

Achieving High Strength, Ductility, and Durability in Flexural Members Reinforced with Fiber-Reinforced Polymer Rebars by Using UHP-FRC

Shih-Ho (Simon) Chao, Ph.D., P.E.

Professor of Civil Engineering, University of Texas at Arlington

American Concrete Institute

University of Texas at Arlington (2nd largest campus of UT System)

Department of Civil Engineering

Civil Engineering Laboratory Building

Dr. Surendra P. Shah Presidential Distinguished Professor of Civil Engineering **Structures and Materials** Member of National Academy of Engineering Director, Center for Advanced Construction Materials (CACM) at UT Arlington

Ultra-high-performance fiberreinforced concrete (UHP-FRC)

- High compressive strength
- High compressive ductility

- High cracking resistance
- High shear strength

§ High strength, ductility, durability, and resilience cannot happen simultaneously in conventional RC members design by current design approach

Structural Members

- High durability (highly corrosion resistant)
- High flexural/shear strength
- High stiffness
- High ductility
 - High resilience

Fiber-reinforced polymer (FRP) rebars

High tensile strength

Load vs Deflection behavior

Fiber-Reinforced Polymer (FRP) reinforcing bars

- High-strength FRP bars can reduce \checkmark reinforcement congestion.
- Corrosion resistant exposure to \checkmark deicing salts, seawater
- ✓ Lighter than steel (~ 75% lighter).

Stress-strain relationship of various FRP bars, Wu et al. 2012

RC #2 beam (Plain Concrete + BFRP bar)

Low rebar axial stiffness \rightarrow large crack width (lower flexural stiffness) and reduced shear resistance (due to reduced aggregate interlock, compression zone, and dowel strength)

FRP rebars with conventional concrete

- The maximum usable compressive strain of plain concrete (at a post-peak stress) of approximately 80% of the peak stress), ε_{cu} is 0.003 (ACI 318-19 and 2017) AASHTO LRFD).
- ACI 440 (2015) uses a conservative design for concrete members reinforced with FRP bars because both concrete and FRP bars are brittle materials.

Comparison of typical conventional concrete and UHP-FRC

Properties of Concrete	Conventional Concrete	UHP-FRC
Ultimate Compressive Strength	< 8,000 psi (55 MPa)	18,000 to 30, MPa)
Early (24-hour) compressive strength	< 3000 psi (21 MPa)	10,000 – 12,0 MPa)
Flexural Strength	< 670 psi (4.6 MPa)	2,500 to 6,00
Shear strength	< 180 psi (1.2 MPa)	> 600 psi (4.1
Direct Tension	< 350 psi (2.5 MPa)	up to 1,450 p
Rapid Chloride Penetration Test	2000-4000 Coulombs passed	Negligible (< passed)
Ductility	Negligible	High ductility
Ultimate Compressive Strain, ε _{cu}	0.003	0.015 to 0.03
Confining	Negligible	High confinin

- ,000 psi (124 to 207
- 000 psi (69 to 83
- 00 psi (17 to 41 MPa)
- 1 MPa)
- osi (10 MPa)
- 100 Coulombs

)

g capability

Traditional Design Concept for Reinforced Concrete

Compressive Ductility of UHP-FRC

Aghdasi, P., Heid A. E., and Chao, S.-H. (2016). "Developing Ultra-High-Performance Fiber-Reinforced Concrete for Large-Scale Structural Applications," ACI Materials Journal, V. 113, No. 5, September-October 2016, pp. 559-570.

MPa Stress, Compressive

Strains of UHP-FRC beam measured by high resolution digital image correlation (DIC) technology

Full-field concrete longitudinal strain (ε_x) along moment region for UHP-FRC#1 at an applied load of 317.7 kips (peak load)

	P/2	P/2
		Ţ
****************	+++++++++***+*+************************	*****
++*+++++++++++++++++++++++++++++++++	************************************	*************
******	*+++++++ ++++++++++++++++++++++++++++++	**********
** ++**++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	***********
	********	++++++++++++
******	+*+*+++++++++++++++++++++++++++++++++++	++++++********************************
++××××××××××××××××	***************************************	+++++++***
+*++************	×+×××××××+++×××++++××××××××××××+×+	**********
*******************	***************************************	*********
++×××××××××××××××××××××××××××××××××××××	++*************************************	**********
*+*****************	++***+*********************************	**********
× ××××+××+××+×+××+×	< + + × × + + × + + + + + + + + + + + +	X X + X + X + X + X + + +
***********************	***********************	++++×××××+++
*****************	·++×××××++++++++++++++++++++++++++++++	**********
x + x + + x + + + x × + + + + + + + + +	*****************	**********
* ++ ++++++++++++++++++++++++++++++++++	××++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
×++×++++++×+×++++++	***********	P P + + + + + + + + + + + + + + + + + +
*++++++++++++++++++++++++++++++++++++++	*****	CALLER MONTHING

ε_{cu} of Plain Concrete, FRC, and UHP-FRC

Ultra-High-Performance Fiber-Reinforced Concrete (UHP-FRC): High Compressive Strength & Ductility

Plain concrete

UHP-FRC

Full-scale Column Experimental Results (NSF Award No. 1041633)

Experimental test results (a) at 2.75% drift ratio and (b) at 5.25% drift ratio (Palacios et al., 2017)

Note: The conventional RC column was designed based on ACI 318-14's seismic provisions.

Effect of UHP-FRC's High Compressive Strain and Strength on A **Flexural Member's Curvature Ductility**

ε_{cu} is approximately 0.015, five times of plain concrete's ε_{cu}

New Design Concept : Ductile-Concrete Strong-Reinforcement concept (DCSR design concept)

UHP-FRC (ductile element) + FRP bars (elastic element)

Opposite to conventional RC members

Steel bars (yielding element) + concrete (brittle element, crushed)

Ductile-Concrete Strong-Reinforcement concept (Summary)

- Using high reinforcement ratio of high-strength FRP bars can achieve high structural efficiency (i.e., high flexural strength with a relatively smaller cross-section).
- Keeping rebars elastic can minimize deterioration of bond strength, limit the crack width (thereby maintaining the shear strength and stiffness), and provide restoring force for reducing residual deformation (i.e., self-centering capability).
- The high shear strength of UHP-FRC allows partial or total elimination of shear reinforcement.
- FRP bars + UHP-FRC \rightarrow a highly durable structural member.

Strain profile and Design Sections

RC #1 (9-#5 Gr. 60 mild steel rebars)

The BFRP (baslt) bars had an ultimate tensile strength of approximately 125 ~ 150 ksi and an ultimate tensile strain of 0.017 to 0.025.

Previous test results : Monotonic Loading

Geometry and reinforcement details

Beam RC #1 (plain concrete +Grade 60 longitudinal rebar)

Beam RC #2 (plain concrete + BFRP longitudinal rebar)

Previous test results : Monotonic Loading

Geometry and reinforcement details

Beam UHP-FRC #4 (BFRP longitudinal rebar)

Beam UHP-FRC #5 (BFRP longitudinal rebar)

Load vs Deflection behavior

Cracking patterns at the end of test

RC #2 beam (Plain Concrete + BFRP bar)

RC #1 beam (Grade 60 steel)

UHP-FRC #5 beam (UHP-FRC+ BFRP bar)

Ductile-Concrete Strong-Reinforcement concept – Cyclic Testing

Design Summary

Specimen	Effective depth (d), in. (mm)	Width of compressio n face (b), in. (mm)	ρ (%)	Reinforceme nt type	Fiber type
UHP-FRC #1	4.311 (109)	6 (152)	15.5	MMFX	Steel
UHP-FRC #2	6.375 (162)	6 (152)	13.9	GFRP	Steel
UHP-FRC #3	5.35 (136)	8 (203)	14.8	BFRP	UHMW-PE
UHP-FRC #4	5.35 (136)	8 (203)	14.8	BFRP	Steel

Reinforcement Details

Reinforcement type	Diameter	Tensile str
	in. (mm)	ksi (MPa)
MMFX (Micro Composite Steel) Grade 100 (ASTM	1.125 (29)	100 (690)
1035)		
GFRP (Glass Fiber-Reinforced Polymer)	0.75 (19)	90 (620)
BFRP (Basalt Fiber-Reinforced Polymer)	1.00 (25)	147 (1014)

Effective span, in. (mm)

49.5 (1257) 49.5 (1257) 34 (864) 34 (864)

ength

Ductile-Concrete Strong-Reinforcement concept – Cyclic Testing : Fibers used

	Length (mm)	Diameter (mm)	Tensile S
Micro Steel Fibers	13	0.12	
UHMW Polyethylene Fibers	13	0.0015	

UHP-FRC Beam #3 and #4

Detailed side view of the specimen showing specimens UHP-FRC #3 and UHP-FRC #4

Loading Protocol

Ultra-high-performance fiberreinforced concrete (UHP-FRC)

Fiber-reinforced

- High compressive strength
- High compressive ductility
- High crack resistance
- High shear strength

Structural Members can Simultaneously Achieve All Functions:

- High durability (highly corrosion resistant) \rightarrow material properties of FRP and **UHP-FRC**
- High flexural/shear strength \rightarrow through DCSR design
- High stiffness/→ through DCSR design
- High ductility \rightarrow through DCSR design (reminder: FRP is a brittle material)
- High resilience (small residual deformation) \rightarrow through DCSR design ₃₂

polymer (FRP) rebars

High tensile strength