
The CN web. 

Guide to Using and Coding in HTML 

Introduction to HTML and Its Role in Web Development 
HTML, or HyperText Markup Language, is the cornerstone of modern web development. It 
provides the essential structure and semantics for every web page, enabling browsers to render 
content for users worldwide. Since its creation in the early 1990s by Tim Berners-Lee, HTML 
has evolved from a simple set of 18 tags to the robust standard it is today, supporting 
multimedia integration, semantic structure, responsive design, and accessibility features used 
across billions of pages2. This guide provides a structured, detailed, and thorough introduction 
to HTML—from elementary syntax and tags to advanced topics such as semantic HTML5 
elements, accessibility practices, multimedia integration, forms, APIs, and beyond. 

HTML Basics 

What Is HTML and Why Does It Matter? 

HTML is a markup language—not a programming language in the traditional sense. Instead of 
telling the computer how to compute something, it marks up (describes) the structure and 
meaning of text, images, and other resources. Every website you visit, regardless of its 
technology stack, produces HTML that the browser ultimately renders. 

At its foundation, HTML documents consist of elements and attributes. Elements are 
represented by tags (like <p>, <h1>, <img>) and can contain text, other elements, or be 
self-closing. Attributes provide extra information about an element (e.g., <img 
src="logo.png" alt="Logo">). 

A simple HTML document looks like this: 

html 
<!DOCTYPE html> 
<html lang="en"> 
  <head> 
    <meta charset="UTF-8"> 
    <title>My First Web Page</title> 
  </head> 
  <body> 
    <h1>Welcome to My Website</h1> 
    <p>This is a paragraph of text.</p> 



  </body> 
</html> 
 

4 

This structure serves as the bedrock of web design, layout, and interactivity. 

Essential HTML Syntax and Document Structure 

An HTML document must always start with a DOCTYPE declaration: 

html 
<!DOCTYPE html> 
 

This tells the browser to render the page using HTML5 standards, preventing quirks mode and 
ensuring consistent behavior across browsers. 

After the <!DOCTYPE html>, all content is contained within the ${html} tag. The document is 
then divided into two main parts: 

1.​ The Head Section (<head>): Contains metadata (not visible on the page), such as the 
title, character encoding, styles, and links to scripts or external resources. 

2.​ The Body Section (<body>): Contains content visible to the user, including headings, 
paragraphs, images, links, forms, and more. 

For example: 

html 
<!DOCTYPE html> 
<html lang="en"> 
  <head> 
    <meta charset="UTF-8"> 
    <meta name="viewport" content="width=device-width, initial-scale=1.0"> 
    <title>Basic HTML Structure Example</title> 
  </head> 
  <body> 
    <h1>Main Heading</h1> 
    <p>This is an example paragraph.</p> 
  </body> 
</html> 
 

2 



Document Metadata and Head Elements 

HTML documents use the <head> element to define metadata crucial for browsers, search 
engines, social sharing, and mobile responsiveness: 

●​ <title>: Sets the page title (seen in browser tabs and search results). 
●​ <meta charset="UTF-8">: Ensures universal character encoding. 
●​ <meta name="viewport" content="width=device-width, 

initial-scale=1.0">: Essential for responsive design. 
●​ SEO and Social Tags: <meta name="description">, <meta 

name="keywords">, Open Graph tags for sharing content, Twitter Card tags, and 
more47. 

Example: 

html 
<head> 
  <meta charset="UTF-8"> 
  <meta name="viewport" content="width=device-width, initial-scale=1"> 
  <title>Example Page</title> 
  <meta name="description" content="This is an example of HTML document head metadata."> 
  <meta property="og:title" content="Example Page"> 
  <meta property="og:description" content="Rich previews for social media." /> 
  <link rel="stylesheet" href="styles.css"> 
</head> 
 

This setup ensures your page is search engine-friendly, mobile-responsive, and ready for 
social media sharing. 

Text Content Elements: Headings, Paragraphs, and Lists 

Headings 

HTML defines six levels of headings: 

html 
<h1>This is a heading 1</h1> 
<h2>This is a heading 2</h2> 
... 
<h6>This is heading 6</h6> 
 



●​ <h1>: Main page/topic heading—only one per page is recommended. 
●​ <h2>-<h6>: Subheadings for organization and accessibility9. 

Proper heading structure helps users and search engines understand your content 
hierarchy. 

Paragraphs 

Paragraphs are marked up with the <p> tag: 

html 
<p>This is a paragraph.</p> 
 

Lists 

Lists organize content for readability and structure. 

●​ Ordered List (<ol>): Numbered 

html 
<ol> 
  <li>First item</li> 
  <li>Second item</li> 
</ol> 
 

●​ Unordered List (<ul>): Bulleted 

html 
<ul> 
  <li>Item one</li> 
  <li>Item two</li> 
</ul> 
 

●​ Description List (<dl>, <dt>, <dd>): Definitions 

html 
<dl> 
  <dt>HTML</dt><dd>HyperText Markup Language</dd> 
  <dt>CSS</dt><dd>Cascading Style Sheets</dd> 
</dl> 
 



Hyperlinks and Navigation 

Creating Hyperlinks 

The <a> (anchor) tag creates hyperlinks, the basis of web navigation： 

html 
<a href="https://developer.mozilla.org/">Visit MDN Web Docs</a> 
 

Attributes: 

●​ href: The destination URL (absolute, relative, or anchor). 
●​ target="_blank": Opens the link in a new browser tab. 
●​ title: Provides additional context (tooltips on hover). 

Example with additional attributes: 

html 
<a href="https://freecodecamp.org" target="_blank" rel="noopener noreferrer">Learn to 
Code</a> 
 

12 

Internal Page Navigation 

Link to a specific section: 

html 
<a href="#about">About Us</a> 
... 
<h2 id="about">About Us</h2> 
 

Email and Phone Links 
html 
<a href="mailto:someone@example.com">Email Us</a> 
<a href="tel:+1234567890">Call Us</a> 
 

Best Practice: Always use clear link text (avoid "click here"), as descriptive text improves 
accessibility and SEO. 



Embedding Images and Multimedia 

Images 

The <img> element embeds images. Key attributes: 

●​ src: Path to the image file 
●​ alt: Descriptive alternative text (essential for accessibility and SEO) 
●​ width, height: Specify display dimensions, preventing layout shifts 

Example: 

html 
<img src="logo.png" alt="Company Logo" width="200" height="80"> 
 

14 

Best Practices: 

●​ Use relevant alt text for screen readers. 
●​ Use modern formats (WebP, AVIF) when possible. 
●​ Set correct width and height. 

Consider lazy loading for large images below the viewport:​
html​
<img src="big-photo.jpg" alt="Scenic view" loading="lazy"> 

●​  

16 

Audio & Video 

Native HTML5 elements allow easy multimedia embedding: 

Audio: 
html 
<audio controls> 
  <source src="audio.mp3" type="audio/mpeg"> 
  Your browser does not support the audio element. 
</audio> 
 

Video: 



html 
<video width="640" height="360" controls poster="teaser.jpg"> 
  <source src="video.mp4" type="video/mp4"> 
  <source src="video.webm" type="video/webm"> 
  Your browser does not support the video tag. 
</video> 
 

●​ controls: Displays playback controls. 
●​ autoplay, loop, muted, poster: Additional behaviors. 

Accessibility Tip: Always include captions and transcripts for audio/video when possible. 

Organizing Data: Tables 
Tables structure and display tabular data. 

Basic Table Structure 
html 
<table> 
  <caption>Employee Directory</caption> 
  <thead> 
    <tr> 
      <th>Name</th><th>Email</th><th>Department</th> 
    </tr> 
  </thead> 
  <tbody> 
    <tr> 
      <td>Jane Doe</td><td>jane@example.com</td><td>HR</td> 
    </tr> 
    <tr> 
      <td>John Smith</td><td>john@example.com</td><td>IT</td> 
    </tr> 
  </tbody> 
  <tfoot> 
    <tr> 
      <td colspan="3">Updated: September 2025</td> 
    </tr> 
  </tfoot> 
</table> 
 

18 



Table Elements 

Element Purpose 

<table> Defines a table 

<tr> Table row 

<td> Table cell (data) 

<th> Table header cell 

<thead> Groups the header content 

<tbody> Groups the body content 

<tfoot> Groups the footer content 

<caption> Table caption/title 

colspan/rows
pan 

Span cells across 
columns/rows 

Accessibility: Always use <th> for headers and the scope attribute (scope="col" or 
scope="row") to clarify header associations. 

Forms and Input Elements 
Forms enable user data entry and interaction with web applications. 

HTML Form Structure 
html 
<form action="/submit" method="POST"> 
  <label for="name">Name:</label> 
  <input type="text" id="name" name="name" required> 
   
  <label for="email">Email:</label> 
  <input type="email" id="email" name="email" required> 
   
  <input type="submit" value="Submit"> 
</form> 
 

21 



Element Description 

<form> The form container; action sets the submission endpoint. 

<input> Used for various types of user input fields (type="text", "email", 
"password", etc.) 

<label> Describes the input fields 

<textarea> Multiline text input 

<select>/<opti
on> 

Dropdown selection 

<button> General-purpose button; can be for submit/reset/button 

Popular Input Types 

●​ Text: <input type="text"> 
●​ Email: <input type="email"> 
●​ Password: <input type="password"> 
●​ Date and Time: <input type="date">, <input type="time">, <input 

type="datetime-local"> 
●​ Number: <input type="number" min="1" max="100"> 
●​ Radio/Checkboxes: For selecting one or more options. 
●​ Range: <input type="range" min="0" max="100"> 
●​ Color Picker: <input type="color"> 
●​ Search and URL: <input type="search">, <input type="url"> 

Example with Modern Inputs and Validation 
html 
<form> 
  <input type="color" value="#ff0000"> 
  <input type="date"> 
  <input type="range" min="0" max="100"> 
  <input type="email" required> 
  <input type="tel" pattern="[0-9]{3}-[0-9]{3}-[0-9]{4}"> 
</form> 
 

●​ Required and pattern attributes provide instant validation (with friendly messages). 
●​ Labels linked by for and id enhance accessibility. 



Semantic HTML and Modern Structural Elements 
Semantic HTML refers to using tags that describe the meaning and structure of content, not 
just its appearance or layout. 

Semantic Element Role 

<header> Introductory content or navigation 

<nav> A block of navigation links 

<main> The central, unique content of a page 

<section> Thematic grouping of content, typically with a heading 

<article> Self-contained content: blog post, news article, 
comment 

<aside> Content tangentially related to main content (sidebar) 

<footer> Footer for document or section (usually copyright, links) 

<figure>/<figcapt
ion> 

For images, code, charts, with a caption 

<mark> Highlights text 

<details>/<summa
ry> 

Expandable additional content (accordion) 

<time> Dates/times (with machine-readable format) 

Example: 

html 
<main> 
  <article> 
    <header> 
      <h1>HTML5 Advances Web Development</h1> 
      <p>By Jamie Coder</p> 
    </header> 
    <section> 
      <h2>Why Semantic HTML Matters?</h2> 
      <p>Semantic HTML improves accessibility, SEO, and code clarity.</p> 
    </section> 



    <aside> 
      <h3>Did you know?</h3> 
      <p>Screen readers use headings and navigation roles for page exploration.</p> 
    </aside> 
    <footer> 
      <p>Published: September 2025</p> 
    </footer> 
  </article> 
</main> 
 

23 

Advantages of Semantic HTML 

●​ Accessibility: Screen readers and assistive technology understand page structure for 
navigation. 

●​ SEO: Search engines prioritize content organized with correct heading levels and roles. 
●​ Maintainability: Easier team development, upgrades, and bug identification. 

Advanced Multimedia Integration: Canvas and SVG 
HTML5 brings programmatic graphics and animations to the browser. 

Canvas 

The <canvas> element enables 2D drawing using JavaScript. Use cases: games, charts, 
dynamic graphic effects. 

html 
<canvas id="myCanvas" width="400" height="200"></canvas> 
<script> 
  const canvas = document.getElementById('myCanvas'); 
  const ctx = canvas.getContext('2d'); 
  ctx.fillStyle = '#FF0000'; 
  ctx.fillRect(0, 0, 150, 75); 
</script> 
 

●​ Canvas is powerful for graphics requiring pixel manipulation. 
●​ For vector graphics (e.g., icons, diagrams), <svg> is preferred. 

SVG 



Inline SVG (Scalable Vector Graphics) are XML-based vectors, ideal for sharp, scalable images. 
Example: 

html 
<svg width="100" height="100"> 
  <circle cx="50" cy="50" r="40" fill="green" /> 
</svg> 
 

Accessibility and ARIA (Accessible Rich Internet 
Applications) 
Web accessibility means making web content usable by all, including people with disabilities. 
HTML accessibility is achieved primarily by: 

●​ Semantic tags (headings, sections, nav, main) 
●​ Alternative text for images via alt 
●​ Labels for inputs 
●​ Accessible tables (<caption>, <th>, scope) 
●​ Keyboard navigation (correct use of buttons, links, tab order) 
●​ ARIA roles and attributes for extra hints and behaviors 

Example: Accessible Button vs. Non-Accessible 
html 
<!-- Not accessible --> 
<div onclick="doSomething()">Do Something</div> 
 
<!-- Accessible --> 
<button onclick="doSomething()">Do Something</button> 
 

The <button> gains keyboard focus, can be triggered with space/Enter, and announces itself 
correctly to screen readers25. 

Intro to ARIA Roles 

ARIA attributes give extra meaning when semantic HTML falls short: 

●​ role="navigation" or role="main" 
●​ aria-label="Close dialog" for buttons 
●​ aria-describedby or aria-labelledby for images or elements 



But: Use semantic HTML whenever possible; resort to ARIA only where semantic 
alternatives do not exist. 

Advanced HTML5 Features and APIs 
Modern HTML extends beyond markup: 

Web Storage (localStorage, sessionStorage) 

Store structured data in the browser, replacing cookies for many uses. 

js 
// Store data 
localStorage.setItem('username', 'Jamie'); 
// Retrieve data 
let user = localStorage.getItem('username'); // returns 'Jamie' 
 

●​ localStorage: persists until explicitly cleared. 
●​ sessionStorage: persists for current tab session only. 27 

Geolocation 

Enables web apps to access the user's geographic location (with permission): 

js 
navigator.geolocation.getCurrentPosition( 
  position => console.log(position.coords.latitude, position.coords.longitude) 
); 
 

Drag and Drop, Web Workers, Server-Sent Events, WebSockets 

HTML5 and associated web APIs let you add advanced interactivity, concurrency, and network 
features without plugins. 

Responsive Design Techniques 
Responsive web design ensures your site works on any device and screen size. 

Viewport Meta Tag 

Add to every HTML page: 



html 
<meta name="viewport" content="width=device-width, initial-scale=1.0"> 
 

This instructs the browser to scale the page to the device's width, crucial for proper mobile 
viewing29. 

Responsive Images 

Use srcset and sizes to serve the right image variant based on device resolution: 

html 
<img srcset="small.jpg 400w, medium.jpg 800w, large.jpg 1200w" 
     sizes="(max-width: 600px) 400px, (max-width: 1000px) 800px, 1200px" 
     src="small.jpg" alt="A beautiful landscape"> 
 

Tip: Use loading="lazy" for images below the fold to optimize performance16. 

Metadata for SEO and Social Sharing 
The correct metadata boosts your web presence and click-through rates. 

SEO Metadata 

●​ <title> 
●​ <meta name="description" content="A summary of the page"> 
●​ <meta name="keywords" content="html, tutorial, web development"> 

(less important for SEO now, but may still be used) 

Open Graph and Twitter Cards 

Add to the <head> to enable rich sharing on social platforms: 

html 
<meta property="og:title" content="Guide to HTML" /> 
<meta property="og:description" content="A thorough guide to learning HTML" /> 
<meta property="og:image" content="https://example.com/social-image.jpg" /> 
<meta name="twitter:card" content="summary_large_image" /> 
<meta name="twitter:title" content="Guide to HTML" /> 
<meta name="twitter:description" content="A thorough guide to learning HTML" /> 
<meta name="twitter:image" content="https://example.com/social-image.jpg" /> 
 



Canonical, Robots, and Other Meta Tags 

●​ <link rel="canonical" href="https://example.com/page">: Declare the 
preferred URL for this content (avoiding duplicate content issues). 

●​ <meta name="robots" content="index, follow">: Controls indexing and 
crawling. 

Visit official resources for a complete list of useful meta tags67. 

Performance Optimization Strategies 
Performance is vital for user experience and SEO ranking. 

Techniques 
Preload critical assets:​
html​
<link rel="preload" href="main.css" as="style"> 

●​  

Defer or async JavaScript:​
html​
<script src="non-critical.js" defer></script> 
<script src="analytics.js" async></script> 

●​  
●​ Lazy loading for images and iframes 
●​ Choosing suitable image formats and compressing assets 
●​ Setting width/height on images to avoid layout shifts 

Tools like Google Lighthouse and WebPageTest analyze your pages for opportunities to 
improve16. 

Developer Tools, Validation, and Debugging 
HTML validation is essential for code quality and cross-browser consistency. 

Tools 

●​ W3C Markup Validation Service: Paste your HTML or provide a URL to find errors. 
●​ Free Online HTML Validator - FreeFormatter.com for quick syntax and error checking. 

Browser Developer Tools 



Modern browsers (Chrome DevTools, Firefox Developer Tools, Edge, Safari) allow you to: 

●​ Inspect/correct HTML/CSS on-the-fly 
●​ Debug scripts 
●​ Analyze page structure and performance 

Best Practices and Coding Conventions 

●​ Always declare <!DOCTYPE html> at the top 
●​ Use semantic tags where appropriate 
●​ Close all elements properly 
●​ Use lowercase for element/attribute names 
●​ Always quote attribute values 
●​ Add clear alt text to images 
●​ Write accessible, descriptive link texts 
●​ Validate frequently during development 
●​ Separate content (HTML), presentation (CSS), and behavior (JavaScript) 
●​ Organize code for readability (indentation, whitespace, comments)33 

Starter Templates and Example Projects 

Basic HTML5 Starter Template 
html 
<!DOCTYPE html> 
<html lang="en"> 
  <head> 
    <meta charset="UTF-8"> 
    <meta name="viewport" content="width=device-width, initial-scale=1.0"> 
    <title>Page Title</title> 
    <meta name="description" content="Describe your page"> 
    <link rel="stylesheet" href="style.css"> 
  </head> 
  <body> 
    <header> 
      <h1>Welcome to My Website</h1> 
      <nav> 
        <a href="#section1">Section 1</a> 
      </nav> 
    </header> 
    <main> 
      <section id="section1"> 
        <h2>Key Section</h2> 



        <p>This is the main content area.</p> 
      </section> 
    </main> 
    <footer> 
      <p>© 2025 Your Name. All rights reserved.</p> 
    </footer> 
    <script src="script.js"></script> 
  </body> 
</html> 
 

More templates: See resources like Quackit for content pages, portfolios, dashboards, and 
form-centric layouts. 

Real-World Use Cases of HTML 
Below is a summary table, followed by an extended explanation, of the main things you can 
build with HTML in the modern web1: 

Use Case / Application 
Area 

Description 

Website and Webpage 
Development 

Structure and display web content, articles, blogs, landing 
pages, portals 

Navigation and Hyperlinking Interconnect documents/pages, create navigation menus 

Web Forms and Data Entry Gather user inputs—contact forms, signups, feedback, 
authentication 

Embedding Images and 
Multimedia 

Show images, videos, audio, YouTube and external 
resources 

Responsive Design Adapt layouts for desktops, tablets, phones using media 
queries and the viewport tag 

Tables, Grids, and Data 
Presentation 

Display data, organize schedules, price lists, product 
comparison tables 

Semantic Content Structure Markup for SEO, accessibility, and maintainability 

Storage and Web Apps Store user data in the browser, build offline-capable apps 
with local/sessionStorage 

Web Games Simple game logic with <canvas>, interactive experiences 



API Integration and Dynamic 
Content 

Render dynamic or fetched data (with CSS/JS) 

Application Shells (SPA, 
PWA) 

Provide layout for single-page and progressive web apps 

Offline Applications Service Worker + HTML cache manifests for 
low-connectivity operation 

Infographics, Diagrams, 
Visualizations 

Use <canvas>/<svg> to create interactive graphics 

Accessibility-First 
Experiences 

Design for users with disabilities using semantic layout and 
ARIA 

Newsletter and Email 
Templates 

(Simplified) HTML formats for communication 

Document and Report 
Authoring 

Reports, eBooks, CVs, web documentation 

Developer Prototyping Wireframes, design system foundations, prototypes 

Enriched Social Sharing Open Graph and Twitter Card markup for link previews 

APIs and Advanced Features Drag-drop, geolocation, web notifications, and more 

Embedded Widgets and 
Services 

Maps, third-party embeds, iframes (e.g., Twitter, YouTube, 
Google Maps) 

Elaboration: 

●​ Website Building: HTML is the primary ingredient of all sites—from simple personal 
pages to Fortune 500 portals. 

●​ Dynamic Web Apps: In concert with modern frameworks, HTML forms the view layer 
for SPAs (React, Angular, Vue) and PWAs. 

●​ Mobile-First Design: HTML, with responsive techniques, enables web apps that feel 
native across devices. 

●​ Games and Interactivity: The <canvas> and related APIs shift gaming from Flash to 
web standards. 

●​ Data Storage and Offline Capability: Features like web storage and service workers 
push HTML into the app space. 

●​ SEO and Enriched Content: Search engines parse and display data-informed snippets 
based on semantic HTML and metadata. 

●​ Accessibility: Correct HTML enables screen readers and alternate input users to enjoy 
the web barrier-free. 



What Can Be Done with HTML? (Summary List) 
●​ Create websites and static web pages 
●​ Structure text: headings, paragraphs, lists, quotes 
●​ Make internal and external hyperlinks 
●​ Embed images, videos, and audio 
●​ Design and process web forms for user input 
●​ Display tabular data, calendars, and schedules 
●​ Build responsive, mobile-friendly layouts 
●​ Add semantic structure for SEO, readability, and accessibility 
●​ Develop dashboards, portfolios, blogs, landing pages 
●​ Integrate rich media and infographics 
●​ Store and retrieve data locally in the browser (localStorage, sessionStorage) 
●​ Create interactive graphics and games with canvas/SVG 
●​ Provide offline web app functionality 
●​ Craft newsletters, email templates, simple documentation 
●​ Build complex SPA and PWA app shells 
●​ Integrate third-party content via iframes and embeds 
●​ Implement drag-and-drop, geolocation, notifications, and other advanced features 
●​ Ensure web accessibility and ARIA compliance 
●​ Enable metadata-driven social sharing (Open Graph, Twitter Cards) 
●​ Support developer collaboration and rapid prototyping 
●​ Facilitate seamless integration with CSS and JavaScript for style and behavior 

Conclusion 
HTML is the foundation of the modern web. Whether you're building simple static pages or 
powerful interactive web applications, mastering HTML syntax, semantics, accessibility, and 
advanced features is essential. The language continues to evolve alongside browsers and the 
broader open web ecosystem, supporting emerging use cases from immersive multimedia and 
mobile-first design to accessibility innovations and offline apps. 

To become a successful front-end or full-stack developer, building a strong understanding of 
HTML's full capabilities—and adhering to best coding and accessibility practices—is key. 
Supplement your HTML learning with CSS for styling, JavaScript for interaction, and regular 
hands-on experimentation via browser developer tools and validators. 

For continued reference, deepen your skills with leading resources such as MDN Web Docs, 
W3Schools, GeeksforGeeks, and community-driven platforms. The more you build and explore, 
the more powerful and creative your HTML projects will become. 

Keep experimenting, validating your code, and building on the foundation of HTML—the 
language that shapes the future of the web. 



See my thinking 


	Guide to Using and Coding in HTML 
	Introduction to HTML and Its Role in Web Development 
	HTML Basics 
	What Is HTML and Why Does It Matter? 
	Essential HTML Syntax and Document Structure 

	Document Metadata and Head Elements 
	Text Content Elements: Headings, Paragraphs, and Lists 
	Headings 
	Paragraphs 
	Lists 

	Hyperlinks and Navigation 
	Creating Hyperlinks 
	Attributes: 

	Internal Page Navigation 
	Email and Phone Links 

	Embedding Images and Multimedia 
	Images 
	Audio & Video 
	Audio: 
	Video: 


	Organizing Data: Tables 
	Basic Table Structure 
	Table Elements 

	Forms and Input Elements 
	HTML Form Structure 
	Popular Input Types 
	Example with Modern Inputs and Validation 


	Semantic HTML and Modern Structural Elements 
	Advantages of Semantic HTML 

	Advanced Multimedia Integration: Canvas and SVG 
	Canvas 
	SVG 

	Accessibility and ARIA (Accessible Rich Internet Applications) 
	Example: Accessible Button vs. Non-Accessible 
	Intro to ARIA Roles 

	Advanced HTML5 Features and APIs 
	Web Storage (localStorage, sessionStorage) 
	Geolocation 
	Drag and Drop, Web Workers, Server-Sent Events, WebSockets 

	Responsive Design Techniques 
	Viewport Meta Tag 
	Responsive Images 

	Metadata for SEO and Social Sharing 
	SEO Metadata 
	Open Graph and Twitter Cards 
	Canonical, Robots, and Other Meta Tags 

	Performance Optimization Strategies 
	Techniques 

	Developer Tools, Validation, and Debugging 
	Tools 
	Browser Developer Tools 

	Best Practices and Coding Conventions 
	Starter Templates and Example Projects 
	Basic HTML5 Starter Template 

	Real-World Use Cases of HTML 
	What Can Be Done with HTML? (Summary List) 
	Conclusion 


