

INN Hotels Project

Supervised Learning Classification Julie Kistler

Date: December 15, 2023

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Performance Summary
- Appendix

Executive Summary

The objective was to leverage existing booking data to develop a predictive model capable of forecasting cancellations and enabling the formulation of profit-driven policies. Two robust models, a logistic regression model and a decision tree model, were successfully constructed.

The models identified critical features influencing higher cancellation rates, lead time, market segment type, average price per room, and the number of special requests. These insights form the foundation for targeted strategies to minimize cancellations and enhance operational efficiency.

By implementing these models, it is anticipated to reduce the cancellation rates, resulting in decreased commissions to channel partners and a corresponding reduction in refund payouts. This, in turn, is expected to contribute to increased revenue and heightened operational efficiency.

Insights and Recommendations:

- Utilizing Dynamic Pricing Strategies: During peak demand periods implement a pricing strategy that keeps room rates competitive. Lowering prices during high-demand months attracts more potential guests. Mitigating cancellations and optimizing occupancy rates.
- **Implement a Customer Loyalty Program**: Using a customer reward system will foster brand loyalty and increase repeat bookings. This will also help with customer retention and potential referrals among their friends with great word-of-mouth marketing.

Executive Summary cont...

Insights and Recommendations cont:

- **Customized Room Packages:** Build a system in the booking system that allows guests to request and designate specific room requests as well as build add-on essentials to create a more personalized booking and add additional revenue streams with add-on packages. This should significantly reduce cancellations.
- Create a Marketing Campaign that Encourages Stay and Share. Guests that stay in the properties are encouraged to share their experience with others online using a specific hashtag campaign. Each share or hashtag they use will enter them into a contest for a free stay at a future date or a complimentary add-on package to their stay. This should build a great organic marketing campaign while building goodwill within the customer base.
- **Reduce Calendar Options:** Consider reducing the calendar availability to only reflect a maximum lead time of six months. This will reduce those bookings that may cancel due to plans changings, market conditions, and competitive offerings that may lead to an increase in cancellations due to long lead times.

Business Problem Overview and Solution Approach

INN Hotels Group in Portugal has been impacted by a higher number of cancellations. They have reached out to our team to help them understand and tackle this trend with data-driven solutions. The increase in cancellations has had an impact on their revenue, resource allocation, pricing model, and distributions channel commission payouts. Our data team has been charged to identify and understand the factors that are causing an increase in cancellations. There are various factors that may contribute to the increase in cancellations. They may include customer behavior, customer loyalty, lead time, market trends, pricing, and other variables. Identifying the root causes are crucial for developing an accurate predictive model.

The solution approach:

- Identify key factors that may influence booking cancellations.
- Develop a predictive model by implementing the supervised learning classification methodology to include logistic regression and decision trees classification.
- Interpret the outputs of the classification models developed to forecast which booking are likely to be cancelled.
- Recommend data-driven policies to reduce booking cancellations/refunds to increase profitability.

DATA OVERVIEW

Data Dictionary			AAA
Booking_ID	unique identifier of each booking	2	()))
no_of_adults	Number of adults	2	V Hotels
no_of_children	Number of children	/NI	V Hotels
no_of_weekend_nights	Number of weekend nights (Saturday or Sunday) the guest stayed or booked to stay at the hotel		
no_of_week_nights	Number of week nights (Monday to Friday) the guest stayed or booked to stay at the hotel		
type_of_meal_plan	Type of meal plan booked by the customer*	* Type of Meal	Plan
required_car_parking_space	Does the customer require a car parking space? (0 - No, 1- Yes)	Not Selected	No meal plan selected
room_type_reserved	Type of room reserved by the customer. The values are ciphered (encoded) by INN Hotels	Meal Plan 1	Breakfast
lead_time	Number of days between the date of booking and the arrival date	Meal Plan 2	Half board (breakfast
arrival_year	Year of arrival date		and one other meal)
arrival_month	Month of arrival date	Meal Plan 3	Full board (breakfast, lunch, and dinner)
arrival_date	Date of the month		•
market_segment_type	Market segment designation		
repeated_guest	Is the customer a repeated guest? (0 - No, 1- Yes)		
no_of_previous_cancellations	Number of previous bookings that were canceled by the customer prior to the current booking		
no_of_previous_bookings_not_canceled	Number of previous bookings not canceled by the customer prior to the current booking	1	
avg_price_per_room	Average price per day of the reservation; prices of the rooms are dynamic. (in euros)	1	
no_of_special_requests	Total number of special requests made by the customer (e.g. high floor, view from the room, etc)		
booking_status	Flag indicating if the booking was canceled or not]	

DATA OVERVIEW CONT...

Column	Dtype
Booking_ID	object
no_of_adults	int64
no_of_children	int64
no_of_weekend_nights	int64
no_of_week_nights	int64
type_of_meal_plan	object
required_car_parking_space	int64
room_type_reserved	object
lead_time	int64
arrival_year	int64
arrival_month	int64
arrival_date	int64
market_segment_type	object
repeated_guest	int64
no_of_previous_cancellations	int64
no_of_previous_bookings_not_canceled	int64
avg_price_per_room	float64
no_of_special_requests	int64
booking_status	object

Columns	Rows
36275	19

- There are no missing values
- There are no duplicate values

- 5 object data types: (Booking_ID, type_of_meal_plan, room_type_reserved, market_segment_type, booking_status)
- 13 integer data types: (no_of_adults, no_of_children, no_of_weekend_nights, no_of_week_nights, required_car_parking_space, lead_time, arrival_year, arrival_month, arrival_date, repeating_guest, no_of_previous_cancellations, no_of_previous_bookings_not_canceled, no_of_special_requests)
- 1 float data type: (avg_price_per_room)

EDA Results_Univariate Analysis

>>>> Booking_ID column was dropped from the dataframe <<<<

- Lead Time is skewed right with several outliers average lead time is ~ 85 Days
- Average Price Per Room Distribution appears normal with many outliers
 - Average Price Per Room is ~ \$103
 - There are 545 with a average price per room to be equal to \$0
 - Average price per room equal to or above \$500 were treated (Max was \$540)
- The average number of previous cancellations is ~ 023%
- 72% of booking had 2 Adults
- Approximately 93% of booking did not have Children (booking with 9 to 10 Children were treated)
- A majority of week night bookings include stays between 1 3 Days
- Approximately 28% of all bookings in one weekend night
- 25% of bookings in 2 weekend nights
- Approximately 46% of all bookings do not include a weekend night
- Approximately 97% of all bookings do not request a required parking spot
- Meal plan 1 appears to be the top choice for guests (freq of 27835 ~ 77%)
- Room type 1 appears to be the top choice for guests (freq of 28130 ~ 78%)
- The years analyzed are 2017 to 2018

Link to Appendix statistical summary and supporting univariate analysis slides

EDA Results_Univariate Analysis

- Arrivals are strongest in October, September and August. (~38% of all bookings). January and February have the lowest bookings.
- The online market segment appears to be the dominant booking choice (freq of 23214 ~ 64%)
- Over half (~55%) of the bookings do not have any special requests.
- Approximately 31% of all bookings have one special request.
- A little over 2/3 of all booking are not cancelled.
- Approximately 1/3 of all booking are cancelled

Link to Appendix statistical summary and supporting univariate analysis slides

EDA Results_Bivarate Analysis

- There are no strongly correlated variables with the exception of repeat guest and number of previous booking not cancelled.
- Online bookings appears to have the highest Average Price per Room. Most bookings are made online and pricing is based upon demand. As demand increased prices rise.
- Corporate booking appear to have the lowest Average Price per Room most falling under the \$100 mark.
- The largest portion of cancellations appear to be from online bookings with little to none at the complimentary segment.
- Booking with no special requests appears to have the largest amount of cancellations. The more special requests the less chance for cancellations.
- There appears to be a small spike on the Average Price per Room as special request rise.
 - The most significant spike in Average Price Per Room is 2 Special Requests
- Average Price per Room may have an impact on cancellation ratios. It appears a higher Average Price per Room may lead to a higher cancellation rate.
- It appears the longer the lead time the increased chance that the booking will be cancelled. It appears bookings with lead times over 100 days have a higher chance of cancellations.
- Number of family members does not seem to affect the number of cancellations.
- It appears the booking with more days may result in more cancellations
- The summer months appear to have the highest level of cancellation where the winter months tend to have less.
- The highest Average Price per Room appears to be in the summer months.
- The lowest Price per Room is in the winter months.

Link to supporting bibvarate analysis slides

Data Preprocessing

- There were no duplicates found. no treatment necessary
- There were no missing values founds no treatment necessary
- Outlier check completed all data appears to be in the dataset no treatment was necessary
- Featured engineering: We previously treated some data while performing the EDA:
 - Booking_ID was dropped from the dataframe
 - The the upper level outliers in the Average Price Per Room that had values be equal to or greater than \$500 were treated and replaced with the upper whisker price of \$179.55
 - There were some outliers in the number of children bookings with 9 and 10 children were replaced with 3
- Data preparation for modeling Encoding booking status: Non Cancelled = 0 and Cancelled = 1
 - We want to predict which booking will be cancelled before we build the model. We split the data using a 70/30 split into train and test to evaluate the model and build the train data.

Booking Status	Train	Test
0	67%	67.6%
1	32.9%	32.3%

Link to supporting data processiong slides

Model Performance Summary

- The Logistic Regression showed good performance and no signs of overfitting in the final models.
- For the Logistic Regression model it was determined that the model with the .37 threshold is the best model to use with the best F1 Score.

Training performance comparison:

Logistic Regression-default Threshold Logistic Regression-0.37 Threshold Logistic Regression-0.42 Threshold

Accuracy	0.80545	0.79265	0.80132
Recall	0.63267	0.73622	0.69939
Precision	0.73907	0.66808	0.69797
F1	0.68174	0.70049	0.69868

Test performance comparison:

Logistic Regression-default Threshold Logistic Regression-0.37 Threshold Logistic Regression-0.42 Threshold

Accuracy	0.80465	0.79555	0.80345
Recall	0.63089	0.73964	0.70358
Precision	0.72900	0.66573	0.69353
F1	0.67641	0.70074	0.69852

- The model was treated for multicollinearity removing high P-values
- The model converted coefficients to odds

Link to supporting logistic regression slides

Model Performance Summary

• The Decision Tree models both showed good performance and no signs of overfitting in the final models. For the Decision Tree model it was determined that the post-pruning model is the best model to use with the best F1 Scores.

	per rennance comparizooni		
	Decision Tree sklearn	Decision Tree (Pre-Pruning)	Decision Tree (Post-Pruning)
Accuracy	0.99421	0.83097	0.89954
Recall	0.98661	0.78608	0.90303
Precision	0.99578	0.72425	0.81274
F1	0.99117	0.75390	0.85551

Training performance comparison:

Test performance comparison:

	Decision Tree sklearn	Decision Tree (Pre-Pruning)	Decision Tree (Post-Pruning)
Accuracy	0.87118	0.83497	0.89954
Recall	0.81175	0.78336	0.90303
Precision	0.79461	0.72758	0.81274
F1	0.80309	0.75444	0.85551

• Some of the most important features the model used for predicting is lead time, market segment type, average price per room, and number of special requests.

Link to supporting decision tree slides

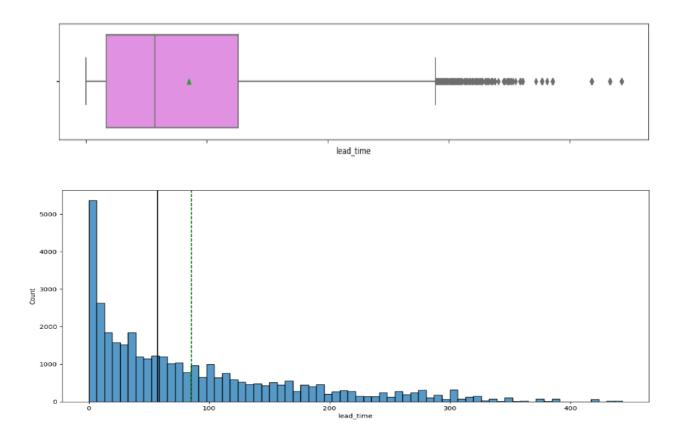
APPENDIX

Statistical Summary - EDA

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
no_of_adults	36275.00000	NaN	NaN	NaN	1.84496	0.51871	0.00000	2.00000	2.00000	2.00000	4.00000
no_of_children	36275.00000	NaN	NaN	NaN	0.10528	0.40265	0.00000	0.00000	0.00000	0.00000	10.00000
no_of_weekend_nights	36275.00000	NaN	NaN	NaN	0.81072	0.87064	0.00000	0.00000	1.00000	2.00000	7.00000
no_of_week_nights	36275.00000	NaN	NaN	NaN	2.20430	1.41090	0.00000	1.00000	2.00000	3.00000	17.00000
type_of_meal_plan	36275	4	Meal Plan 1	27835	NaN	NaN	NaN	NaN	NaN	NaN	NaN
required_car_parking_space	36275.00000	NaN	NaN	NaN	0.03099	0.17328	0.00000	0.00000	0.00000	0.00000	1.00000
room_type_reserved	36275	7	Room_Type 1	28130	NaN	NaN	NaN	NaN	NaN	NaN	NaN
lead_time	36275.00000	NaN	NaN	NaN	85.23256	85.93082	0.00000	17.00000	57.00000	126.00000	443.00000
arrival_year	36275.00000	NaN	NaN	NaN	2017.82043	0.38384	2017.00000	2018.00000	2018.00000	2018.00000	2018.00000
arrival_month	36275.00000	NaN	NaN	NaN	7.42365	3.06989	1.00000	5.00000	8.00000	10.00000	12.00000
arrival_date	36275.00000	NaN	NaN	NaN	15.59700	8.74045	1.00000	8.00000	16.00000	23.00000	31.00000
market_segment_type	36275	5	Online	23214	NaN	NaN	NaN	NaN	NaN	NaN	NaN
repeated_guest	36275.00000	NaN	NaN	NaN	0.02564	0.15805	0.00000	0.00000	0.00000	0.00000	1.00000
no_of_previous_cancellations	36275.00000	NaN	NaN	NaN	0.02335	0.36833	0.00000	0.00000	0.00000	0.00000	13.00000
no_of_previous_bookings_not_canceled	36275.00000	NaN	NaN	NaN	0.15341	1.75417	0.00000	0.00000	0.00000	0.00000	58.00000
avg_price_per_room	36275.00000	NaN	NaN	NaN	103.42354	35.08942	0.00000	80.30000	99.45000	120.00000	540.00000
no_of_special_requests	36275.00000	NaN	NaN	NaN	0.61966	0.78624	0.00000	0.00000	0.00000	1.00000	5.00000
booking_status	36275	2	Not_Canceled	24390	NaN	NaN	NaN	NaN	NaN	NaN	NaN

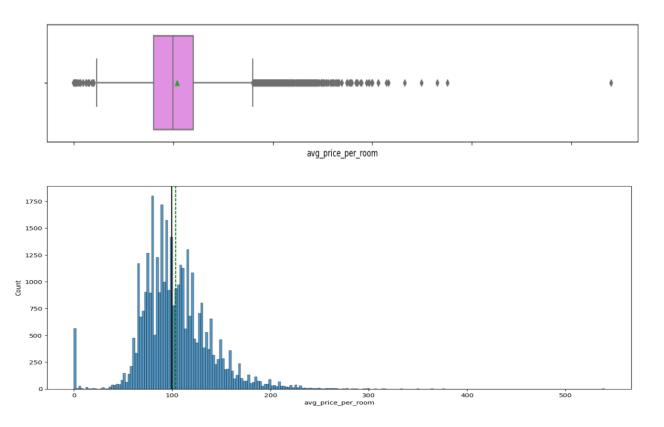
Univariate Analysis

Lead Time



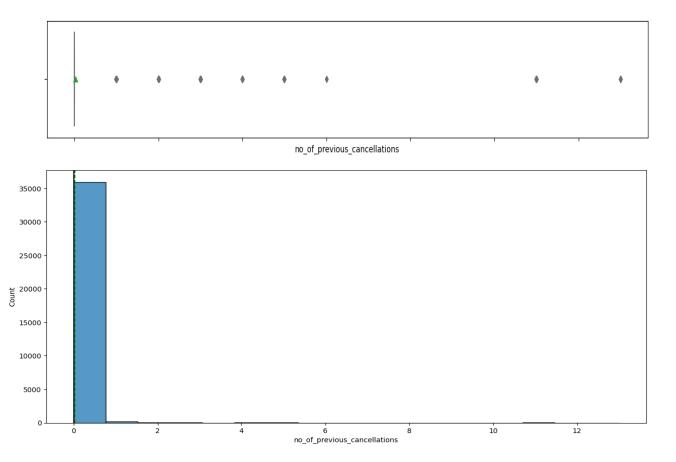
Skewed right with several outliers.

Average Price Per Room



- Distribution appears relatively normal with many outliers.
- There are 545 bookings with an Average Price Per Room to be equal to 0: *Complementary: 354 *Online: 191
- Treated the outliers with an Average Price Per Room equal to our greater than \$500.00 with the upper whisker: \$179.55.

Number of Previous Booking Cancellations

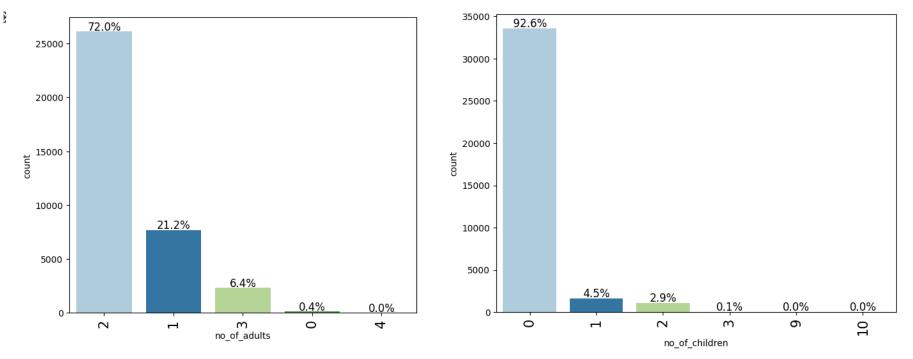


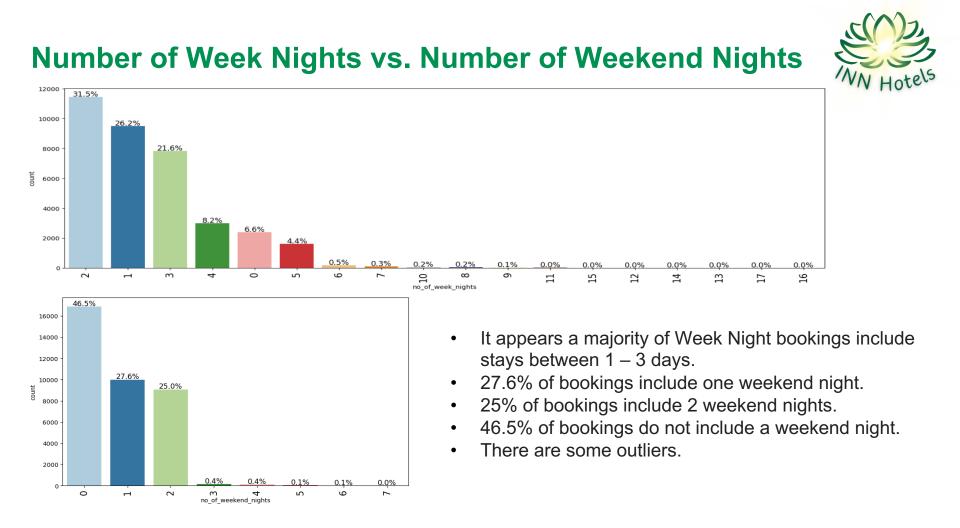
A majority of bookings do not show previous booking cancellations.

Number Adults and Number of Children

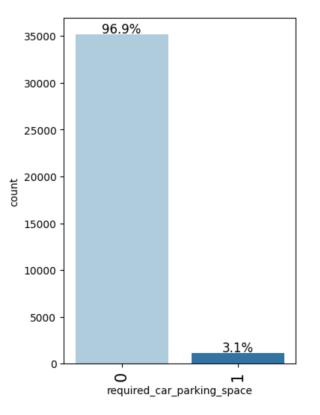
- 72% of the bookings had 2 adults in booking.
- 92.6% bookings had no children listed in the booking:

*There were some outliers in the number of children – bookings with 9 and 10 listed were replaced with 3



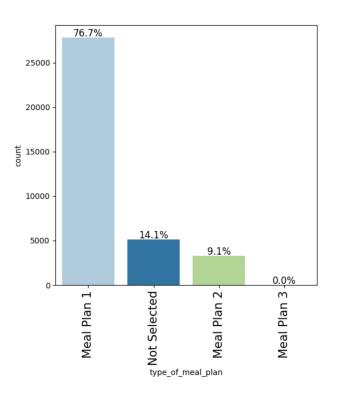


Required Parking Spot



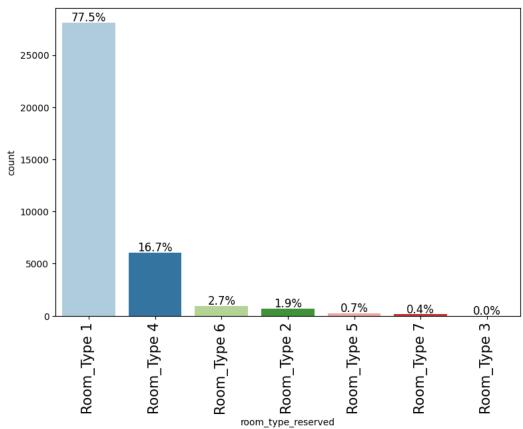
Most guests are not requesting a required parking spot.

Type of Meal Plan



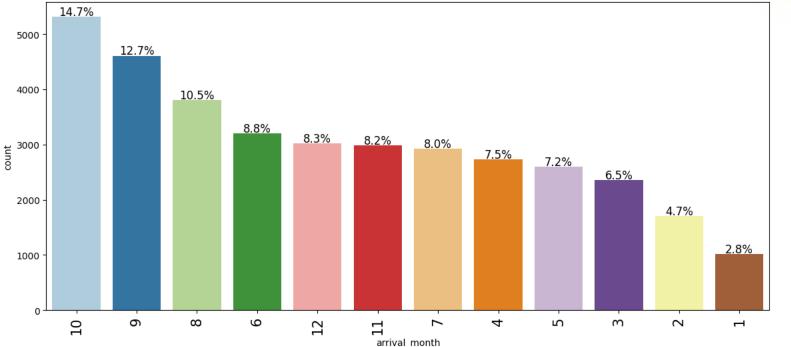
- Most guests are opting for meal plan 1.
- Meal plan 3 does not appear to be in demand.

Room Type Reserved



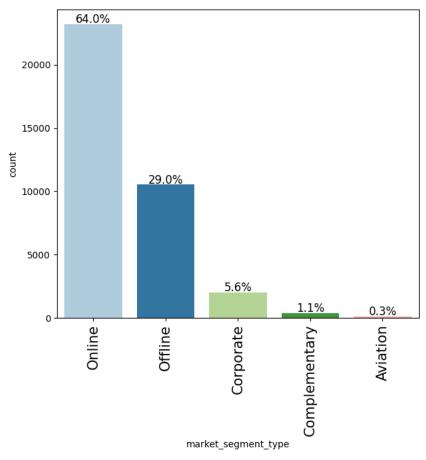
- Room Type 1 is the clear leader in rooms requested.
- Room Types 5, 7, 3 demonstrate little to no demand.

Arrival Month



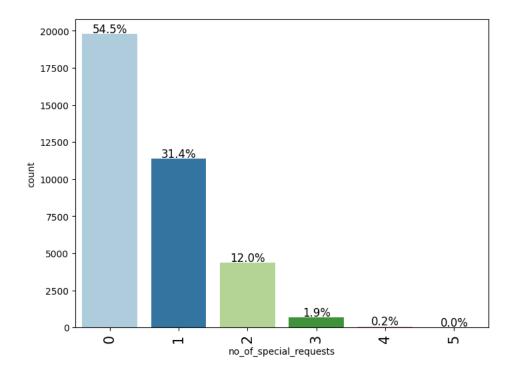
Arrivals are strongest in months October, September and August, respectively, with 37.9% of all bookings to occur during these months

Market Segment Type



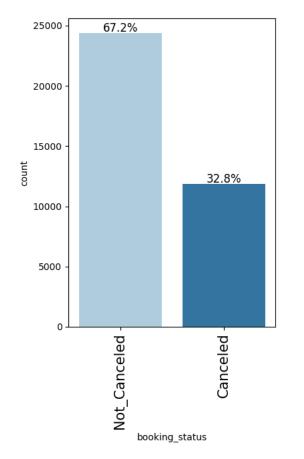
Most bookings are made online with 64% of total bookings.

Number of Special Requests



- Over half (54.5%) of the bookings do not have any special requests.
- 31.4% of bookings have one special request.

Booking Status



- A little over 2/3 of the booking are not cancelled.
- Almost a 1/3 of bookings are cancelled.

Bivariate Analysis

Correlation

no_of_adults -	1.00	-0.02	0.10	0.11	0.01	0.10	0.08	0.02	0.03	-0.19	-0.05	-0.12	0.30	0.19	0.09
no_of_children -	-0.02	1.00	0.03	0.02	0.04	-0.05	0.05	-0.00	0.03	-0.04	-0.02	-0.02	0.35	0.13	0.03
no_of_weekend_nights -	0.10	0.03	1.00	0.18	-0.03	0.05	0.06	-0.01	0.03	-0.07	-0.02	-0.03	-0.00	0.06	0.06
no_of_week_nights -	0.11	0.02	0.18	1.00	-0.05	0.15	0.03	0.04	-0.01	-0.10	-0.03	-0.05	0.02	0.05	0.09
required_car_parking_space -	0.01	0.04	-0.03	-0.05	1.00	-0.07	0.02	-0.02	-0.00	0.11	0.03	0.06	0.06	0.09	-0.09
lead_time -	0.10	-0.05	0.05	0.15	-0.07	1.00	0.14	0.14	0.01	-0.14	-0.05	-0.08	-0.06	-0.10	0.44
arrival_year -	0.08	0.05	0.06	0.03	0.02	0.14	1.00	-0.34	0.02	-0.02	0.00	0.03	0.18	0.05	0.18
arrival_month -	0.02	-0.00	-0.01	0.04	-0.02	0.14	-0.34	1.00	-0.04	0.00	-0.04	-0.01	0.05	0.11	-0.01
arrival_date -	0.03	0.03	0.03	-0.01	-0.00	0.01	0.02	-0.04	1.00	-0.02	-0.01	-0.00	0.02	0.02	0.01
repeated_guest -	-0.19	-0.04	-0.07	-0.10	0.11	-0.14	-0.02	0.00	-0.02	1.00	0.39	0.54	-0.18	-0.01	-0.11
no_of_previous_cancellations -	-0.05	-0.02	-0.02	-0.03	0.03	-0.05	0.00	-0.04	-0.01	0.39	1.00	0.47	-0.06	-0.00	-0.03
no_of_previous_bookings_not_canceled -	-0.12	-0.02	-0.03	-0.05	0.06	-0.08	0.03	-0.01	-0.00	0.54	0.47	1.00	-0.11	0.03	-0.06
avg_price_per_room -	0.30	0.35	-0.00	0.02	0.06	-0.06	0.18	0.05	0.02	-0.18	-0.06	-0.11	1.00	0.18	0.14
no_of_special_requests -	0.19	0.13	0.06	0.05	0.09	-0.10	0.05	0.11	0.02	-0.01	-0.00	0.03	0.18	1.00	-0.25
booking_status -	0.09	0.03	0.06	0.09	-0.09	0.44	0.18	-0.01	0.01	-0.11	-0.03	-0.06	0.14	-0.25	1.00
	no_of_adults -	no_of_children -	no_of_weekend_nights -	no_of_week_nights -	required_car_parking_space -	lead_time -	arrival_year -	arrival_month -	arrival_date -	repeated_guest -	no_of_previous_cancellations -	no_of_previous_bookings_not_canceled -	avg_price_per_room -	no_of_special_requests -	booking_status -

There are no strongly correlated variables with the exception of repeat guest and number of previous booking not cancelled.

- 1.00

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

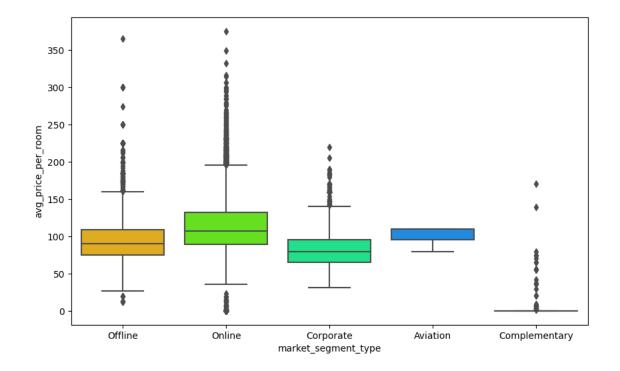
- -0.50

- -0.75

-1.00

Further analysis into lead time and booking status may be needed.

Average Price per Room and Market Segment

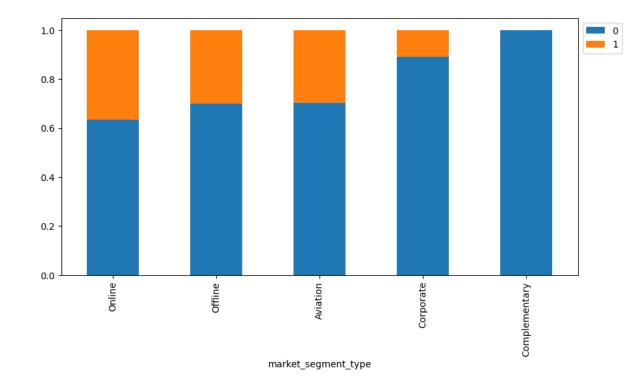


Online bookings appears to have the highest Average Price per Room. Most bookings are made online and pricing is based upon demand. As demand increased prices rise.

Corporate booking appear to have the lowest Average Price per Room – most falling under the \$100 mark.

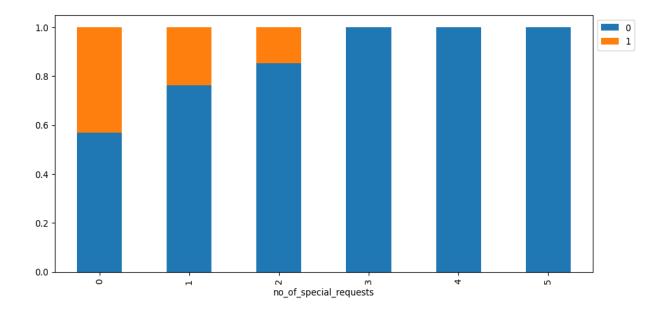
There are many outliers.

Booking Status and Market Segment



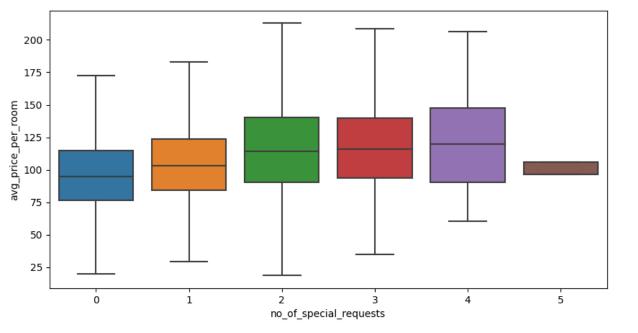
The largest portion of cancellations appear to be from online bookings with little to none at the complimentary segment.

Number of Special Requests and Booking Status



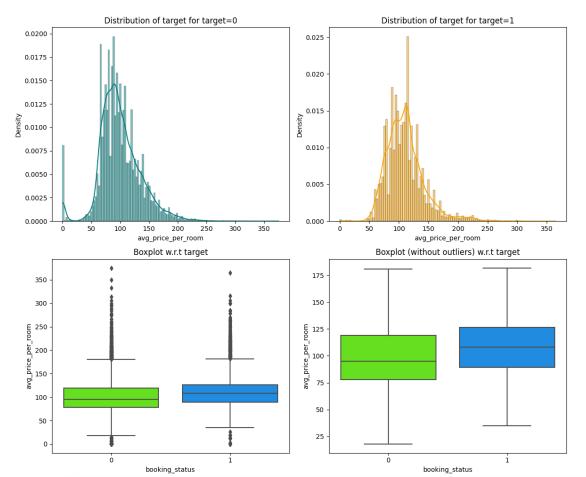
- Booking with no special requests appears to have the largest amount of cancellations.
- The more special requests the less chance for cancellations.

Number of Special Requests and Average Price per Room



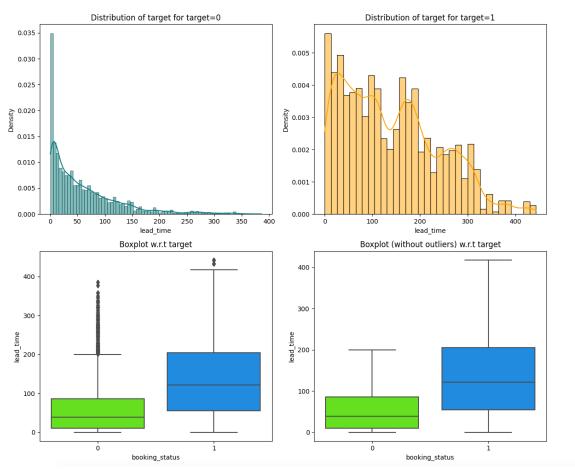
- There appears to be a small spike on the Average Price per Room as special request rise.
- The most significant spike in Average Price Per Room is 2 Special Requests
- 5 or more special requests appear to have little/neg impact and may loose variance.

Average Price per Room and Booking Status _ Correlation



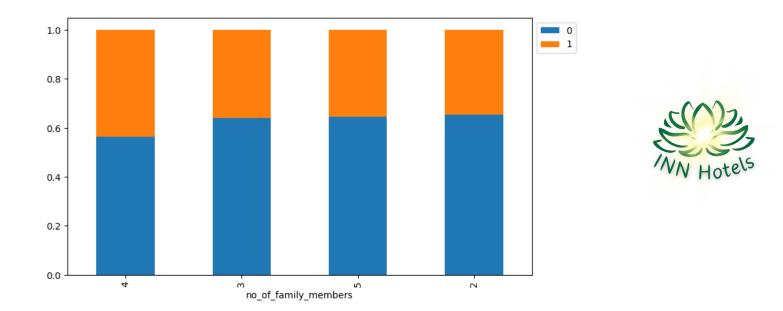
Average Price per Room may have an impact on cancellation ratios. It looks like a higher Average Price per Room may lead to a higher cancellation rate.

Lead Time and Booking Status _ Correlation



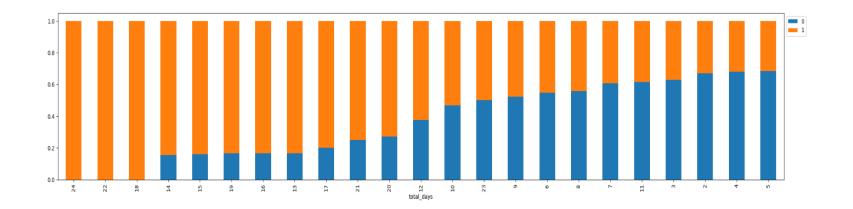
Lead time and booking status appear to have a correlation. It appears the longer the lead time the increased chance that the booking will be cancelled. It appears bookings with lead times over 100 days have a higher chance of cancellations.

Number of Family Members and Booking Status_ Correlation



Number of family members does not seem to affect the number of cancellations.

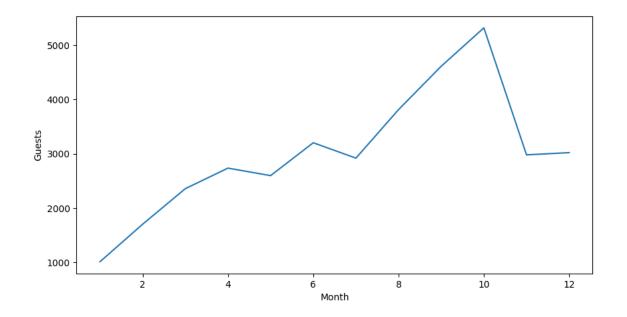
Number of Days and Booking Status_ Correlation



- It appears the booking with more days may result in more cancellations.
- Bookings single digits number of nights appear to have less cancellations.

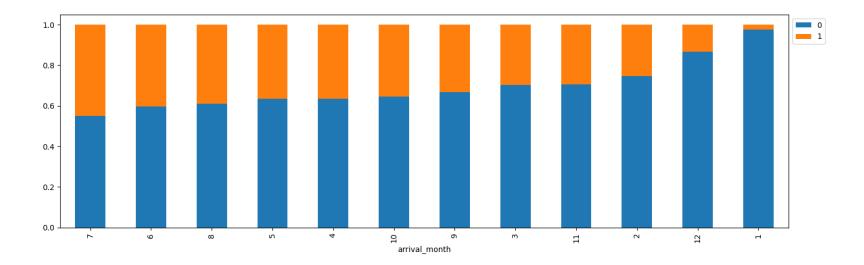
It appears repeat guests are less likely to cancel their bookings.

Busiest month in hotel – number of guests



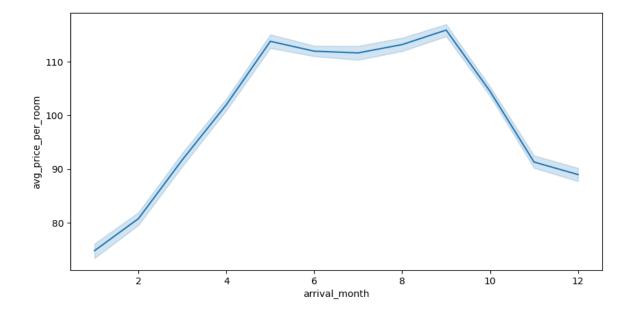
October appears to be the busiest month with a sharp drop in January and February.

Percentage of bookings canceled each month



The summer months appear to have the highest level of cancellation where the winter months tend to have less.

Average Price per Room and Arrival Month



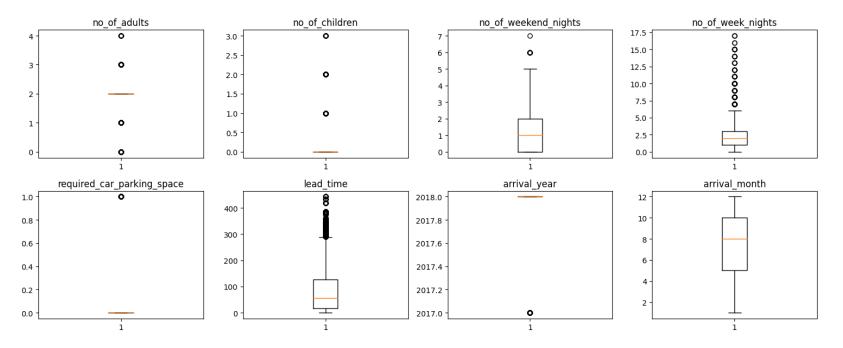
- The highest Average Price per Room appears to be in the summer months.
- The lowest Price per Room is in the winter months.
- Correlating with cancellations higher price and cancellations

Data Processing

Data Processing _ Outlier Check

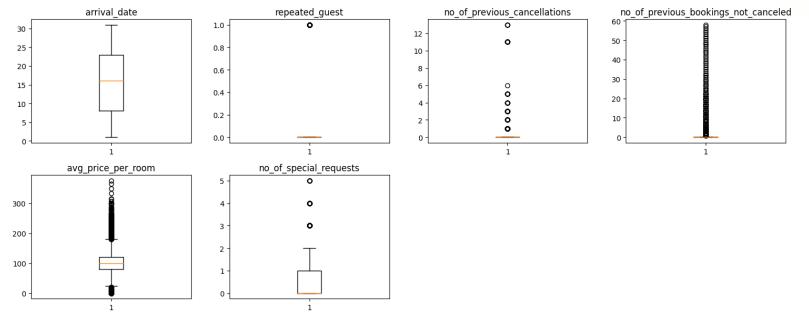
•There are quite a few outliers in the data- these all seem to appear in the dataset.

•However, we will not treat them as they are proper values



Link to Appendix statistical summary and supporting univariate analysis slides

Data Processing _ Outlier Check



Link to Appendix statistical summary and supporting univariate analysis slides

Model Building - Logistic Regression

Data Preparation for modeling...Build Logistic Regression

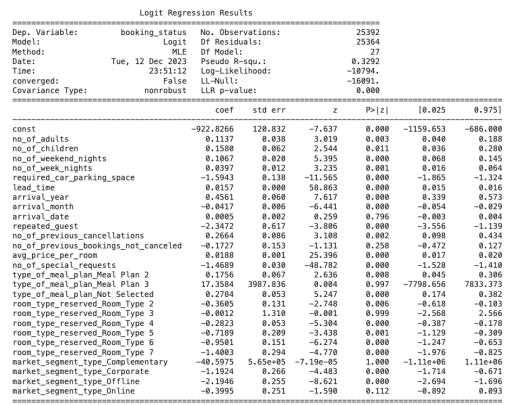
Shape of Training set : (25392, 28)
Shape of test set : (10883, 28)
Percentage of classes in training set:
0 0.67064
1 0.32936
Name: booking_status, dtype: float64
Percentage of classes in test set:
0 0.67638
1 0.32362

Name: booking_status, dtype: float64

Booking Status	Train	Test
0	67%	67.6%
1	32.9%	32.3%

Link to Appendix statistical summary and supporting univariate analysis slides

Model Building – Original Logistic Regression Model



WN Hotels

- Use statsmodels to check the validity of our data
- Negative coefficients reflect the a decreased probability of the booking being canceled.
- Positive coefficients reflect and increased probability of the booking being cancelled.
- There are some high p-values that should be addressed.
- F1 score is low we will make adjustments. Starting with multicollinearity.

Training performance:

 Accuracy
 Recall
 Precision
 F1

 0
 0.80600
 0.63410
 0.73971
 0.68285

Model Building – New Logistic Regression Model

Logit Regression Results Dep. Variable: booking status No. Observations: 25392 Model: Df Residuals: 25370 Logit Method: MLE Df Model: 21 Tue, 12 Dec 2023 0.3282 Date: Pseudo R-sau.: Log-Likelihood: Time: 23:51:16 -10810. converged: True LL-Null: -16091.Covariance Type: LLR p-value: 0.000 nonrobust _____ coef std err Z P>|z| [0.025 0.9751 -915.6391 0.000 -1151.758-679.520 const 120,471 -7.600no of adults 0.1088 0.037 2,914 0.004 0.036 0.182 no of children 0.1531 0.062 2.470 0.014 0.032 0.275 no of weekend nights 0.1086 0.020 5,498 0.000 0.070 0.147 no of week nights 0.0417 0.012 3.399 0.001 0.018 0.066 required car parking space -1.59470.138 -11.5640.000 -1.865-1.324lead time 0.0157 59.213 0.015 0.016 0.000 0.000 7.576 0.335 0.569 arrival year 0.4523 0.060 0.000 arrival month -0.04250.006 -6.5910.000 -0.055-0.030repeated quest -2.73670.557 -4.9160.000 -3.828-1.646no_of_previous_cancellations 0.2288 0.077 2,983 0.003 0.078 0.379 avg price per room 0.0192 0.001 26.336 0.000 0.018 0.021 no_of_special_requests -1.4698-48.884-1.529-1.4110.030 0.000 type of meal plan Meal Plan 2 0.1642 0.067 2.469 0.014 0.034 0.295 type_of_meal_plan_Not Selected 0.2860 0.182 0.390 0.053 5,406 0.000 room type reserved Room Type 2 -0.3552 0.131 -2.7090.007 -0.612-0.098room type reserved Room Type 4 -0.2828 0.053 -5.3300.000 -0.387-0.179room type reserved Room Type 5 -0.7364 0.208 -3.5350.000 -1.145-0.328room type reserved Room Type 6 -0.96820.151 -6.4030.000 -1.265-0.672 room_type_reserved_Room_Type 7 -4.892-2.009-0.860 -1.43430.293 0.000 market segment type Corporate -0.79130.103 -7.692 0.000 -0.993-0.590market segment type Offline -1.78540.052 -34.3630.000 -1.887-1.684

- After treating for multicollinearity - there is not a significant change in the logistic regression.
- The F1 score reduced slightly.

Training performance:

0

 Accuracy
 Recall
 Precision
 F1

 0.80545
 0.63267
 0.73907
 0.68174

Converting Coefficients to Odds – Increasing Odds

						lat	ble 1						
		no_of_adults	no_of_childre	no_of_weeke	no_of_week_	required_car_	lead_time	arrival_year	arrival_month	repeated_gue	no_of_previo	avg_price_pe	no_of_special
	const		n	nd_nights	nights	parking_spac				st	us_cancellati	r_room	_requests
						e					ons		
Odds	0.00000	1.11491	1.16546	1.11470	1.04258	0.20296	1.01583	1.57195	0.95839	0.06478	1.25712	1.01937	0.22996
Change_odd	-100.00000	11.49096	16.54593	11.46966	4.25841	-79.70395	1.58331	57.19508	-4.16120	-93.52180	25.71181	1.93684	-77.00374
%													
		type_of_meal	type_of_meal	room_type_re	room_type_re	room_type_re	room_type_re	room_type_re	market_segm	market_segm			
		_plan_Meal	_plan_Not	served_Room	served_Room	served_Room	served_Room	served_Room	ent_type_Cor	ent_type_Offli			
		Plan 2	Selected	Type 2	_Type 4	_Type 5	_Type 6	_Type 7	porate	ne			
		1.17846	1.33109	0.70104	0.75364	0.47885	0.37977	0.23827	0.45326	0.16773			
		17.84641	33.10947	-29.89588	-24.63551	-52.11548	-62.02290	-76.17294	-54.67373	-83.22724			

Table

- Number of Adults increases the odds of cancelling the booking by 11.5%
- Number of Children increases the odds of cancelling the booking by 16.5%
- Number of Weekend Nights increased the odds of cancelling the booking by 11.5%
- Number of Week Nights increases the odds of cancelling the booking by 4.3%
- Lead Time increases the odds of cancelling the booking by 1.6%
- Arrival Year increases the odds of cancelling the booking by 57.2%
- Number of Previous Cancellations increases the odds of cancelling the booking by 25.7%
- Average Price Per Room increases the odds of cancelling the booking by 1.9%
- Type of Meal Plan-Meal Plan 1 increases the odds of cancelling the booking by 17.8%
- Type of Meal Plan- Not Selected increases the odds of cancelling the booking by 33.1%

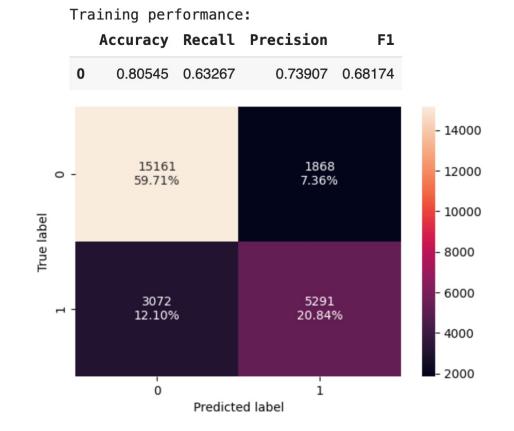
Converting Coefficients to Odds - Decreasing Odds

						lab	le 1						
		no_of_adults	no_of_childre	no_of_weeke	no_of_week_	required_car_	lead_time	arrival_year	arrival_month	repeated_gue	no_of_previo	avg_price_pe	no_of_special
	const		n	nd_nights	nights	parking_spac				st	us_cancellati	r_room	_requests
						е					ons		
Odds	0.00000	1.11491	1.16546	1.11470	1.04258	0.20296	1.01583	1.57195	0.95839	0.06478	1.25712	1.01937	0.22996
Change_odd	-100.00000	11.49096	16.54593	11.46966	4.25841	-79.70395	1.58331	57.19508	-4.16120	-93.52180	25.71181	1.93684	-77.00374
%													
		type_of_meal	type_of_meal	room_type_re	room_type_re	room_type_re	room_type_re	room_type_re	market_segm	market_segm			
		_plan_Meal	_plan_Not	served_Room	served_Room	served_Room	served_Room	served_Room	ent_type_Cor	ent_type_Offli			
		Plan 2	Selected	Type 2	_Type 4	_Type 5	_Type 6	_Type 7	porate	ne			
		1.17846	1.33109	0.70104	0.75364	0.47885	0.37977	0.23827	0.45326	0.16773			
		17.84641	33.10947	-29.89588	-24.63551	-52.11548	-62.02290	-76.17294	-54.67373	-83.22724			

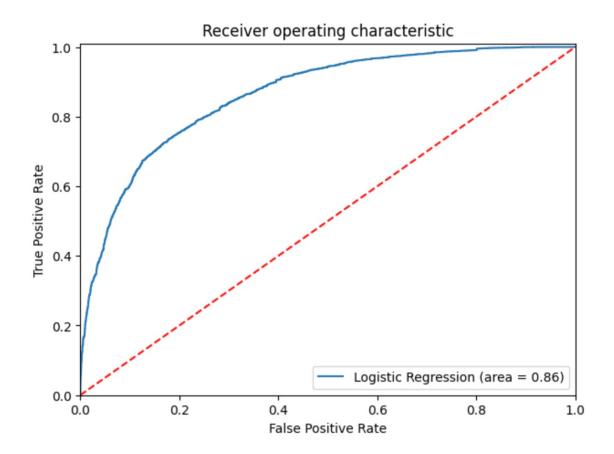
Table 1

- Required Car Parking Space decreases the odds of cancelling the booking by 79.7%
- Arrival Month decreases the odds of cancelling the booking by 4.2%
- Repeated Guest decreases the odds of cancelling the booking by 93.5%
- Number of Special Requests decreases the odds of cancelling the booking by 77%
- Room Type Reserved Room Type 2 decreases the odds of cancelling the booking by 29.9%
- Room Type Reserved Room Type 4 decreases the odds of cancelling the booking by 24.6%
- Room Type Reserved Room Type 5 decreases the odds of cancelling the booking by 52.1%
- Room Type Reserved Room Type 6 decreases the odds of cancelling the booking by 62%
- Room Type Reserved Room Type 7 decreases the odds of cancelling the booking by 76.1%
- Market Segment Type_Corporate decreases the odds of cancelling the booking by 56.7%
- Market Segment Type_Offline decreases the odds of cancelling the booking by 83.2%

Model Performance on Training Set



ROC-AUC on Training Set



Logistic Regression model is giving a good performance on training set.

Can Recall score be improved using the AUC-ROC Curve?

Optimal threshold using AUC-ROC curve

0.3700522558708252

Confusion Matrix using the Threshold

13970 3059 0 -55.02% 12.05% 6157 2206 1 8.69% 24.25% 1 0

Predicted label

True label

- 12000	Training performance:				
	A	ccuracy	Recall	Precision	F1
- 10000	0	0.79265	0.73622	0.66808	0.70049

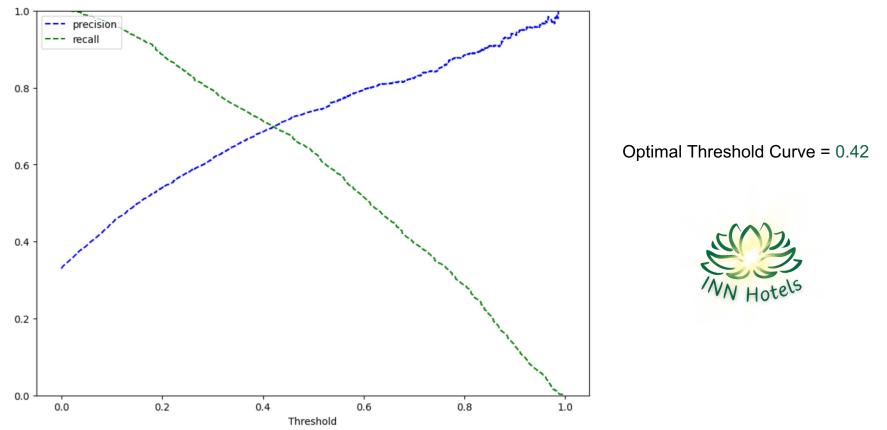
Recall and F1 has increased but the Accuracy and Precision have reduced.The model is still giving a good performance.

4000

- 8000

6000

Used Precision-Recall curve & see if we could find a better threshold



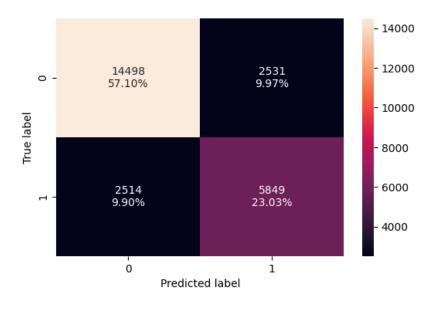
Checking performance of the training set

Optimal threshold

0.42

Confusion Matrix using the Threshold

٠



E	ND,
INN	Hotels

	:	ining per	Tra	
F1	Precision	Recall	Accuracy	
0.69868	0.69797	0.69939	0.80132	0

Accuracy and Precision has increased but the Recall and F1 have reduced.The model is still giving a good performance.

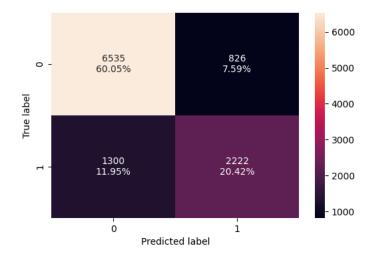
Checking performance of the test set

Optimal threshold

0.42

Confusion Matrix using the Threshold

٠

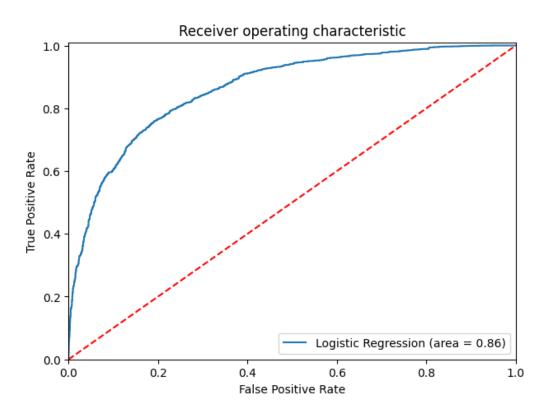


Test performance:

	Accuracy	Recall	Precision	F1
0	0.80465	0.63089	0.72900	0.67641

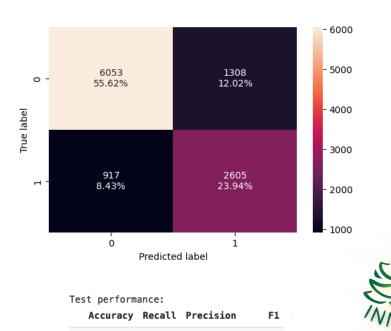
Accuracy and Precision has increased but the Recall and F1 have reduced.
The model is still giving a good performance.

ROC-AUC on Test Set



Logistic Regression model is giving a good performance on training set.

Checking performance of the test set Optimal threshold .37

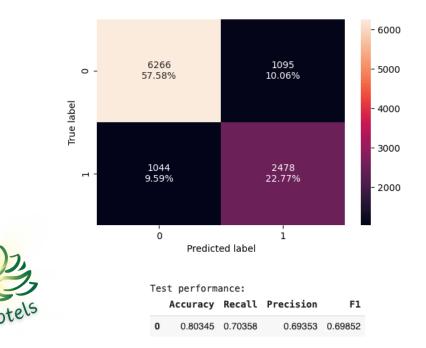


0.66573 0.70074

0

0.79555 0.73964

Checking performance of the test set Optimal threshold .42



Model Performance Evaluation & Improvement- Logistic Regression

- The training and testing set are both performing well without overfitting
- The model with the .37 threshold is giving the best F1 score. Recommend selecting this model

	Logistic Regression-default Threshold	Logistic Regression-0.37 Threshold	Logistic Regression-0.42 Threshold
Accuracy	0.80545	0.79265	0.80132
Recall	0.63267	0.73622	0.69939
Precision	0.73907	0.66808	0.69797
F1	0.68174	0.70049	0.69868

Test performance comparison:

Training performance comparison:

Logistic Regression-default Threshold Logistic Regression-0.37 Threshold Logistic Regression-0.42 Threshold

Accuracy	0.80465	0.79555	0.80345
Recall	0.63089	0.73964	0.70358
Precision	0.72900	0.66573	0.69353
F1	0.67641	0.70074	0.69852

Model Building - Decision Tree

Data Preparation for modeling...Decision Tree

Shape of Training set : (25392, 27)
Shape of test set : (10883, 27)
Percentage of classes in training set:
0 0.67064
1 0.32936
Name: booking_status, dtype: float64
Percentage of classes in test set:
0 0.67638
1 0.32362
Name: booking_status, dtype: float64

Booking Status	Train	Test
0	67%	67.6%
1	32.9%	32.3%

v DecisionTreeClassifier DecisionTreeClassifier(random_state=1)

Checking performance of the Training set

Checking performance of the test set

- 6000

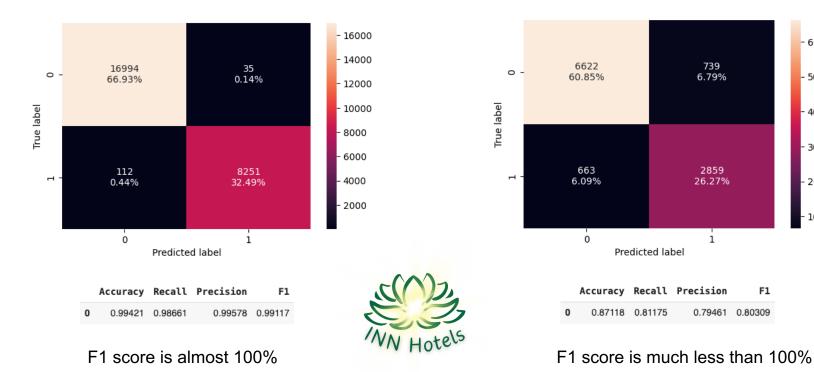
- 5000

- 4000

- 3000

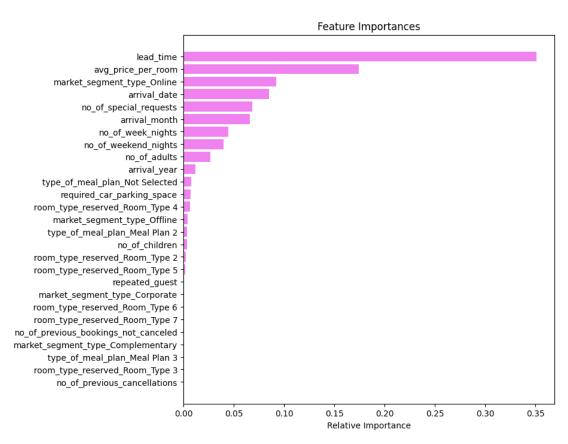
2000

1000



Overfitting is occurring

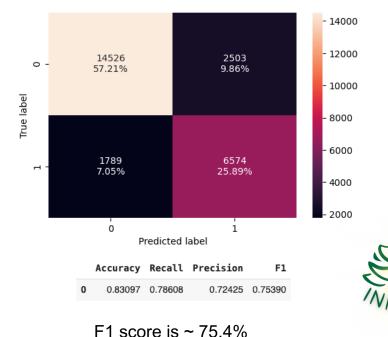
Feature Importance Pre-Pruning



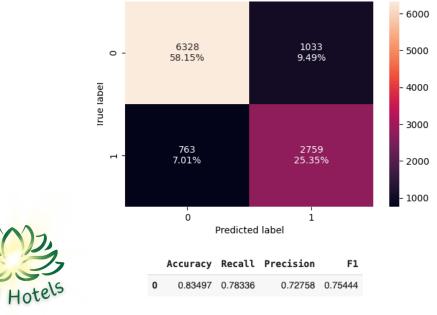
It appears Lead Time is the most important feature for predicting cancellations.

Pre-Pruning

Checking performance of the Training set

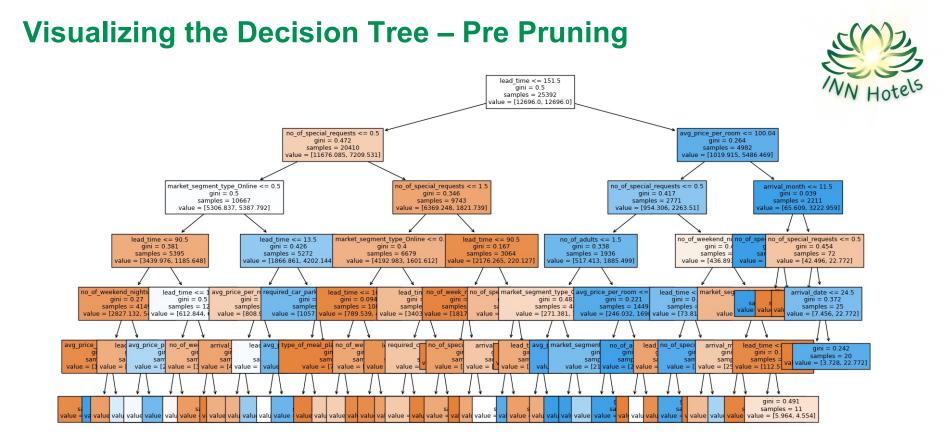


Checking performance of the test set

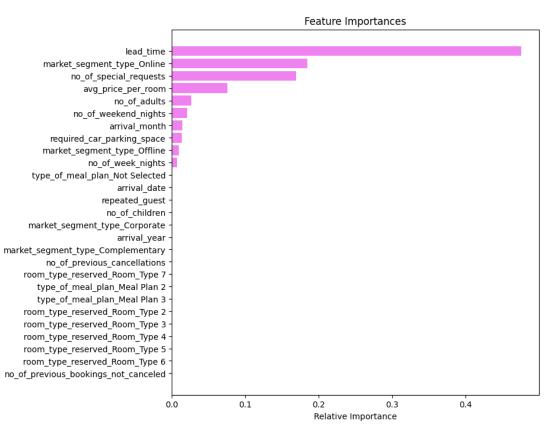


F1 score is ~ 75.4%

It appears Overfitting has been corrected



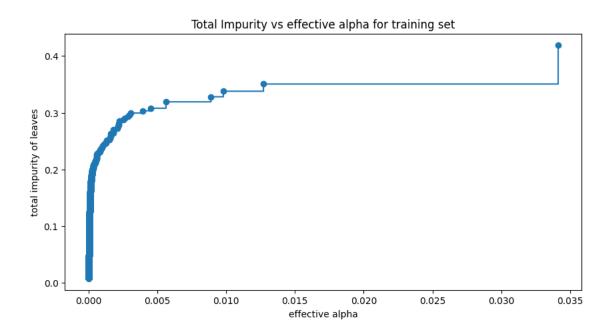
Feature Importance After Pre-Pruning



It appears Lead Time is still the most important feature for predicting cancellations.

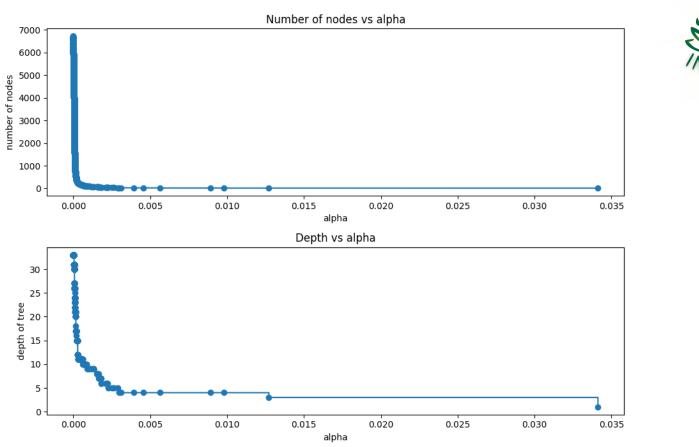
However, Market Segment Type (Online) and Number of Special Requests have moved up in level of importance.

Cost Complexity Pruning

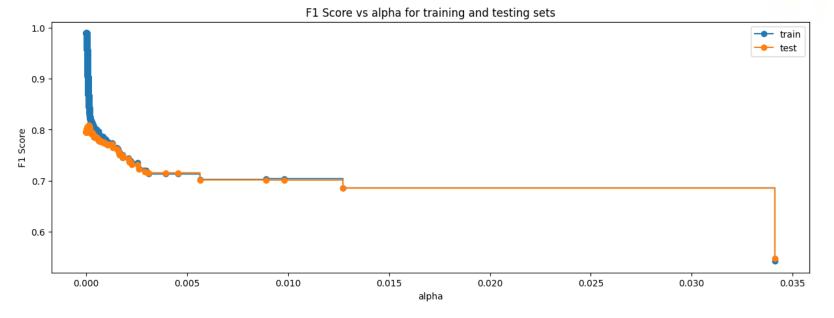


Number of nodes in the last tree is: 1 with ccp_alpha: 0.0811791438913696

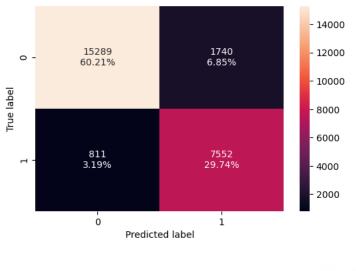
Cost Complexity Pruning Cont...



Cost Complexity Pruning Cont...



DecisionTreeClassifier(ccp_alpha=0.00012267633155167043, class_weight='balanced', random_state=1)

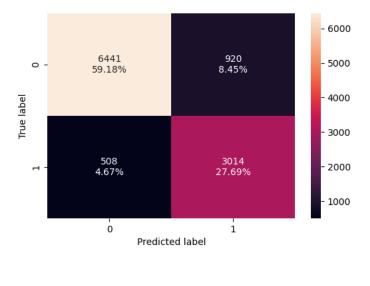


F1

0.81274 0.85551

Checking performance of the Training set Post-Pruning

Checking performance of the Test set Post- Pruning



	Accuracy	Recall	Precision	F1
0	0.89954	0.90303	0.81274	0.85551

F1 score is ~ 85.6%

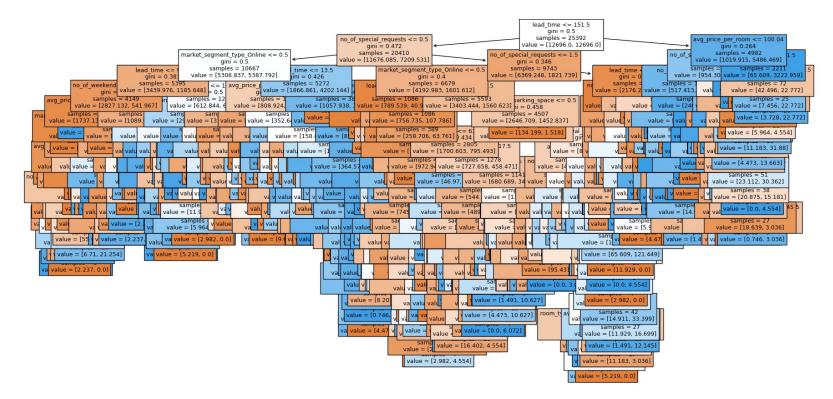
F1 score is ~ 85.6%

Accuracy Recall Precision

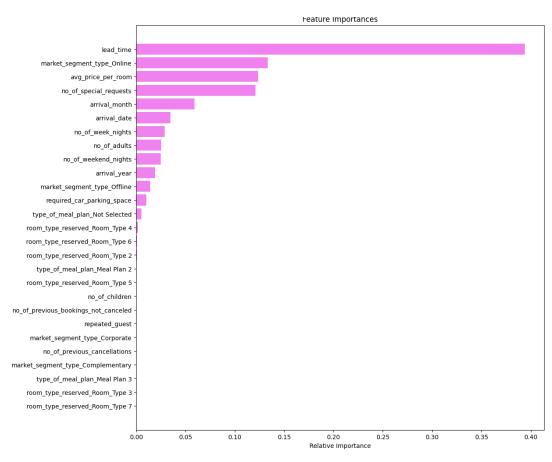
0.89954 0.90303

0

Visualizing the Decision Tree – Post-Pruning



Feature Importance Post-Pruning



It appears Lead Time is still the most important feature for predicting cancellations.

Model Performance Evaluation & Improvement – Decision Tree

- The training and testing set are both performing well without overfitting
- The post-pruning decision tree appears to have the best F1 score Recommend selecting this model

maining	per rormance comparizooni		
	Decision Tree sklearn	Decision Tree (Pre-Pruning)	Decision Tree (Post-Pruning)
Accuracy	0.99421	0.83097	0.89954
Recall	0.98661	0.78608	0.90303
Precision	0.99578	0.72425	0.81274
F1	0.99117	0.75390	0.85551

Test performance comparison:

Training performance comparison:

Decision Tree sklearn Decision Tree (Pre-Pruning) Decision Tree (Post-Pruning)

Accuracy	0.87118	0.83497	0.89954
Recall	0.81175	0.78336	0.90303
Precision	0.79461	0.72758	0.81274
F1	0.80309	0.75444	0.85551