
Model Tuning – Julie Kistler
02/09/2024



Contents / Agenda

● Executive Summary 

● Business Problem Overview and Solution Approach

● EDA Results

● Data Preprocessing 

● Model performance summary for hyperparameter tuning.

● Model building with pipeline

● Appendix



Executive Summary 
Overview: Predictive maintenance is a strategic initiative designed to proactively anticipate component 
degradation and forecast future component capabilities. This approach involves identifying predictable 
failure patterns and replacing components before they fail, leveraging sensor data and advanced data 
analysis techniques. The ultimate aim is to significantly mitigate operational and maintenance costs.

Project Objectives: The primary focus of this project was to develop and fine-tune various classification 
models geared towards accurately identifying wind turbine failures. The overarching goal is to predict 
failures in advance, enabling timely repairs and ultimately reducing the overall maintenance expenditure.

Key Insights: 
○ Best Performing Model:  The XGB oversampling model emerged as the top-performing model in the project.
○ Recall Metrics: The XGB final model demonstrated exceptional performance with a 100% recall on the training 

set, 89% on the validation set, and 86% on the test set.
○ Production-Ready Pipeline: The XGB pipeline, designed for production deployment, exhibited high accuracy 

on the test set.
○ Critical Features: V36, V16, and V26 were identified as having the most significant impact on predicting wind 

turbine failures.



Executive Summary cont… 

Recommendations: 
○ ReneWind is advised to prioritize improvement efforts on features V36, V16, and V26 to effectively reduce 

the number of failures.
○ Focusing on enhancing these critical features is anticipated to lead to substantial savings in repair and 

replacement costs, contributing to increased overall operational efficiency and cost-effectiveness.

The successful implementation of predictive maintenance, with a specific emphasis on the identified 
critical features, stands to position the company for increased reliability and reduced operational 
expenditures in wind turbine maintenance.



Business Problem Overview and Solution Approach
ReneWind is a company in the renewable energy sector, dedicated to improving the machinery 
and processes involved in wind energy production through the implementation of machine 
learning. The company has a collection of data capturing instances of generator failure in wind 
turbines, obtained through sensors. To safeguard the sensitivity of this information, a ciphered 
version has been shared, with the type of data collected varying among different companies. 
The dataset is comprised of 40 predictors, with 20,000 observations in the training set and 
5,000 in the test set.  

The solution is to the develop and fine-tune a diverse array classification models.  These 
models are designed to identify potential failures in wind turbine generators striving to 
proactively address failure issues before they lead to operational breakdowns, minimizing 
overall maintenance costs. The goal is to reduce overall maintenance costs through early 
detection and intervention.

Given the cost dynamics, with repair being substantially more economical than replacement, 
and inspection costs being lower than repair expenses, the selected model aims to optimize 
maintenance strategies for cost-effectiveness and enhance operational efficiency.



Data Overview

The predictions of the classification model are categorized as follows
○ True positives (TP): Failures accurately predicted by the model, contributing to repair costs.
○ False negatives (FN): Actual failures undetected by the model, resulting in higher replacement costs.
○ False positives (FP): Detections where no actual failure occurs, leading to inspection costs.

- “1” in the target variables should be considered as “failure” and “0” represents “No failure”. -

Data Description
• The data provided is a transformed version of original data which was collected using sensors.
• Train.csv - To be used for training and tuning of models.
• Test.csv - To be used only for testing the performance of the final best model.

- Both the datasets consist of 40 predictor variables and 1 target variable -



Data Overview Cont…
Column Dtype
V1 float64

V2 float64

V3 float64

V4 float64

V5 float64

V6 float64

V7 float64

V8 float64

V9 float64

V10 float64

V11 float64

V12 float64

V13 float64

V14 float64

V15 float64

V16 float64

V17 float64

V18 float64

V19 float64

V20 float64

Column Dtype
V21 float64

V22 float64

V23 float64

V24 float64

V25 float64

V26 float64

V27 float64

V28 float64

V29 float64

V30 float64

V31 float64

V32 float64

V33 float64

V34 float64

V35 float64

V36 float64

V37 float64

V38 float64

V39 float64

V40 float64

Target int64

40 float data types: (V1 – V40)
1 Integer data type:  Target



Statistical Summary of the Data 
● The data has been encrypted – not much can be discovered through the data
● V1 and V2 are missing values
● The target variable is a 0 – 1 variable with a mean of .056 and standard deviation of .23 

Columns Rows
20000 41

Training Set

• V1 has 18 missing values
• V2 has 18 missing values

Columns Rows
5000 41

Test Set

• V1 has 5 missing values
• V2 has 6 missing values

-- There are no duplicate values --

Data Overview Cont…

Link to Appendix slide on Statistical Summary



EDA _ Univariate Analysis

● All independent variables appear to have a normal distribution with many outliers
● The target variable appears to have an imbalanced distribution – most of the data represents “0” 

meaning no failures

Link to Appendix slides on distribution analysis

Train Data Distribution
0 18990 95%

1 1100 5%

Test Data Distribution
0 4718 94%

1 282 6%

The values of 0 and 1 and almost equally split in 
the both the train and test data



Data Preprocessing 

● There are no duplicate values:  No treatment necessary.

● Missing value treatment:  Used median to impute missing values in V1 and V2.

● Outlier check:  There are outliers – we will leave them as they may have important value.

● Feature engineering:  Target variable was dropped from the features variables (x) and into the 
dependent variable (y) for model prediction.

● Data preparation for modeling:  The data has been divided into Train, Validation, and Test sets:
○ Train Set: (15000, 40)
○ Validation Set: (5000, 40)
○ Test Set: (5000, 40)



Model Performance Summary

● Gradient Boosting performs well in the 
training set.  Recall scores decrease in the 
validation set. Recall Score: 86%

● AdaBoost performs well in precision and 
show a possibility of overfitting in the 
accuracy scores.  FI and Recall suffer a 
reduction in the validation set. Recall Score 
reduced to 76%

● Random Forest performs well in the training 
set; however Recall, Precision, and F1 
scores are significantly reduced in the 
validation set. Recall Score: 89%

● XGBoost consistently performs well in the 
training set. There is reduction in recall in 
the validation set. Recall Score: 89%

Link to Appendix slides on model assumptions

XGBoost appears to be the best model with an Recall score of 89% on the validation set and Recall 
score of 86% on the test data.  XGBoost was used to build the pipeline for the final model.



Model building with pipeline
● Steps taken to build the final model:

● Defined the pipeline (impute missing values, scale the features, and training the XGBoost classifier)
● Separated the target variable and features
● Treated missing values in the training set
● Oversampled the data using SMOTE
● Prepared test data (no imputation is performed – handled in pipeline)
● Trained the model – fit the pipeline on the oversampled training data

● The test set preformed well in making predictions.  
● The recall score was 86% with an accuracy of 96% demonstrating good performance against the 

previous model performance summary  (89% validation set and 86% on the test set). 

● The three most important feature importance the model used for prediction are:
● V36 (Most predominant feature)
● V16 
● V26

Link to Appendix slides on Feature Importance and Final Model Assumptions



APPENDIX



Statistical Summary of the Data

• It appears V1 and V2 are missing 
some values.

• Based upon the large variance 
between min and max data compared 
to the mean it appears the data set 
may have outliers.

• The target variable is demonstrating 
and integer type of data of 0 and 1.



Univariate Analysis_histograms and boxplots for all the variables



Univariate Analysis_histograms and boxplots for all the variables cont…



Univariate Analysis_histograms and boxplots for all the variables cont…



Model Performance Summary (original data)
-- Used the recall score type to compare parameter combinations –

● The cross validation performance scores are similar to the validation performance scores
● All the models appear to be suffering from overfitting except Logistic Regression
● XGBoost is giving the highest cross-validated recall followed by Random Forest and Bagging 

Cross-Validation Performance on Training Set
Logistic Regression 0.4927566553639709

Bagging 0.7210807301060529

Random forest 0.7235192266070268

GBM 0.7066661857008874

Adaboost 0.6309140754635308

Xgboost 0.8100497799581561

Validation Performance
Logistic Regression 0.48201438848920863

Bagging 0.7302158273381295

Random forest 0.7266187050359713

GBM 0.7230215827338129

Adaboost 0.6762589928057554

Xgboost 0.8309352517985612



Model Performance Summary (original data) cont…

XGBoost is 
demonstrating the 
best performance.

XGBoost, Random 
Forest, Bagging 
and GBM appear  
to have the highest 
recall scores.



Model Performance Summary (oversampled data)

● Oversampling method chosen was the Synthetic Minority Over Sampling Technique (SMOTE)

● The cross validation performance scores are much higher than the validation performance scores
● XGBoost is giving the highest cross-validated recall followed by Random Forest and Bagging 

Cross-Validation Performance on Training Set
Logistic Regression 0.883963699328486

Bagging 0.9762141471581656

Random forest 0.9839075260047615

GBM 0.9256068151319724

Adaboost 0.8978689011775473

Xgboost 0.9891305241357218

Validation Performance
Logistic Regression 0.8489208633093526

Bagging 0.8345323741007195

Random forest 0.8489208633093526

GBM 0.8776978417266187

Adaboost 0.8561151079136691

Xgboost 0.8669064748201439



Model Performance Summary (oversampled data) cont…

XGBoost is 
demonstrating the 
best performance.

XGBoost, Random 
Forest, Bagging 
and GBM appear  
to have the highest 
recall scores.

All scores have 
increased from the 
original data



Model Performance Summary (undersampled data)
● Under sampling method chosen was Random Undersampler

● The cross validation performance scores are similar to the validation performance scores
● Bagging shows signs of overfitting in the validation performance scores

● Random Forest is giving the highest cross-validated recall followed by XGBoost and GBM
● Undersampling improves performance 

Cross-Validation Performance on Training Set
Logistic Regression 0.8726138085275232

Bagging 0.8641945025611427

Random forest 0.9038669648654498

GBM 0.8990621167303946

Adaboost 0.8666113556020489

Xgboost 0.9014717552846114

Validation Performance
Logistic Regression 0.8525179856115108

Bagging 0.8705035971223022

Random forest 0.8920863309352518

GBM 0.8884892086330936

Adaboost 0.8489208633093526

Xgboost 0.89568345323741



Model Performance Summary (undersampled data)

Random Forest 
and XGBoost are 
demonstrating the 
best performance.

XGBoost, Random 
Forest, Adaboost
and GBM appear  
to have the highest 
recall scores.

All models 
demonstrate a 
good general 
performance.



Hyperparameter Tuning

● Four (4) models were chosen for hyperparameter tuning:  AdaBoost, Random Forest, Gradient 
Boosting (GBM), and XGBoost – these models were choses based on test runs.

○ Random Forest was tuned using hyperparameter tuned undersampled data.  It performed well 
on the undersampled data.  Random Forest can handle imbalanced data and can perform well 
with little to no tuning.  We used this hyperparameter tuning with undersampled data to optimize 
the performance. 

○ AdaBoost, GDM, and XGBoost were tuned using hyperparameter tuning oversampled data as 
they are boosting algorithms.  They perform well with a variety of datasets and several 
hyperparameters the can optimize their performance. 



Hyperparameter Tuning _ AdaBoost (oversampled data)

Best Parameters
n_estimators 200

learning_rate .2

base_estimator
DecisionTreeClassifier(max_depth=3, 
random_state=1)} with CV 
score=0.9714853746337214

Training Performance Validation Performance

AdaBoost performs well in precision and show a possibility of overfitting in the 
accuracy scores.  FI and Recall scores suffer a reduction in the validation set.  

Recall Score reduced to 76%



Hyperparameter Tuning _ Random Forest (undersampled data)
Best Parameters

n_estimators 300

min_samples_leaf 2

max_samples .5

max_features sqrt

CV score 0.8990116153235697

Training Performance Validation Performance

Random Forest performs well in the training set; however Recall, Precision, and F1 
scores are suffering a reduction in the validation set. Recall Score: 89%



Hyperparameter Tuning _ GBM (oversampled data)
Best Parameters

subsample 0.7

n_estimators 125

max_features 0.5

learning_rate 1

CV score 0.9723322092856124

Training Performance Validation Performance

Gradient Boosting performs well in the training set.  Recall, precision and F1 
scores decrease in the validation set. Recall Score: 86%



Hyperparameter Tuning _ XGBoost (oversampled data)

Best Parameters
subsample 0.9

scale_pos_weight 10

n_estimators 150

learning_rate 0.1

gamma 0

CV score 0.9960475154078072:

Training Performance Validation Performance

XGBoost consistently performs well in the training set. There is reduction in recall, 
precision and F1 scores in the validation set. Recall Score: 89%



Feature Importance _ Building Best Model

V36 is the dominate feature 
that holds a very high level 
of importance in the model 
prediction.

V16 and V26 features follow 
in importance.



Pipeline _ Build Final Model

Best Parameters
subsample 0.9

scale_pos_weight 10

n_estimators 150

learning_rate 0.1

gamma 0

CV score 0.9960475154078072:

Test Performance

Oversampling method chosen was the Synthetic Minority Over Sampling Technique (SMOTE)

The final model appears to be performing well with the XGBoost Classifier. Recall 
Score: 86% - similar to the test recall score of 86% and validation recall score of 89%.


