643	234822	97.2
Y1	QFN-4 (MO-220WEEB)	QFN	TOP	ALUMINA	5437405	21863	5684	3.8	1509	550823	96.9
U3	QFN-20 (MO-220VGGD-1)	QFN	TOP	OVERMOLD-QFN	5455903	95311	24782	3.8	6581	2402109	96.9
U11	QFN-12 (MO-208BBEA)	QFN	TOP	OVERMOLD-QFN	5498573	200956	52239	3.8	13868	5061976	96.9

Buy a tool with embedded physics of failure implemented

Enter your material properties (from suppliers)

Future: add your parts library into a standard database

Examples of Modelling Topological Optimization

Topological Optimization – What is it?

Definition

• Topological Optimization = automatic, finite element based determination of a structural shape (topology) which optimally satisfies all load and material usage requirements

Benefits

- Maximized strength/weight ratios
 - Reduced cost, improved quality
 - Reduced downstream overhead effects on other components, manufacturing/service processes, transportation, siting
 restrictions
- Shortened design cycles
 - Effective, non-intuitive designs
 - Reduce or eliminate iteration
- Compatible with additive manufacturing

External Industry Experience

• Topological optimization fully integrated into aircraft, automotive design processes

The Topological Optimization Design Process

Conventional Design Process

Design Process using Topological Optimization Design Space OR Evicting Shape

Existing Shape

The GE Healthcare CT Design Challenge

An existing design of a CT stationary gantry needed to have its natural frequency doubled to accommodate an operational speed increase.

At first, the Design Team spent two weeks applying a simulation-based DOE without achieving the goal.

The Topological Optimization Solution

Examples of Modelling Control Algorithms

Joey Incubator

An incubator maintains a safe environment (heat, humidity, O2...) for a Infant.

Goal - To develop multi-physics, control & system model that will reduce design iterations

<u>Process – Thermal performance:</u> Develop simplified model & equivalent physical model testing to arrive at heat transfer coefficients for use in CFD

Build system CFD model for various options and downselect 2 options for further physical prototyping and CFD

- Final design selection for development using combination of Physical and CFD testing
- Develop control algorithms and CFD validation models

Develop Reduced Order Model for arriving at control constants

Refine step inputs for ROM once actual parts are developed Final control algorithm with refined constants

<u>Benefits</u>

Design cycle acceleration

- Electrical: 0 board re-spin
- Control algorithms: Development, virtual testing and Automated design document generation
- Testing and Verification acceleration

Thermal Control Modeling Goals

- Optimizing the thermal/humidity control loops in weeks (typically takes months)
- Balancing constraints
 - Thermal : Control accuracy, Stabilization time vs overshoot
 - Balancing performance vs. Acoustic noise

Enabling actions

Do the proper model validation Tight collaboration between modeling and systems teams

Summary

Benefits

- Faster, more predictable development
- Better designs (higher performance, lower cost, more reliable)

Next Steps

- Improved integration across functions and models
- Better focus on modelling goals, problem formulation, and model credibility

Questions?

Chris Unger Chief Systems Engineer GE Healthcare INCOSE Healthcare WG Co-Lead; INCOSE ESEP christopher.unger@med.ge.com

Joey Incubator - Electrical

Goals

- Electrical 0 board re-spin
 - typically takes 1 or 2 re-spin for clearing electrical safety testing
- Balancing constraints
 - Power, Signal integrity, Thermal, Board and system level EMI / EMC
 - Simulation efforts vs. design confidence

Results

Prototype met functional requirements and pre-compliance in first pass

Enabling actions

- Engage early with analysis team from component selection)
- IBIS models / Thermal details from component vendors
- Effort for getting simulation right takes long and high include in schedule

Joey Summary

Examples of Modelling Physics (Electro-Optics)

Summary – Benefits to Industry of MBSE

Improved Communication: Pictures, Models vs. Text

Improved Quality: Model Analysis, Simulation vs. Reviews

Improved Predictability and Efficiency (Time to Market)

Questions?

Chris Unger Chief Systems Engineer GE Healthcare INCOSE Healthcare WG Co-Lead; INCOSE ESEP christopher.unger @med.ge.com

Summary – Benefits to Industry of MBSE

Improved Systems Thinking

- Use Case/Performance/Interface Analysis critical for a complete design specification.
- Logical model to provide high level of abstraction for ease of understanding, improved reuse or design sharing

Improved Communication

- Visual vs. Textual leads to Clearer, more precise communication & better reviews
- Visual designs & models are easier for global teams (less language barrier)

Improved Quality

- Verify correctness and completeness of requirements/design robustness / stress testing of design rather than simply reviewing in quality
- Improved design of test cases, derived from weaknesses exposed in the model

Improved Predictability and Efficiency (Time to Market)

- Verify correctness and completeness of requirements/design robustness / stress testing of design rather than simply reviewing in quality
- Improved leveling of requirements (efficiency in verification and documentation)
- Auto code generation (no translation errors in implementation)

$\sum_{\text{Smarter software for a smarter planet}} \sum_{\text{Smarter software for a smarter planet}} \sum_{\text{Smarter plane$

The industry faces many challenges

The medical industry product developers face problems with

- Extreme time to market pressures
 - 1st to market usually gains 80% of that market
- Compliance with regulations
 - FDA, IEC, ISO, HIPAA, ICD-10, ACA, etc.
- Defects are VERY costly to handle
 - Want to avoid audit, decrees, warning letters, recalls, etc...
- Most products are developed in a geographically distributed way
 - Need to communicate and define tasks
- Technology is impacting development and delivery
 - IoT, product variants, Mobile Medical Apps, complex deployment models, cloud

GEHC Approach to New Product Introduction

Tradition NPI process

GEHC Modelling Maturity Levels

Highly Mature

- Quantitative Modelling
- Field Strength
- Air flow
- Noise
- Resolution
- Structure / vibration
- Electronics
- ...

Developing

- Process map/Utilization
- Factory utilization simulations
- Customer workflow
 productivity
- Customer Task QoS
- Tumor Visualization
- Artifacts
- Cost
- Integrated should cost simulations
- Integrated System Models
- Image quality from customer to components
- Architecture model

Needs

- Customer Work Systems
- Disease state models
- Interoperability
- Outcomes (health, economic)

