

CERTIFIED TEST REPORT

PRELIMINARY EVALUATION OF COMPOSITE BFRP BARS FOR CONCRETE REINFORCEMENT

Report Number: R-5.10_OLIN-B.1 Date: January 11, 2019

REVISION 1

REPORT PREPARED FOR:

Blue Cube Opertions LLC (Olin[™])

2301 N. Brazosport Blvd, B1608 Freeport, TX 77541

Rock Rebar Inc.

2681 N.E. 4th AVE Pompano Beach, FL 33064

> **Dixie Chemical** 10601 Bay Area Blvd, Pasadena, TX 77507

PROJECT:

Evaluation of physio-mechanical properties of BFRP rebars made with Epx/ANHYD resin

Quality System:	The Structures and Materials Laboratory (SML) maintains a quality system in compliance with ISO 17025-2017, accredited under International Accreditation Service (IAS), testing laboratory, TL-478 and qualified laboratory by the Florida Department of Transportation (FDOT) ISM028.
Procedures:	All tests and services are done in accordance with the SML Quality Manual (Version 2.4) revised January 31, 2017; relevant standard operating procedures (SOPs); and with the applicable requirements of the reference standard test methods.
Test Data:	All the test results presented herein are linked through unbroken chain to the raw data files recorded on the day of the test. Analyzed data is obtained directly from the recorded raw data during testing, from which the test results are presented. This report contains analyzed tabulated data results of each test.
	University of Miami, College of Engineering, Structures and Materials Laboratory 1251 Memorial Drive, McArthur Engineering Building 108, Coral Gables, FL, 33146

Phone: 305-284-3391 + Fax: 305-284-3492 + Email: fdecaso@miami.edu

Controls:	
Superseded Report	R-5.10_OLIN-B
Reason for Revision	Update of additional test results, discussion and conclusion.
Effective Date	January 11, 2019
Superseded Report	New Report
Reason for Revision	n/a
Effective Date	April 12, 2018

Test Report Approval Sig	est Report Approval Signature:						
Quality review Approval	I indicate that I have reviewed this Test Report and agree with the contents it presents, and find it meets all applicable laboratory requirements and policies. I approve for its release to the customer.						
	Name: Francisco De Caso						
	Signature:						
	Date: January 11, 2019						
Technical review Approval	I indicate that I have reviewed this Test Report and agree with the contents it presents, and find it meets all applicable laboratory requirements and policies. I approve for its release to the customer.						
	Name: Guillermo Claure						
	Signature:						
	Date: January 11, 2019						

EXECUTIVE SUMMARY

This report provides experimental results to evaluate fundamental physio-mechanical and more importantly durability properties of nominal #3, #4 and #5 BFRP rebars made with an epx/anhyd based resin formulation and a sand coated surface with a helically wrapped cord around it. Based on the results presented herein, the following preliminary conclusions can be inferred based on the data set presented.

Thermal/mechanical properties of specimens prior to durability immersion tests:

- All experimental tests are conducted in accordance with ASTM and/or ISO standard test methods (refer to section 2 for the summary results), and thus results are applicable towards BFRP rebar certification and material approval per applicable requirements.
- Overall as indicated quantitatively herein, the evaluated mechanical properties of un-aged BFRP rebars result in equivalent or higher magnitudes than existing minimum ASTM/FDOT specifications or available GFRP rebars as provided by GFRP manufactures.
- Overall qualitatively, based on SEM imaging the BFRP bars result in a homogeneous crosssection were not anomalies or large voids are found, comparable within all bar sizes.
- The relative increasing of the cross-sectional area of the tested rebars to be in the mid-upperbound of the specified ASTM allowable range is recommended.

The durability tests, post immersion in a high alkaline solution for 90 days at 60°C:

- Durability exposures immersed in alkaline solution (without sustained load as applicable) are conducted in accordance with ASTM and/or ISO standard test methods (refer to section 2 for the summary results), and thus results are applicable towards BFRP rebar certification and material approval per applicable requirements.
- Overall as indicated quantitatively herein, the evaluated mechanical properties of aged BFRP rebars result in equivalent or higher magnitudes than existing minimum ASTM/FDOT specifications or available GFRP rebars as provided by GFRP manufactures.
- Overall qualitatively, based on SEM imaging post exposure no visible degradation within the cross-section of the rebar or the surface are present; moreover, no signs of inadequate compatibility between fiber/sizing/epoxy is visible, providing additional evidence on the durability of the BFRP rebars under evaluation.
- More specifically, the tensile properties under the aggressive exposure post immersion in alkaline solution with a sustained load exceed the required retention strength FDOT 932 specification requirements.

TABLE OF CONTENTS

1	INTRODUCTION	5
2	SUMMARY OF TEST RESULTS	6
3	BENCHMARK TEST RESULTS	8
4	DURABILTY RESULTS - POST ALKALINE EXPOSURE	23

1. INTRODUCTION

1.1. BACKGROUND

This report presents experimental results on basalt fiber reinforced polymer (BFRP) bars for concrete reinforcement, made with an epx/anhyd based resin formulation and a sand coated surface with a helically wrapped cord around it. The report provides results to evaluate fundamental mechanical and durability properties of nominal #3, #4 and #5 BFRP rebars. The results are as part of a strategic plan to fully implement, safely and reliably the use of BFRP rebars made with Epx/ANHYD resin as concrete reinforcement in infrastructure applications. Refer to Figure 1 which shows different sample types (longitudinal and bends/stirrups).

Figure 1 – BFRP made with Epx/ANHYD resin 'Rock Rebar' samples

1.2. OBJECTIVE

This report presents experimental physio-mechanical results on BFRP bars for concrete reinforcement. The report provides results to evaluate fundamental mechanical and durability properties of nominal #3, #4 and #5 BFRP rebars, where the three-fold objective is:

- i) Determine if the evaluated properties are within existing international based material specifications (ASTM/ISO/CSA/ICC-ES/DIN) and federal based agencies (FDOT) standards for Glass FRP rebar, including ASTM D7957 (2017) 'Standard *Specification for Solid Round Glass Fiber Reinforced Polymer Bars for Concrete Reinforcement*' as well as Florida Department of Transportation Specification 932.
- ii) Provide preliminary recommendations for BFRP rebars with Epx/ANHYD resin standardization specifications and how it may be in alignment with FDOT incentives (e.g. State Transportation Innovation Councils 'STIC' project summer 2019).
- iii) Provide recommendations on how BFRP rebars made with Epx/ANHYD resin can be provide competitive value in terms of relative higher durability and improved mechanical properties.

Refer to Section 2 which provides summary tables with the average results for each bar size for each different physio-mechanical property based on the standard tests methods. Section 3 provides the fundamental test information and tabulated results for the unaged tests, while Section 4 presents the information and results for the aged tests. A short discussion and conclusions are provided at the end of the report.

SUMMARY OF TEST RESULTS 2.

Test ID Standard Test Method		Test Description	Spec. ASTM D7957	Test Value*	Test Result
		SAMPLE #3			
TSS	ASTM D7617	Guar. Transverse Shear Strength	>19 ksi	19.7 ksi	Pass
FC	ASTM D2584	Fiber Content (by weight)	>70%	79.9 %	Pass
		Guar. Tensile Force	13.2 kip	15.5 kip	Pass
TNS	ASTM D7205	Tensile Modulus of Elasticity	≥ 6.5 Msi	7.0 Msi	Pass
		Strain	≥ 1.1%	2.0 %	Pass
MXA	ASTM D792	Measured Cross Sectional Area	0.104 in ² to 0.161 in ²	0.109 in ²	Pass
MAS	- ASTM D570	Moisture Absorption Short Term	≤ 0.25 %	0.20 %	Pass
MAL	- ASTIVI D570	Moisture Absorption Long Term	≤ 1.00 %	0.73 %	Pass
BS	ASTM D7913	Guar. Bond Strength	>1100 psi	1359 psi	Pass
		Degree of Cure	>95 %	99.6 %	Pass
TEP	ASTM E2160	Glass Transition Temperature (DSC)	>100 <i>°</i> C	138 <i>°</i> C	Pass
	Test Properties	s Post Alkaline Resistance per ASTM D7	705, 90 davs a	at 60℃	
ARL	ASTM D7205	Tensile Load Retention (with load) ¹	>70 %	78.3 %	Pass
TSS-AR	ASTM D7617	Trans. Shear Strength Retention	n/a	84.2 %	n/a
		Degree of Cure	>95 %	99.06 %	Pass
TEP-AR	ASTM E2160	Glass Transition Temperature (DSC)	>100 <i>°</i> C	139 <i>°</i> C	Pass
	-	SAMPLE #4			
TSS	ASTM D7617	Guar. Transverse Shear Strength	>19 ksi	21.4 ksi	Pass
FC	ASTM D2584	Fiber Content (by weight)	>70%	83.3 %	Pass
TNS		Guar. Tensile Force	21.6 kip	26.3 kip	Pass
inte	ASTM D7205	Tensile Modulus of Elasticity	≥ 6.5 Msi	7.2 Msi	Pass
		Strain	≥ 1.1 %	1.9 %	Pass
MXA	ASTM D792	Measured Cross Sectional Area	0.185 in ² to 0.263 in ²	0.207 in ²	Pass
MAS	- ASTM D570	Moisture Absorption Short Term	≤ 0.25 %	0.21 %	Pass
MAL		Moisture Absorption Long Term	≤ 1.00 %	0.86 %	Pass
BS	ASTM D7913	Guar. Bond Strength	>1100 psi	1711psi	Pass
TEP	ASTM E2160	Degree of Cure	>95 %	99.2 %	Pass
		Glass Transition Temperature (DSC)	>100 <i>°</i> C	133 <i>°</i> C	Pass
SOB	ASTM D7914	Strength of Bend	> 60 %	165 %	Pass
		s Post Alkaline Resistance per ASTM D7			
ARL	ASTM D7705	Tensile Load Retention (with load) ¹	>70%	92.3 %	Pass
TSS-AR	ASTM D7617	Trans. Shear Strength Retention	n/a	107.6 %	n/a
TEP-AR	ASTM E2160	Degree of Cure	>95 %	99.4 %	Pass
		Glass Transition Temperature (DSC)	>100 <i>°</i> C	128 <i>°</i> C	Pass

n/a - not applicable

* Guaranteed values provided for reference purposes only based on smaller sample group ¹ Note: this is not an ASTM specification requirement, the criteria is provided by FDOT Specification 932.

Test ID	Standard Test Method	Test Description	Spec. ASTM D7957	Test Value*	Test Result
TSS	ASTM D7617	Guar. Transverse Shear Strength	>19 ksi	21.0 ksi	Pass
FC	ASTM D2584	Fiber Content (by weight)	>70 %	79.8 %	Pass
		Guar. Tensile Force	29.1 kip	33.1 kip	Pass
TNS	ASTM D7205	Tensile Modulus of Elasticity	≥ 6.5 Msi	7.0 Msi	Pass
		Strain	≥ 1.1%	1.6 %	Pass
MXA	ASTM D792	Measured Cross Sectional Area	0.288 in ² to 0.388 in ²	0.292 in ²	Pass
MAS	ASTM D570	Moisture Absorption Short Term	≤ 0.25 %	0.17 %	Pass
MAL	ASTW D570	Moisture Absorption Long Term	≤ 1.00 %	0.67 %	Pass
BS	ASTM D7913	Guar. Bond Strength	>1100 psi	1227 psi	Pass
TEP	ASTM E2160	Degree of Cure	>95%	99.1 %	Pass
ICF	A3110 E2100	Glass Transition Temperature (DSC)	>100 <i>°</i> C	139 <i>°</i> C	Pass
	Test Properties Post Alkaline Resistance per ASTM D7			t 60°C	
ARL	ARL ASTM D7705 Tensile Load Retention (with load) ¹			89.8 %	Pass
TSS-AR	ASTM D7617	TM D7617 Trans. Shear Strength Retention		106.2 %	n/a
TEP-AR	ASTM E2160	Degree of Cure	>95 %	99.1 %	Pass
IEF-AK	ASTIVI EZ 100	Glass Transition Temperature (DSC)	>100 <i>°</i> C	139 <i>°</i> C	Pass

n/a - not applicable

* Guaranteed values provided for reference purposes only based on smaller sample group ¹ Note: this is not an ASTM specification requirement, the criteria is provided by FDOT Specification 932.

3. BENCHMARK TEST RESULTS

The test results presented herein provides the control (benchmark, un-aged) physio-mechanical properties for the samples under valuation. Specimens or sample test data is uniquely identified in the report using the following nomenclature: "XY-Z" where 'X' refers to the test ID as referenced in the first column of Section 2; 'Y' refers to the sample number as referenced in the first row of Section 2; and 'Z' is the test sample repetition number. Note dates referenced within this report use the mm/dd/yyyy format.

Guaranteed (Guar.) values are defined as the average experimental value minus three standard deviations, typically based on a minimum set of test results that includes three productions lots and eight test repetitions per lot, for a total of 24 data points (i.e. n=24). Guaranteed values are provided herein for reference purposes only based on the reported set of results (n=5).

3.1. TRANSVERSE SHEAR STRENGTH (TSS)

Test Standard Method: ASTM D7617, Standard test method for Transverse Shear Strength.

Test Description:	Transverse Shear Strength
Technician/s:	Guan Wang
Specimen Size:	12 in. length
Reference TDS:	TDS-TSS-ASTM-D7617-OLIN-B
Test Data:	

Bar Specimen ID		Peak Lo P ^{max}	Peak Load P ^{max}		I Area	Nominal Transverse Shear Strength τ _u		Failure Mode
Size		kN	lbs	mm ²	in²	MPa	ksi	
	TSS3-01	24.75	5563			173.74	25.20	Shear Failure
	TSS3-02	28.12	6321			197.39	28.63	Shear Failure
#3	TSS3-03	25.44	5719	71.22	0.110	178.59	25.90	Shear Failure
	TSS3-04	27.86	6264			195.62	28.37	Shear Failure
	TSS3-05	22.99	5169			161.43	23.41	Shear Failure
	Average	25.83	5807			181.35	26.30	
	Sn-1	2.16	486			15.19	2.20	
	CV (%)	8.4	8.4			8.4	8.4	
	Guar. Value					135.78	19.69	
	TSS4-01	43.69	9822			306.74	25.06	Shear Failure
	TSS4-02	44.42	9987			311.88	25.48	Shear Failure
#4	TSS4-03	42.10	9465	126.45	0.196	295.58	24.14	Shear Failure
	TSS4-04	42.47	9547			298.15	24.36	Shear Failure
	TSS4-05	40.26	9050			282.62	23.09	Shear Failure
	Average	42.59	9574			298.99	24.42	
	Sn-1	1.60	360			11.25	0.92	
	CV (%)	3.8	3.8			3.8	3.8	
	Guar. Value					265.24	21.67	
	TSS5-01	64.22	14438			450.87	23.51	Shear Failure
	TSS5-02	64.22	14437			450.84	23.51	Shear Failure
#5	TSS5-03	69.53	15631	198.06	0.307	488.14	25.46	Shear Failure
	TSS5-04	63.09	14184			442.94	23.10	Shear Failure
	TSS5-05	68.35	15366			479.85	25.03	Shear Failure
	Average	65.88	14811			462.53	24.12	
	S _{n-1}	2.86	643			20.08	1.05	
	CV (%)	4.3	4.3			4.3	4.3	
	Guar. Value					402.30	20.98	

Test Results:

Pass: $T_u > 19$ ksi (guaranteed value); > 22 ksi (typical for average value)

Test Setup:

Representative Failure Mode:

3.2. FIBER CONTENT (FC)

Test Standard Method: ASTM D2584-11, Standard Test Method for Ignition Loss of Cured Reinforced Resins

Test Description:	Fiber content by weight
Technician/s:	Roger Solis
Specimen Size:	25.0 mm (1.0 in.) long segment cut at different locations from the rebar
Reference TDS:	TDS-FC-ASTM-D2584-OLIN-B
Test Data:	

Nominal	Specimen	Weight of Crucible	Weight prior burnout	Weight post burnout	W1	W2	Fiber Content
Rebar	ID	Wc	Wi	Wi Wf (=Wc-		(=Wf- Wc)	FC
		g	g	g	g	g	%
	FC3-01	37.799	41.596	40.831	3.797	3.032	79.85
	FC3-02	40.273	43.917	43.181	3.644	2.907	79.78
	FC3-03	39.663	43.450	42.696	3.787	3.033	80.09
	FC3-04	40.391	44.132	43.364	3.741	2.973	79.47
#3	FC3-05	39.628	43.368	42.635	3.740	3.007	80.40
						Average	79.92
						Sn-1	0.35
						CV (%)	0.44
	FC4-01	41.264	47.629	46.561	6.366	5.298	83.22
	FC4-02	42.438	48.668	47.611	6.230	5.172	83.02
#4	FC4-03	40.266	46.954	45.852	6.688	5.587	83.53
	FC4-04	40.540	47.472	46.314	6.932	5.774	83.29
	FC4-05	42.711	50.446	49.149	7.735	6.439	83.24
						Average	83.26
						Sn-1	0.18
						CV (%)	0.22
	FC5-01	40.385	49.704	47.768	9.319	7.383	79.23
	FC5-02	39.638	48.100	46.336	8.461	6.697	79.15
	FC5-03	40.272	49.858	48.013	9.586	7.741	80.75
щг	FC5-04	37.797	47.213	45.331	9.416	7.535	80.02
#5	FC5-05	40.246	49.552	47.679	9.306	7.433	79.87
						Average	79.80
						Sn-1	0.65
						CV (%)	0.82

Test Results:

Pass: FC > 70% by weight

Test Setup up:

3.3. TENSILE PROPERTIES (TNS)

Test Standard Method: ASTM D7205 Standard test method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars Determine the ultimate tensile load carrying capacity, tensile modulus of elasticity

Test Description:	Determine the ultimate tensile load carrying capacity, tensile modulus of elasticity
	and computed ultimate strain based on nominal area and an assumed linear elastic
	behavior
Technician/s:	Guillermo Claure, and Roger Solis
Specimon Droporation:	The appeiment were out to the properihed dimensions. Steel pipe type apphare

Specimen Preparation:The specimens were cut to the prescribed dimensions. Steel pipe type anchors
were installed as indicated in ASTM D7205 using expansive grout after machining
the ends of the rebar as to center the bars in the anchors.Reference TDS:TDS-TNS-ASTM-D7205-OLIN-B

Test Data:

Nominal SPECIMEN			Peak Load Nominal Area			Nom. Tensile Strength		Nom. E Modu	ulus	Strain		
Rebar	ID	F	max				A _{nom} F ^{tu} nom		om	E *		εu
		kN	lbs	mm²	in²	MPa	ksi	GPa	Msi	%		
	TNS3-01	75.6	16987			1061	153.9	48.91	7.09	2.04		
	TNS3-02	73.5	16532			1033	149.8	48.62	7.05	2.00		
	TNS3-03	73.8	16583	71.22	0.110	1036	150.2	47.44	6.88	2.05		
	TNS3-04	73.1	16439			1027	148.9	47.28	6.86	2.04		
#3	TNS3-05	71.5	16079			1004	145.7	47.95	6.96	1.97		
	Average	73.5	16524			1032	149.7	48.04	6.97	2.02		
	S n-1	1.4	325			20	2.9	0.71	0.1	0.0		
	CV((%)	2.0	2.0			2.0	2.0	1.5	1.5	1.8		
	Guar. value		15548									
	TNS4-01	126.5	28447			999	145.0	51.99	7.54	1.80		
	TNS4-02	127.1	28566			1004	145.6	51.93	7.53	1.81		
	TNS4-03	128.1	28804	126.61	0.196	1012	146.8	51.00	7.40	1.86		
	TNS4-04	122.5	27534			967	140.3	44.80	6.50	2.02		
#4	TNS4-05	122.3	27504			966	140.1	48.85	7.08	1.85		
	Average	125.3	28171			990	143.5	49.71	7.21	1.87		
	Sn-1	2.7	609			21	3.1	3.03	0.4	0.1		
	CV((%)	2.2	2.2			2.2	2.2	6.1	6.1	4.7		
	Guar. value		26345									
	TNS5-01	172.1	38694			870	126.2	51.05	7.40	1.53		
	TNS5-02	158.5	35624			801	116.2	46.47	6.74	1.53		
	TNS5-03	159.2	35792	197.83	0.307	805	116.7	47.82	6.94	1.50		
	TNS5-04	166.9	37514			844	122.3	47.46	6.88	1.59		
#5	TNS5-05	167.4	37643			846	122.8	46.95	6.81	1.61		
	Average	164.8	37054			833	120.8	47.95	6.95	1.55		
	S n-1	5.8	1312			30	4.3	1.81	0.3	0.0		
	CV((%)	3.5	3.5			3.5	3.5	3.8	3.8	3.1		
	Guar. value		33117									

Test Results: PASS: Refer to summary table Section 2.0

3.4. CROSS-SECTIONAL AREA (MXA)

Test Standard Method:ASTM D7205 Standard test method for Tensile Properties of Fiber Reinforced
Polymer Matrix Composite Bars. ASTM D792 Standard Test Methods for Density
and Specific Gravity (Relative Density) of Plastics by Displacement.Test Description:
Technician/s:
Specimen Size:
Reference TDS:Measurement of cross-sectional area by volume of water displacement method.
Guillermo Claure, and Roger Solis.
Specimen length dimensions were 50 mm (2.0 in.).
Technical Data Sheet: TDS-MXA-ASTM-D792-OLIN-B

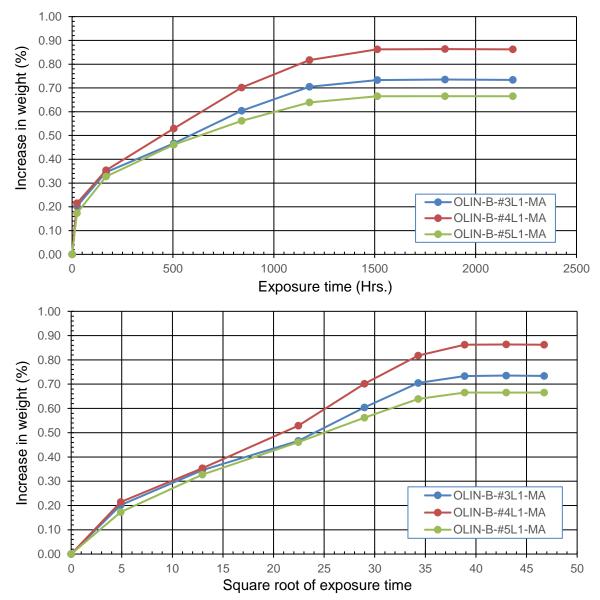
Nominal	Specimen	Wwet	L _{Ave.}	L _{Ave} .	ΔW	Volume	Measure	ed Area
Rebar	ID	g	in.	mm	g	mm ³	mm²	in ²
	MXA3-01	3.686	2.023	51.372	3.443	3453.39	67.22	0.104
	MXA3-02	3.365	1.953	49.610	3.545	3555.70	71.67	0.111
	MXA3-03	3.443	1.991	50.567	3.661	3671.74	72.61	0.113
#3	MXA3-04	3.556	2.048	52.028	3.656	3667.13	70.48	0.109
#3	MXA3-05	3.282	1.950	49.526	3.478	3488.10	70.43	0.109
						Average	70.48	0.109
						Sn-1	2.04	0.003
						CV (%)	2.89	2.89
	MXA4-01	5.868	1.881	47.773	6.232	6250.15	130.83	0.203
	MXA4-02	6.356	2.037	51.736	6.853	6873.46	132.86	0.206
	MXA4-03	5.914	1.864	47.341	6.325	6343.33	133.99	0.208
	MXA4-04	6.086	1.894	48.099	6.525	6544.62	136.07	0.211
#4	MXA4-05	6.259	1.974	50.127	6.698	6717.73	134.01	0.208
						Average	133.55	0.207
						Sn-1	1.91	0.003
						CV (%)	1.43	1.43
	MXA5-01	9.342	1.983	50.368	9.338	9365.65	185.94	0.288
	MXA5-02	9.094	1.910	48.522	9.196	9222.83	190.07	0.295
	MXA5-03	9.242	1.962	49.826	9.522	9550.19	191.67	0.297
#5	MXA5-04	9.049	1.985	50.415	9.282	9309.68	184.66	0.286
#5	MXA5-05	9.348	2.018	51.245	9.619	9647.48	188.26	0.292
						Average	188.12	0.292
						Sn-1	2.88	0.004
						CV (%)	1.53	1.53

Test Result:

PASS: Measured Cross-Sectional Area Limits is as follow for each rebar size

#3 - 0.104 in² to 0.161 in²; #4 - 0.185 in² to 0.263 in²; #5 - 0.288 in² to 0.388 in²

Test Setup:

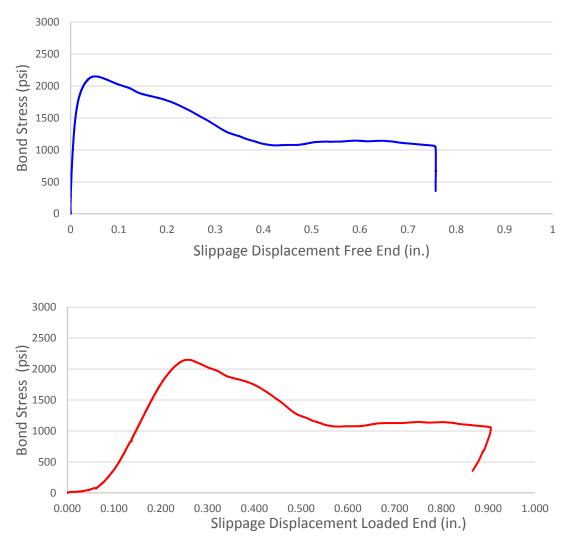


3.5. WATER ABSORPTION (MA)

Test Standard Method:	ASTM D570, Standard Test Method for Water Absorption of Plastics. ASTM D5229D/D229M - 12, Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials (Procedure B). ASTM D7957/D7957M – 17, Standard Specification for Solid Round Glass Fiber Reinforced Polymer Bars for Concrete Reinforcement.
Test Description:	Short term (24hr) level of moisture absorption when immersed in distilled water at 50°C temperature. Long term (Saturation) level of moisture absorption when immersed in distilled water at 50°C temperature.
Technician/s: Specimen Size: Reference TDS:	Guillermo Claure, and Roger Solis. 25.0 mm (1.0 in.) long segment cut at different locations from the rebar. TDS-MA-ASTM-D570-OLIN-B

Test Data: Long term immersion Short term Nominal (13 weeks) Wi **W**₂₄ immersion (24 Ws Rebar **Specimen ID** hrs.) W24 Ws Denominatio % % n g g g 0.20 MA3-01 3.8805 3.8881 3.9054 0.64 MA3-02 3.6374 3.6447 0.20 3.6639 0.73 MA3-03 3.7608 3.7690 0.22 3.7851 0.65 MA3-04 3.7045 3.7124 0.21 3.7373 0.89 #3 MA3-05 3.5839 3.5904 0.18 3.6114 0.77 Average 0.20 0.73 Sn-1 0.01 0.10 CV (%) 7.22 13.7 MA4-01 6.1986 6.2120 0.22 6.2570 0.94 0.76 MA4-02 6.8895 6.9039 0.21 6.9421 MA4-03 7.0581 7.0723 0.20 7.1163 0.82 MA4-04 6.8941 6.9103 0.23 6.9564 0.90 #4 MA4-05 6.3813 6.3948 0.21 6.4374 0.88 Average 0.21 0.86 Sn-1 0.01 0.07 CV (%) 5.9 8.1 MA5-01 0.19 0.72 8.4651 8.4808 8.5261 MA5-02 9.6544 9.6694 0.16 9.7182 0.66 MA5-03 9.1223 9.1400 0.19 9.1870 0.71 0.57 MA5-04 9.3691 9.3830 0.15 9.4221 #5 MA5-05 9.9416 9.9597 0.18 10.0081 0.67 Average 0.17 0.67 0.07 Sn-1 0.02 CV (%) 11.5 9.2 Test Result: PASS: W₂₄ < 0.25%; PASS: W_S < 1.00%

Graphical Representation of Result:


Test Setup:

3.6. BOND STRENGTH TO CONCRETE (BS)

Test Standard Method:	ASTM D7913, Standard Test Method for Transverse Shear Strength of Fiber- reinforced Polymer Matrix Composite Bars.
Test Description:	Test to determine the bond strength for a rebar size under evaluation by pullout
	test method.
Technician/s:	Guillermo Claure, and Roger Solis.
Specimen Size:	After applying a steel anchor pipe to one end, the re-bar specimens were installed within solid plain concrete 205 mm (8.00 in.) cubes in the other end with a de- bonded length to the concrete so that the total bonded length to concrete was equivalent to five times the diameter of the re-bar.
Reference TDS:	TDS-BS-ASTM-D7913-OLIN-B
Test Data:	
	Maximum

Nominal Rebar	SPECIMEN ID	Peak Load	Maximun Bond Strength
itemina itema	0. 20	Pmax	τ
		Lbs	psi
	BS3-01	4034	1826
	BS3-02	3585	1623
	BS3-03	4406	1995
"0	BS3-04	3834	1735
#3	BS3-05	3796	1719
	Average	3931	1780
	Sn-3	310	140
	CV (%)	7.9	7.9
	Guaranteed Value		1359
	BS4-01	9009	2294
	BS4-02	9812	2499
	BS4-03	7980	2032
	BS4-04	8480	2159
#4	BS4-05	8595	2189
	Average	8775	2235
	S _{n-3}	686	175
	CV (%)	7.8	7.8
	Guaranteed Value		1711
	BS5-01	12119	1975
	BS5-02	9266	1510
	BS5-03	11444	1865
μc	BS5-04	12233	1994
#5	BS5-05	10773	1756
	Average	11167	1820
	S _{n-3}	1214	198
	CV (%)	10.9	10.9
	Guaranteed Value		1227

Graphical Representation of Results: (Representative specimen)

Test Setup:

Representative Failure Mode:

Slippage/sliding

3.7. TOTAL ENTHALPY OF POLYMERIZATION (TEP)

Test Standard Method: ASTM E2160, Standard test method for heat of reaction of thermally reactive materials by differential scanning calorimetry (DSC). ASTM E1356, Standard test method for assignment of the glass transition

temperatures by differential scanning calorimetry. Test Description: Degree of cure as a reference value and corresponding glass transition temperature by DSC. The exothermic heat flow produced by the reaction is recorded as a function of temperature and time by a differential scanning calorimeter. Integration of the exothermic heat flow over time yields the heat of reaction. Technician/s: **Guillermo Claure**

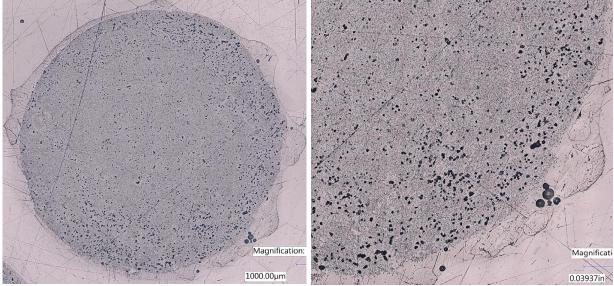
Specimen Size: 5.0 ±0.5 mg and /or 2-mm thick specimen is cut/extracted from the geometrical center of the rebar sample.

Reference TDS: Test Data:

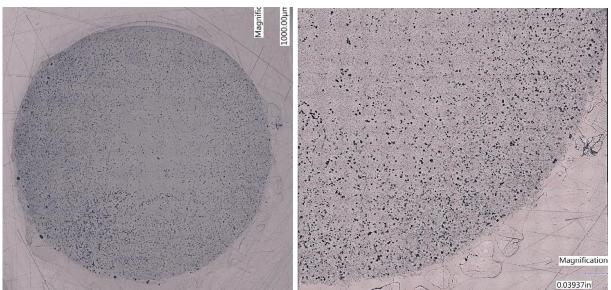
TDS-TPE-ASTM-E2160-OLIN-B

Nominal Rebar	Specimen ID	Normalized heat of reaction	Ons Temper		First dev Temper		Degree of Cure	Tran	ass sition erature
Repar	U	н	Τo		T _f		DC	٦	ſg
		J/g	°C	°F	С°	°F	%	С°	°F
	TEP3-01	0.4802	91	196	122	252	99.52	138	281
	TEP3-02	0.3796	98	208	119	246	99.62	136	276
	TEP3-03	0.4661	82	179	118	244	99.53	138	280
#3	TEP3-04	0.3893	97	207	131	268	99.61	142	288
#3	TEP3-05	0.4566	78	173	110	229	99.54	134	273
	Average						99.57	138	280
	Stand. Dev.						0.05	3.0	5.4
	COV (%)						0.0	2.2	1.9
	TEP4-01	0.4598	71	160	117	242	99.54	134	273
	TEP4-02	0.8129	63	145	114	237	99.19	136	278
	TEP4-03	0.8200	65	150	108	226	99.18	132	270
#4	TEP4-04	0.5663	63	146	115	238	99.43	128	262
#4	TEP4-05	1.5170	68	155	117	242	98.48	132	270
	Average						99.16	133	271
	Stand. Dev.						0.41	3.2	5.7
	COV (%)						0.4	2.4	2.1
	TEP5-01	0.7658	83	182	126	259	99.23	141	286
	TEP5-02	0.7755	74	165	118	244	99.22	139	282
	TEP5-03	1.1830	60	140	113	235	98.82	137	279
#6	TEP5-04	1.0880	60	140	112	234	98.91	140	284
#5	TEP5-05	0.9202	63	145	112	234	99.08	139	282
	Average						99.05	139	283
	Stand. Dev.						0.19	1.4	2.5
	COV (%)						0.2	1.0	0.9

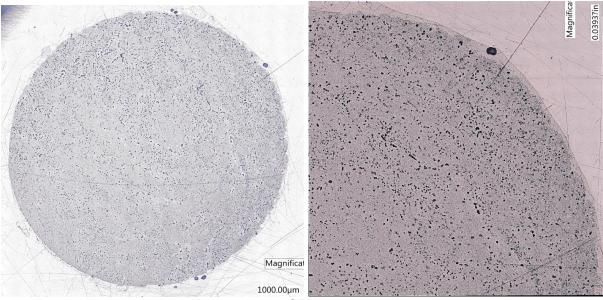
Test Result:


Pass DC > 95%; Tg > 100°C

Test Setup:



3.8. SCANNING ELECTRON MICROSCOPY IMAGING (SEM)


Test Method:	Imaging to observe microscopic features of the cross-section of the bars up to 50 nm in size accomplished with SEM.
Test Description:	SEM is used to qualitatively evaluate the cross-section and determine the 'finger- print' for the manufactured rebar, the void and fiber dispersion, cross-sectional pattern of manufactured product can be parametrically measured.
Technician/s:	Guillermo Claure and Guan Wang
Specimen Preparation:	The specimens included acquisition of a sample that will fit into the SEM chamber and some accommodation to prevent charge build-up on electrically insulating samples. Electrically insulating samples were coated with a thin layer of conducting material, commonly metal/alloy. Metal coatings are most effective for high resolution electron imaging applications.
Reference TDS: Test Data:	TDS-SEM-OLIN-B

Representative SEM image #3 rebar

Representative SEM image #4 rebar

Representative SEM image #5 rebar

STRENGTH OF BEND TESTS (SOB) 3.9.

Test Method:	ASTM D7914, Standard Test Method for Strength of Fiber Reinforced Polymer (FRP) Bent Bars in Bend Locations.
Test Description:	Test to determine the strength of the bend bar (90° bend) and compare to the strength (longitudinal rebar).
Technician/s:	Phil Lavonas
Specimen Preparation:	The specimens were composed of a closed or continuous stirrup (hoop), where manufacturing was via a "layer wound" method with the same heat cure as the continuous straight (longitudinal) basalt fiber reinforced epoxy / anhydride formulation.
Reference TDS: Test Data:	TDS-SOB-OLIN-B

Bar Size	Specimen ID		ax force	Nomi Are A _{no}	a	Nomina Capacity stir f ^{ub} i	y of FRP rup	Xspec. (F ^{ub} /2/ 0.6*Pguar.)
		kN	lbs	mm ²	in²	Мра	ksi	
	SOB4-01	193.9	43600			1362	197.5	1.68
	SOB4-02	175.3	39400	N	0	1230	1230 178.5	1.52
4	SOB4-03	175.7	39500	1.22	0.110	1234	178.9	1.52
	SOB4-04	224.2	50400	71	Ö	1574	228.3	1.94
	SOB4-05	181.5	40800			1274	184.8	1.57
	Average	190.1	42740			1335	193.6	1.65
	Sn-1	20.5	4605			144	20.9	0.18
	CV (%)	10.8	10.8			10.8	10.8	10.8

Test Results:

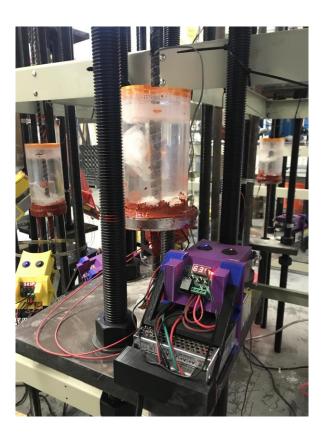
Pass: $\chi_{spec.} > 1.0$ (guaranteed value) Reference values: $P_{guar.} = 12,960$ lbs (57.6 kN), corresponding to 60% of the minimum guaranteed ultimate tensile force per ASTM D7957 Table 3.

Test Setup:

4. DURABILTY RESULTS - POST ALKALINE EXPOSURE

The test results presented herein provides the aged physio-mechanical properties of samples under evaluation post standard accelerated alkaline conditioning exposure. Accelerating condition protocol consisted in the submersion of samples in an aqueous alkaline solution with a pH value to 12.6 to 13.0, as measured by ASTM E70, (Standard Test Method for pH of Aqueous Solutions with the Glass Electrode). The alkaline solution was set to a constant temperature of $60 \pm 3^{\circ}$ C ($140 \pm 5^{\circ}$ F) for a period of 90 days (2160 hrs.). This solution reproduces the concrete alkalinity, while the high temperature aims at accelerating any potential degradation mechanisms that may occur in the composite rebars.

After exposure, a visual inspection was conducted immediately after the removal of the specimens from the alkaline resistance chamber. Prior to physical and mechanical testing, a recovery period long enough so that the samples reached moisture equilibrium with laboratory testing conditions was established (minimum 72 hours). Samples were then prepared and tested in accordance to each standard test method of reference.


4.1. TENSILE PROPERTIES WITH LOAD (TNS-ARL)

Test Standard Method: ASTM D7705, Standard test method for Alkali Resistance of Fiber Reinforced Polymer (FRP) Matrix Composite Bars used in Concrete Construction, Procedure B. ASTM D7205, Standard test method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars. Test Description: Determine the tensile capacity retention of the products under evaluation, after exposure with and with load to an aqueous alkaline environment intend to represent concrete pore water. Technician/s: Guillermo Claure, Guan Wang and Roger Solis Specimen Preparation: The specimens were prepared following ASTM D7205 by which steel pipe type anchors were installed using expansive grout after machining the ends of the rebar as to center the bars in the anchors. Aging chambers were attached to each specimen where the alkaline solution was set to have a constant temperature of 60 ± 3°C (140 ± 5°F) for a period of 90 days (2160 hrs.) and a sustained load equivalent to 3000 micro-strain was individually applied to each specimen. Reference TDS: TDS-TNS-ARL-ASTM-D7705-OLIN-B Test Data:

Nominal Rebar	SPECIMEN ID	Benchmark Load P _{max}	Peak Load Post- exposure P _{max}	Modulus of Elasticity E	Strain ɛu	Tensile Load Retention
		lbs	lbs	Msi	%	%
	TNS_ARL3-01		13790	8.83	1.42	83.5
	TNS_ARL3-02	16524	13441	8.38	1.46	81.3
#2	TNS_ARL3-03		11567	5.36	1.96	70.0
#3	Average		12196	7.52	1.61	78.3
	Sn-3		1767	1.89	0.30	
	CV (%)		14.5	25.1	18.8	
	TNS_ARL4-01		24513	6.39	1.96	87.0
	TNS_ARL4-02	28171	26629	7.88	1.72	94.5
#4	TNS_ARL4-03		12652	7.38	1.86	95.4
#4	Average		22668	7.21	1.85	92.3
	Sn-3		6761	0.76	0.12	
	CV (%)		29.8	10.5	6.4	
	TNS_ARL5-01		34217	7.64	1.46	92.3
	TNS_ARL5-02	37054	28256	6.48	1.42	76.3
#5	TNS_ARL5-03		14620	6.63	1.83	100.7
#3	Average		28598	6.92	1.57	89.8
	Sn-3		10046	0.63	0.23	
	CV (%)		35.1	9.2	14.5	
est Results	Pass Ton	sile load retenti	ion > 70%			

Test Results:

Pass: Tensile load retention > 70%

Representative Failure Mode:

4.2. TRANSVERSE SHEAR STRENGTH (TSS-AR)

Test Standard Method:	ASTM D7617, Standard test method for Transverse Shear Strength. ASTM D7705, Standard test method for Alkali Resistance of Fiber Reinforced Polymer (FRP) Matrix Composite Bars used in Concrete Construction.
Test Description:	Transverse Shear Strength
Technician/s:	Guillermo Claure, Guan Wang and Roger Solis
Specimen Preparation:	The specimens were cut to the prescribed dimensions with ends sealed with epoxy
	coating. Conditioning/exposure as referenced in section 4. After exposure, test
	specimens were cut to test size per standard test method of reference.
Reference TDS:	Technical Data Sheet: TDS-TSS-AR-ASTM-D7617-OLIN-B

Test Data:

Nominal	Specimen ID	Peak Load	Transverse Shear Strength	Reference Transverse Shear Strength	Transverse Shear Strength Retention
Rebar		P _{max}	тu		R
		lbs	ksi	ksi	%
	TSS_AR3-01	4742	21.48		81.66
	TSS_AR3-02	5081	23.02		87.50
	TSS_AR3-03	4779	21.65	26.30	82.30
	TSS_AR3-04	5074	22.98		87.38
#3	TSS_AR3-05	4776	21.63		82.25
	Average	4891	22.15		84.22
	Sn-1	171	0.78		2.95
	CV (%)	3.5	3.5		3.5
	TSS_AR4-01	10899	49.37		113.84
	TSS_AR4-02	9918	44.92		103.59
	TSS_AR4-03	11143	50.47	43.37	116.38
	TSS_AR4-04	10227	46.32		106.82
#4	TSS_AR4-05	9310	42.17		97.24
	Average	10299	46.65		107.57
	Sn-1	742	3.36		7.75
	CV (%)	7.2	7.2		7.2
	TSS_AR5-01	15433	69.90		104.20
	TSS_AR5-02	14736	66.75		99.50
	TSS_AR5-03	15868	71.87	67.08	107.13
	TSS_AR5-04	17077	77.35		115.30
#5	TSS_AR5-05	15514	70.27		104.74
_	Average	15725	71.23		106.17
	S _{n-1}	860	3.89		5.80
	CV (%)	5.5	5.5		5.5
Test Results	Not applica	able			

Test Results:

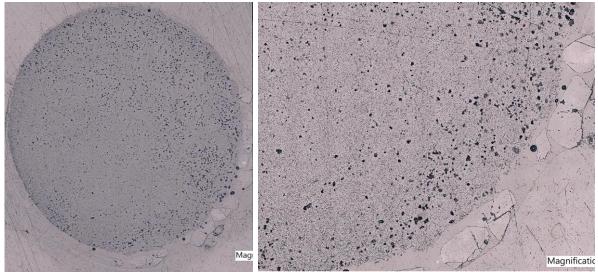
Not applicable.

Representative Failure Mode:

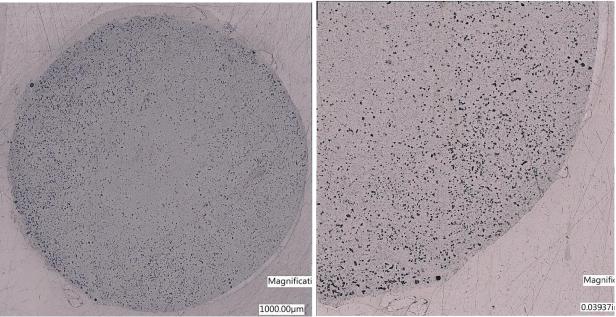
4.3. TOTAL ENTHALPY OF POLYMERIZATION (TEP-AR)

Test Standard Method:	ASTM E2160, Standard test method for heat of reaction of thermally reactive materials by differential scanning calorimetry.
	ASTM E1356, Standard test method for assignment of the glass transition
	temperatures by differential scanning calorimetry
Test Description:	Degree of cure as a reference value.
Technician/s:	Francisco De Caso
Specimen Size:	5.0 ± 0.5 mg and /or 2-mm thick specimen is cut/extracted from the geometrical center of the rebar sample. Conditioning/exposure as referenced in section 4. After exposure, test specimens were cut to test size per standard test method of reference.
Reference TDS:	TDS-TEP-AR-ASTM-E2160-OLIN-B

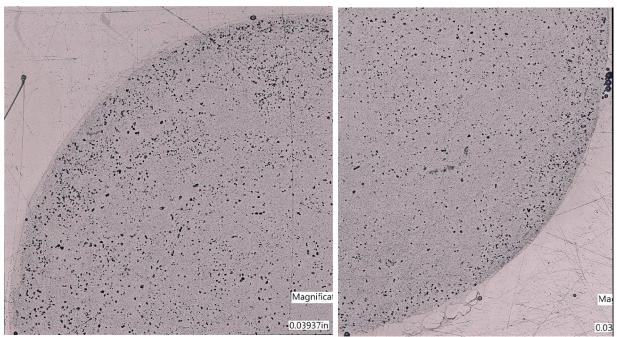
Reference TDS: Test Data:


Specimen ID	d heat of Tem		pera	First deviation Temperatu re		Degree of Cure	Glass Transition Temperatur e		Ref.	Degree of Cure Retention	Ref.		Glass Transition Temperature Retention
	н	т	0	Tf		DC		Tg	DC	R		Tg	R
	J/g	°C	°F	°C	°F	%	°C	°F	%	%	°C	°F	%
TEP_AR3-01	1.2680	75	166	112	233	98.73	141	285		99.16			102.15
TEP_AR3-02	0.7961	65	150	102	216	99.20	136	277		99.64			98.89
TEP_AR3-03	0.4838	84	183	112	233	99.52	140	285	99.57	99.95	138	280	102.13
TEP_AR3-04	1.1940	79	173	114	237	98.81	138	281		99.24			100.48
TEP_AR3-05	0.9524	57	135	94	201	99.05	138	280		99.48			100.33
Average						99.06	139	282		99.49			100.80
Stand. Dev.						0.32	1.9	3.4		0.32			1.38
COV (%)						0.3	1.4	1.2		0.3			1.4
TEP_AR4-01	0.4241	65	149	91	196	99.58	127	261		100.41			96.02
TEP_AR4-02	0.7569	60	140	97	206	99.24	129	264		100.08			97.31
TEP_AR4-03	0.7875	60	140	94	201	99.21	127	261	99.16	100.05	133	271	95.91
TEP_AR4-04	0.5448	62	143	98	208	99.46	128	263		100.29			96.88
TEP_AR4-05	0.6089	62	144	95	203	99.39	127	261		100.23			96.06
Average						99.38	128	262		100.21			96.44
Stand. Dev.						0.15	0.8	1.5		0.15			0.62
COV (%)						0.2	0.6	0.6		0.2			0.6
TEP_AR5-01	0.6060	78	172	117	243	99.39	138	280		100.16			99.08
TEP_AR5-02	0.8392	82	179	124	255	99.16	140	284		99.93			100.66
TEP_AR5-03	0.6889	84	184	119	246	99.31	139	282	99.05	100.08	139	283	99.85
TEP_AR5-04	0.8398	78	173	119	246	99.16	140	283		99.93			100.52
TEP_AR5-05	0.6618	78	173	117	243	99.34	137	278		100.10			98.24
Average						99.27	139	281		100.04			99.67
Stand. Dev.						0.11	1.4	2.5		0.11			1.01
COV (%)						0.1	1.0	0.9		0.1			1.0
	TEP_AR3-01 TEP_AR3-02 TEP_AR3-03 TEP_AR3-04 TEP_AR3-04 TEP_AR3-04 TEP_AR3-05 Average Stand. Dev. COV (%) TEP_AR4-01 TEP_AR4-02 TEP_AR4-04 TEP_AR4-05 Stand. Dev. COV (%) TEP_AR4-05 TEP_AR5-01 TEP_AR5-02 TEP_AR5-03 TEP_AR5-04 TEP_AR5-05 TEP_AR5-05	Specimen IDdeneat of exactionSpecimen IDHJ/gTEP_AR3-011.2680TEP_AR3-020.7961TEP_AR3-030.4838TEP_AR3-041.1940TEP_AR3-050.9524TEP_AR3-060.9524TEP_AR3-070.9524TEP_AR3-080.9524TEP_AR3-090.9524TEP_AR3-010.4241TEP_AR4-020.7569TEP_AR4-030.7875TEP_AR4-040.5448TEP_AR4-050.6089TEP_AR4-050.6089TEP_AR5-010.6060TEP_AR5-020.8392TEP_AR5-030.6889TEP_AR5-040.8398TEP_AR5-050.6618	Specimen ID d heat of reaction Term turner I I R T J/g °C I	Specimen IDd heat of reactionTempers tureHTompersJ/g°C°FTEP_AR3-011.268075166TEP_AR3-020.796165150TEP_AR3-030.483884183TEP_AR3-041.194079173TEP_AR3-050.952457135Average0.424165140TEP_AR4-010.424165140TEP_AR4-020.756960140TEP_AR4-030.787560140TEP_AR4-040.544862143TEP_AR4-050.608962143TEP_AR4-040.544862143TEP_AR4-050.606978172TEP_AR5-010.606078172TEP_AR5-030.688984184TEP_AR5-040.839878173TEP_AR5-050.661878173TEP_AR5-050.661878173TEP_AR5-050.661878173TEP_AR5-050.661878173TEP_AR5-050.661878173TEP_AR5-050.661878173TEP_AR5-050.661878173TEP_AR5-050.661878173TEP_AR5-050.661878173TEP_AR5-050.661878173TEP_AR5-050.661878173TEP_AR5-050.661878173TEP_AR5-050.6	Normalize d heat of reaction Onset Tempera ture deviati Tempera ture H To Tf J/g °C °F °C TEP_AR3-01 1.2680 75 166 112 TEP_AR3-02 0.7961 65 150 102 TEP_AR3-03 0.4838 84 183 112 TEP_AR3-04 1.1940 79 173 114 TEP_AR3-05 0.9524 57 135 94 Average 5 149 91 135 94 TEP_AR3-04 0.9524 57 135 94 TEP_AR3-05 0.9524 57 135 94 TEP_AR4-01 0.4241 65 149 91 TEP_AR4-02 0.7569 60 140 94 TEP_AR4-03 0.7875 60 140 94 TEP_AR4-04 0.5448 62 143 98 TEP_AR4-05 0.6089 62 144 95	Normalize d heat of reaction Onset Tempera ture deviation remperature H To Tf J/g °C °F °C °F TEP_AR3-01 1.2680 75 166 112 233 TEP_AR3-02 0.7961 65 150 102 216 TEP_AR3-03 0.4838 84 183 112 233 TEP_AR3-04 1.1940 79 173 114 237 TEP_AR3-05 0.9524 57 135 94 201 Average 0.9524 57 135 94 201 Average 0.9524 57 135 94 201 TEP_AR3-05 0.9524 57 135 94 201 TEP_AR4-01 0.4241 65 149 91 196 TEP_AR4-02 0.7569 60 140 94 201 TEP_AR4-03 0.6089 62 143 98 208 TEP_	Normalize d heat of reaction Onset Tempera ture deviation remperature Degree of Cure H To Tf DC J/g °C °F °C °F % TEP_AR3-01 1.2680 75 166 112 233 98.73 TEP_AR3-02 0.7961 65 150 102 216 99.20 TEP_AR3-03 0.4838 84 183 112 233 98.73 TEP_AR3-03 0.4838 84 183 112 233 99.52 TEP_AR3-03 0.4838 84 183 114 237 98.81 TEP_AR3-04 0.4838 84 183 914 916 99.58 Stand. Dev. 0.9524 57 135 94 201 99.24 TEP_AR4-01 0.4241 65 149 91 96 99.24 TEP_AR4-02 0.7569 60 140 94 201 99.24 TEP_AR4-03	Normailze d heat of reaction Tempera ture deviation remperature Degree of Cure Transfer Temperature B H To Tf DC Temperature of Cure Temperature J/g °C °F °C °F % °C TEP_AR3-01 1.2680 75 166 112 233 98.73 141 TEP_AR3-02 0.7961 65 150 102 216 99.20 136 TEP_AR3-03 0.4838 84 183 112 233 99.52 140 TEP_AR3-04 1.1940 79 173 114 237 98.81 138 TEP_AR3-05 0.9524 57 135 94 201 99.05 138 Stand. Dev. COV (%) 1.9 201 99.26 127 TEP_AR4-01 0.4241 65 149 91 196 99.46 128 TEP_AR4-02 0.7569 60 140 97 20	Normailize Onset reaction Temperature deviation rescription Degree of Cure Transition Temperature H To re 0C *F 0C *F %C *F J/g °C *F °C *F %C *C *F TEP_AR3-01 1.2680 75 166 112 233 98.73 141 285 TEP_AR3-02 0.7961 65 150 102 216 99.20 136 277 TEP_AR3-03 0.4838 84 183 112 233 99.52 140 285 TEP_AR3-03 0.4838 84 183 114 237 98.81 138 281 TEP_AR3-04 1.1940 79 173 114 237 98.81 138 281 TEP_AR3-05 0.9524 57 135 94 201 99.05 138 282 Stand. Dev. 0.7569 60 140 97 <td< td=""><td>Normailize reaction Onset ture deviaion remperature Degree of Cure Transition remperature Ref. B To Tf DC Tg QC 90.00000000000000000000000000000000000</td><td>Specimen IDMerration reactionDorset turedeviation remperatureDegree of Cure remperatureTransition remperatureRef.Degree of remperatureHToTDCTDCRJg°C°F%°C°F%%CTEP_AR3-011.26807516611223398.7314128599.64TEP_AR3-020.79616515010221699.2013627799.64TEP_AR3-030.4838841831122339.5214028599.5799.92TEP_AR3-041.19407917311423798.8113828199.92TEP_AR3-050.9524571359420199.0513828099.5799.94Stand. Dev</td><td>Appendix Description Description Description Transition Description <</td><td>Normalize cheat of reaction Onset memperature series deviation respective</td></td<>	Normailize reaction Onset ture deviaion remperature Degree of Cure Transition remperature Ref. B To Tf DC Tg QC 90.00000000000000000000000000000000000	Specimen IDMerration reactionDorset turedeviation remperatureDegree of Cure remperatureTransition remperatureRef.Degree of remperatureHToTDCTDCRJg°C°F%°C°F%%CTEP_AR3-011.26807516611223398.7314128599.64TEP_AR3-020.79616515010221699.2013627799.64TEP_AR3-030.4838841831122339.5214028599.5799.92TEP_AR3-041.19407917311423798.8113828199.92TEP_AR3-050.9524571359420199.0513828099.5799.94Stand. Dev	Appendix Description Description Description Transition Description <	Normalize cheat of reaction Onset memperature series deviation respective

Test Result:


Pass DC > 95%; Tg > 100°C

4.4. SCANNING ELECTRON MICROSCOPY IMAGING (SEM-AR)


Test Method:Refer to Section 3.9.Test Description:Refer to Section 3.9.Technician/s:Guillermo Claure, and Guan WangSpecimen Preparation:Refer to Section 3.9. Conditioning/exposure as referenced in section 4.Reference TDS:Technical Data Sheet: TDS-SEM-AR-OLIN-BTest Data:No visible degradation in the core of specimen.

Representative SEM image #3 post exposure

Representative SEM image #4 post exposure

Representative SEM image #5 post exposure

5. DISCUSSION

In the following section, the test results reported in section 4 are briefly reviewed and commented in terms of relevance, meaningfulness and context when compared to typical comparable results of GFRP with vinyl ester matrix.

5.1. BENCHMARK TESTS

- Transverse Shear Strength (ASTM D7617):
 - The perpendicular shear strength is a property directly associate with the fibers of a composite rebar. Although this value is not typically used for design purposes of reinforced concrete elements with composite rebars, it is a fundamental physio-mechanical property to verify minimum transverse shear strength; given that the innate properties of fibers used in composite rebar/strands (basalt, glass and carbon) has a relatively low transverse shear strength. The experimental results provided here in show an increasing transverse shear load resistance with increase in bar size (i.e. area), which is expected. The experimental results of the BFRP are well above the typical minimum expected experiential magnitudes (> 22 ksi) and when compared to GFRP are within typical ranges (22 to 30 ksi). The results exceed the minimum guaranteed values even for the small sample group (> 19 ksi).
- Fiber Content (ASTM D2584):

The fiber content test serves two general purposes, on the one hand it serves to filter manufactured rebars that are below the 70% requirement and thus may not meet other mechanical properties; on the other, that minimum fiber content requirement translates indirectly to the need to ensure adequate rebar manufacturing process in terms of fiber wettability, wet resin properties and overall fiber positioning. Overall the experiential results of the BFRP rebar are in the upper range of fiber content when compared to other composite GFRP rebars, with a typically range of 70-78%, and #4 is significantly higher. The results exceed the minimum requirement of 70% fiber content by weight.

Tensile Properties (ASTM D7205):

The values from the tensile properties test are the primary design material values and are associated primarily to the fiber properties as well as to the effectiveness of load transfer between the resin/fiber layers. The values are directly used and specified in reinforced concrete structures with composite rebars. The results are computed based on nominal area per specifications. The minimum guaranteed ultimate tensile load (strength) results in a significantly higher value than required specification as summarized in Section 2, even for the small sample group. The corresponding modulus of elasticity (a measure of stiffness of the composite rebar) results in a value 7 to 10% higher than the minimum required, and the computed ultimate strain exceeds the minimum requirement of 1.1%, of values in the range of other available GFPR rebars.

Cross-Sectional Area (ASTM D7205/D792):

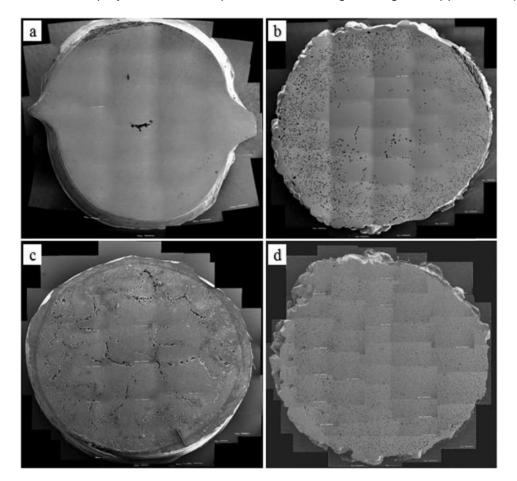
The cross-sectional area is a critical value of composite rebars to ensure that when detailing reinforced concrete elements, proper relationships are maintained that are a function of dimeter (i.e. area) such as: cover, spacing, aggregate size, position of rebar in element...etc. The results for the BFRP rebars are within the lower range of the specified cross-sectional area range and approximate the nominal area, and are lower when compared to other available GFRP rebars that are in the upper range.

➢ Water Absorption (ASTM D570):

Moisture or water absorption can be considered as an indirect measure of durability of the composite rebar, where a high level of voids or other absorbent constituent materials, where water can be absorbed may result in lower durability. Although limited research is found to determine how the magnitude of voids in composite rebars can affect the durability of the rebar, a long term moisture intake (saturation) of more than 1%, and a short term (24 hrs.) absorption of 0.25% are not acceptable. Additionally, this parameter can be qualitatively compared and correlated with the cross-sectional structural of the composite rebar as seen by the scanning electron microscopy (SEM) imaging (refer to Section 3.8). The results of the BFRP rebars are well within the specifications and are relatively lower or equivalent when compared to other GFRP rebars.

Bond Strength to Concrete (ASTM D7913):

Bond strength is critical to ensure the proper transfer of load from the concrete to the rebar. Inadequate bond strength to concrete may result in an ineffective reinforced concrete action. This is a pass/fail test that must have adequate slippage failure mode of the concrete block. Too high of a bond strength may result in splitting of the block, caused by high tensile stress applied to the concrete block and an inacceptable mode of failure. Too low of a bond strength (< 1100 psi guaranteed or < 1400 psi typical average value) will not meet the specifications. The BFRP rebar results in an appropriate bond strength and failure mode, even for the small sample group.


Total Enthalpy of Polymerization (ASTM E2160) and Glass Transition Temperature (ASTM E1356):

The total enthalpy of polymerization is a measure of the degree of cure that resin matrix of the composite rebar has reaching during manufacturing, and thus is an indirect parameter to ensure adequate rebar manufacturing process. Ensuring maximum degree of cure of the rebar under controlled (manufacturing) conditions is critical so that any post cure under uncontrolled (in-situ) conditions that may take place is minimal. The glass transition temperature (T_g) is also a parameter related to the manufacturing process, but also to the resin properties. Ensuring that the minimum specified magnitude is reached is critical to avoid softening of the composite rebars at temperature below the specification, specially during handling. The BFRP rebars results showed a more than 99% degree of sure, and T_g was well above the minimum, higher bound when compared to other available GFRP rebars (non-epoxy) as well as in the same relative range for the different rebar sizes, showing consistency of curing during the manufacturing process.

Scanning Electron Microscopy (SEM) Imaging:

SEM does not form part of the composite rebar specifications, but has been included in this study for qualitative purposes, since SEM can be effectively used to study the microstructural characteristics of composite rebars. The difference in microstructural patterns can found between different manufactures, and these patterns have been demonstrated to significantly contribute to durability properties. The BFRP results can be used as a benchmark for the microstructure and compared to aged bars. Also, the SEM can serve as a base for monitoring possible changes after any conditioning or testing or for quality control in manufacturing, establishing a 'finger-print' for each rebar size. The BFRP results showed homogeneity between he different rebar sizes, showing consistency of the manufacturing process, as well as no significant voids or imperfections, as seen

form the representative SEMs provided. As a comparison and reference to other GFRP rebars, the SEM from four different commercially available GFRP rebars is provided below for comparison purposes (Gooranorimi, et. al. 2017. Microstructural investigation of glass fiber reinforced polymer bars. Composites Part B: Engineering, 110, pp.388-395):

Strength of Bend Tests (ASTM D7914):

The strength of the bend test provides a relative measure of the bend of composite rebar. The minimum strength must exceed 60% of the value of the guaranteed ultimate tensile force, as reported in Table 3 of ASTM D7957. This will assure that proper load transfer is provided within the internal bend composite bars of reinforced concrete elements. The BFRP #4 bend tests (only size available for testing) resulted in 65% higher performance that required by the specification (i.e. an average value of 1.65), this is significantly higher when compared to other available bend GFRP rebars.

5.2. DURABILITY TESTS (Alkaline Resistance)

> Tensile Load Retention with Load (ASTM D7705/D7205):

This durability exposure applies a dual mode of aging, on the one hand the high temperature combined with the high alkalinity solution: the solution reproduces the concrete alkalinity, while the high temperature aims at accelerating any potential degradation mechanisms that may occur in the composite rebars. On the other, the sustained load, which is equivalent to a serviceability level of strain, aims at opening any potential micro-cracks in the composite rebar, thus allowing the solution to penetrate further in the rebar and further degrade the composite rebar. This exposure represents an aggressive environment and thus provides quantitatively a measure the of durability of the rebar. Typically protection of the rebar to aggressive environments is attributed to both manufacturing quality process and the cured resin properties. It should be noted that this test exposure is not a requirement of the ASTM specification, however it is a requirement by the FDOT Specification 932. The BFRP results are significantly high, with a relatively high load retention values, which reflects a durable composite rebar. Moreover, the tensile mode of failure for all rebars samples was adequate, engaging the full cross-section resulting in a 'broom' or explosive failure as seen from the representative figure in Section 4.1.

Transverse Shear Strength (ASTM D7705/D7617):

Although the strength retention of transverse shear is not a composite rebar specification, it was conduced to evaluate the possible degradation of the basalt fibers within the BFRP rebars post immersion in the high temperature alkaline solution. Therefore, there is not an applicable specification requirement. Nevertheless, the specification percentage used in the tensile load retention (without load) may be used as a suggested specification, which is equivalent to 80%. To this end, the BFRP rebar results in adequate performance, where #4 and #5 rebars do not show any degradation, and is a reflection of the durability of basalt fibers when used in composite rebars for concrete reinforcement.

Total Enthalpy of Polymerization and Glass Transition Temperature (ASTM D7705/E2160/E1356):

Similarly to the strength retention of transverse shear, the degree of cure and glass transition temperature post immersion to alkaline solution at high temperature are not a composite rebar specification. It is used a reference to understand possible changes in the degree of cure and glass transition temperature. Therefore the are no specification values, however it is assume that the same levels as the control (benchmark) tests should be maintained, therefore degree of cure should be more than 95% and the glass transition temperature should also be more than 100°C based on DSC method. The BFRP rebar results show that there are no significant changes in degree of cure or glass transition temperate with retention values close to 100% (i.e. no change).

Scanning Electron Microscopy (SEM) Imaging:

SEM post exposure to the alkaline environment was conducted as a qualitative to evaluate if there was any visible degradation at core of the rebar specimen or the surface, of between interfaces. Based on the results, no signs of inadequate compatibility between fiber/sizing/epoxy was visible, nor changes to the surface of overall core of the rebar specimen. In other available studies, hairline cracks have been detected in GFRP rebars at the fiber/sizing/epoxy interfaces, and been attributed to degradation of the overall composite rebar. The SEM study post exposure provides additional evidence on the durability provided by the BFRP rebars under evaluation.

6. **CONCLUSIONS**

In summary, this report provides experimental results to evaluate the fundamental the physiomechanical and durability properties of nominal #3, #4 and #5 BFRP rebars made with an epx/anhyd based resin formulation. Based on the results presented herein, the following preliminary conclusions can be inferred:

Properties of specimens prior to durability immersion tests:

- All experimental tests conducted within this project are in accordance with ASTM or ISO standard test methods, and thus can be used towards BFRP rebar certification and approval per applicable requirements.
- Overall as indicated quantitatively herein, the evaluated mechanical properties of un-aged BFRP rebars result in equivalent or higher magnitudes than existing minimum ASTM/FDOT specifications or available GFRP rebars as provided by GFRP manufactures.
- Overall qualitatively, based on SEM imaging the BFRP bars result in a homogeneous crosssection were not anomalies or large voids are found, comparable within all bar sizes.
- The relative increasing of the cross-sectional area of the tested rebars to be in the mid-upperbound of the specified ASTM allowable range is recommended.
- Strength of bend BFRP closed stirrups (hoops) show a significant higher level of load carrying capacity compared to other available GFRP open bends.

Properties of specimens post alkaline resistance 90 days at 60°C:

- Durability exposures immersed in alkaline solution (without sustained load as applicable) are conducted in accordance with ASTM and/or ISO standard test methods (refer to section 2 for the summary results), and thus results are applicable towards BFRP rebar certification and material approval per applicable requirements
- The tensile properties post alkaline resistance with sustained load met or exceed required retention strength. This is of special interest since the likelihood of micro cracks being induced in samples during testing provide much more aggressive conditions than submerged samples and hence provide evidence of the durability of the BFRP.
- Transvers shear strength post alkaline resistance also show additional evidence in pure shear state of stress that there are no degradation in epx/anhyd protected BFRP rebars.
- SEM imaging does not reveal any visible degradation in the core of specimen or the surface, moreover no signs of inadequate compatibility between fiber/sizing/epoxy is visible, providing additional evidence on the durability of the BFRP rebars under evaluation.
- STIC project (FDOT funded) is using the same BFRP rebar under evaluation, leveraging the tests being conducted and additional data to support and validate results. Results are expected by the end of the first quarter 2019.

In conclusion, based on the results presented herein BFRP rebars made with an epx/anhyd based resin formulation can provide a durable and safe concrete reinforcement solution.

• END OF TEST REPORT •