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Abstract

Thig paper deals wlth the general problem of matching
an arbitrary load lmpedance to a pure resistance by means of a
reactive network., It consists primarily of a systematic study
of the origin and nature of the theoretical limitations on the
tolerance and bandwldth of match and of their dependence on the
characteristics of the given load impedance. Necessary and suf-
ficlent conditlions are derived for the physical realizability of
a function of frequency representing the input reflection coef-
ficlent of a matching network terminated in a prescribed load
impedance. These conditions of physical realizability are then
transformed into a set of integral relations involving the
logarithm of the magnitude of the reflection coefficient. Such
relations are particularly sultable for the study of the limita-
tions on the bandwidth and tolerance of match. Definite expres-
slong for these quantities are obtained in special cases. The
practical problem of approaching the optimum theoretical toler-
ance by means of a network with a finite number of elements is
also considered. Designh curves are provided for a particularly
simple but very important type of load impedance. In addition,
a very convenient method 1s presented for computing the values
of the elements of the resulting matching network.

* The work presented in this paper 1ls part of a thesls with the
game title submitted by the author in partial fulfillment of
the requirements for the degree of Doctor of Science at the
Massachusetts Institute of Technology (June 1947). A summary
was presented to the Natlonal Electronics Conference in
Chicago on November 3, 1947.
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THEORETICAL LIMITATIONS ON THE BROADBAND MATCHING
OF ARBITRARY IMPEDANCES

1., The Matching Problem

The transfer of power from a generator to a load constitutes one
of the fundamental problems in the design of communication systems., A
problem of this type involves in every case the design of a lossless cou=
pling network to transform a given load impedance into another specified
impedance. One referg to this operation as "impedance matching®". In most
practical cases this problem can be 1dealized as indicated in Fig. 1. The
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Figure 1., Matching network for an arbitrary load impedance.

generator 1s agsumed to consist of an ideal voltage source in serles with a
pure resistance; maximum power transfer 1s then obtalned when the impedance
presented to the generator 1ls equal to the source resistance.

It will be shown later that it 1s not possible to match an arbi-
trary lmpedance to a pure resistance over the whole frequency spectrum, or
even at all frequencles within a finite frequency band. On the other hand,
1t 1s evidently possible to obtain a match at any desired number of fre-
quencles, provided the given impedance has a finlte resistive component at
those frequencies. Such a matching, however, has little practical value
because it 1s incorrect to assume that one can obtain a reasonable match
over a frequency band by correctly matchling at a sufficiently large number
of frequencles within the desired band.

It becomes clear at this point that the statement of any matching
problem must include the maximum tolerance on the match as well as the
minimum bandwidth within which the match is to be obtained. Furthermore,
it 1s reasonable to expect that, for a glven load impedance and a glven

‘maximum tolerance, there is an upper limit to the bandwidth that can be

obtained by means of a physlcally realizable coupling network., It follows
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that an investigation of such a limit should be the first step in any sys=—=
tematic study of matching networks. Before this problem can be stated in a -
precise manner, however, one must define an appropriate measure of the match

80 as to glve to the tolerance a definite quantitative meaning.

In view of the fact that matching is used to maximize the load
power, it appears reasonable to measure the match in terms of the actual
load power PL divided by the maximum power Po that could be delivered by
the generator. Actually, the most convenient quantity for this purpose 1s
the per unlt power rejected by the load, that is

2 P
| #] = 1 Po . (1)

It will be recognized that p is the reflection coefficlent defined by

= 2=1
p T Z+1

where Z is the impedance presented to the generator as indicated in Fig. 1.*
If the generator were connected to the coupling network by a transmission
line of characteristic impedance equal to the source resistance, the vol-
tage standing-wave ratio on the line would be given by

VSWR = %—Eilf;‘,— . (2)

-

The problem of the broadband matching of an arbitrary impedance
can now be stated as follows. With reference to Fig. 1, Z; 1s a glven
impedance function of frequency, subjJect only to the restriction of being
realizable by means of a finlte number of linear passive elements. A non~-
disslpative coupling network must be designed such that, when terminated in
ZL’ the magnitude of the input reflectlion coefficient is smaller than,or
equal to, a specified value |p,max at all frequencles within a specifiled
band.,

The exclusion from the system of distributed=constant elements
such as transmission lines, cavity resonators, etc., 1s required by the fact
that the avallable techniques of network analysis and synthesis are limited
to lumped-element gystems. Such a limitation, however, is not so serious
ag 1%t may appear at first because, in many practical cases, the results
obtained in the case of lumped-element networks can be extended, in an
approximate fashion, to the casge of distributed—-constant systems. For
instance, such a technique has been successfully employed by the author in
the design of microwave filters.l

* 1In Fig. 1 as well as in the rest of thils paper all the impedances are
normalized with respect to the source resistance unless otherwise stated.

1 See references p. 34. -0 !

*
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An additional remark must be made on the fact that the coupling
network 1s assumed to be lossless. In practice, of course, a certaln
amount of incidental dissipation will be present, which will result in a
distortion of the characteristics of the coupling network. Techniques for
computing this distortion and correcting for 1t have been developed in
connection with the design of filters 2,3 « It seems appropriate, there-
fore, to neglect the presence of lossges in the following analysils, and to
rely on the avallable techniques for any correction that might become nec=
esgary in the final stage of a particular design.

Matching networks have been deslgned in the past followlng a step
by step procedure leading to a ladder structure of reactances, Such a
procedure has two mailn weaknesses. In the first place the designer does
not know whether the requirements that he is trylng to meet are consistent
with the given load impedance. In the second place, 1t 1s implicitly
asgumed that a process based on successlve improvements converges to the
optimum design, or, at least, to a design reasonsgbly close to the optimum.
This 1s not the case, in general. An improved orocedure of the same type,
suggested by Bode 4,5 in 1930 suffers still from most of the same weak=-
nesses,

The first step toward a systematic investigation of matching
networks was made by Bode 6 some time later, in connection with a very
special but important type of load impedance. He considered the case of
an impedance consisting of a resitance R shunted by a capacitance C, and
showed that the fundamental limitation on the matching network takes the

form
)

- I
/ln Te] dw < RC (3)
o

where p 1s the input reflection coefficlent corresponding to the impedance
Z in Fig. 1. If || 1s kept constant and equal to \p'max over a frequency
band of width w (in rad. per sec.) and is made equal to unity over the rest
of the frequency spectrum, Eq. (3) ylelds

1
1Pl max

w 1ln < ﬁ% . (4)

In words, the product of the bandwldth by the minimum pass-band value of

1n 1/|p|pex» has a meximum 1limit fixed by the product RC. Equation (3)
indicates also that approaching a perfect match, that is, meking |p| very .
small at any frequency, results in an unnecessary waste of the area
represented by the integral, and, therefore, in a reduction of the bandwidth.
It 18 also clear that the limitation found by Bode aprlies to any impedance
consisting of a reactive two~terminal-palr network terminated in a parallel
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RC combination. In this case, however, it 1s to be expected that additional,
end posslbly more stringent, limitations would be imposed by the reactive
network. Thege additional limltations were not investigated by Bode.

The above discusslion indicates the existence of definite limita-
tions on the broadband matching of any given load impedance., These limita-
tions must originate from some conditions of physical realizability of the
function p representing the input reflection coefficient, conditions which
must, in their turn, depend on the load impedance. For the purpose of
discussion, one can then divide the matching problem in three parts as
follows.

l. Given an impedance function Z1, subject only to the restric-
tion of belng realizable by means of a finite number of lumped elements,
find the conditlions of physlcal realizability for the reflection-coefficient
function p of a reactive two-terminal=palr network terminated in ZL‘

2. From the conditlons of ohyslcal realizabllity for p, determine
the minimum tolerance on the magnitude of the reflectlon coefficient over
a prescribed frequency band.

3. Obtain appropriate functions for p which satisfy the condi-
tions of physical realizability and, at the same time, lead to a matching
network requiring a finite number of elements.

2. Physicsl Realizability

Darlington has shown 3 that any physlcally realizable impedance
function can be consldered as the input lmpedance of a reactive two~terminal-
pair network terminated in a pure resistance. This reslstance can be made
equal to one ohm in all cases by incorporating an appropriate ideal trans~=
former in the reactive network. The network shown in Fig. 1 can then be
transformed as indicated in Fig, 2.

-
7 REACTIVE Z, REACTIVE
—| MATCHING — NETWORK I
P NETWORK DETERMINED
—— @ BY ZL
_Z—1
= Z+l

Figure 2. Matching of an arbitrary load impedance,
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At this point the problem under conslderation takes a form partic-
ularly interesting from a general network-theory point of view. It can be
shown that the over-all characteristics of a two-terminal-palr reactive net-
work are completely specified, avart from an all-pass network in cascade,
by the input impedance (or the reflection coefficient) measured at one pair
of termlnals when a one-ohm resistance l1s connected to the other pair of
terminals. It follows that the conditlons of physical reallzebility for p
(see Fig. 2) are the same as the conditions that must be satisfied by any
other function or get of functlong representing the over-all characterisgtics
of the two reactive networks of Fig. 2 in cascade. In conclusion the
problem can be restated as follows?

Given two reactive two—terminsl-pair networks of which one 1is
fixed, the other arbitrary, determine the condltions of physical realiza-
bility for the over-all characteristics of the two networks connected in
cascade.

In studying thils oproblem 1t is convenient to turn the network of
Fig. 2 end to end, as indicated in Flg, 3, so that the network resulting
from the Darlington representation of the load lmpedance becomes the net-
work N', and the matching network to be determined becomes N%. The reflec-
tlon coefficients p; and po refer to the whole netwdrk N terminated on
both sides in one-ohm resistances. The transmission coefficlent t of N

NETWORK N
L
ZNETWORKN' _ _ _ _ NETWORK N™
| ' l
————— _.‘— ] ] | " .I_r———--
1A P, P, Pl
""""" g ] r —
- W b Po _1]

Figure 3, Two reactive networks in cascade,

i1s defined as the ratio of the voltage of the transmitted wave to the vol-
tage of the incident wave with one-ohm terminations. The primed and double=-
primed symbols refer to the networks NV and N respectively, and represent
the reflection and transmission coefficients of these two networks when

they are separately terminated in one~ohm resigtances., These coefficilents
are functions of the real frecuency w, and more precigely, are analytic
functions of the complex freaquency variable A =eo+jw. The functional prop-
erties of the pls and the t's and the relations between them are summarized

in Appendix I.
...5_




In considering the physical reallzablility problem, the first
question that one is likely to ask 1s: Are there any characteristics of NP
which must belong also to the whole network N, irrespective of N¥? A
partial answer to thisg question 1s suggested immediately by the physical
structure of the system. If t! is zero at a real frequency, that is, at
any point of the imaglnary axis of the A~plane, then a wave of that fre-
auency traveling from left to right would be completely stopped by N?!, so
that no part of the wave would come out of N¥ or even enter 1t. It follows
that any poilnt of the imaginary axis which 1g a zero of the transmisgsion
coefficient t! must necessarily be a zero of transmission for the whole
network N, and, therefore, must be a zero of t., Furthermore, the reflected
wave at the input terminals cannot depend on N* if no part of the incident
wave reaches N®, Therefore, Py must be equal to pi for any value of A=Jw
for which t! is zero.

It is clear at this point that one should investigate carefully
the effects on P1 and t of the presence in t! of a zero of arbitrary multi-
plicity located at any point of the complex A-plane. The starting point for
such an invegtigation 1s provided by the two equations

£1 4¥

t = vy r—=m ° 5

Sy (5)
v
2 F

!
- 1 ]

pp = pl+plﬁ.—;i—;{ . () :

It 1s clear that all the zeros of t! are also zeros of t with at least the
gseme multiplicity, provided the denominator of Eq., (5) is finite, It can
be shown, on the other hand, that this denominator cannot vanlsh in the
right half of the A=-plane, and that if 1t has a zero on the imaginary axis,
thls zero must have multiplicity equal to one and must coincide with a zero
of t"., On the contrary, the zeros of t! in the left half of the A=plane
may not be present in t because the factor in the denominator can have
zeros of arbltrary multiplicity in that part of the plane. It must be noted,
however, in thls regard, that if t' has a zero in the lef%t half-plane, 1t
must also have a zero symmetrically located in the right half-plane (sece
Appendix I), which must be present in t., Therefore the elimination of a
zero 1n the left half-plane is, in a certailn sense, only apparent. In
conclusion, if t! has a zero in the right half-plane or on the imaginary
axls, t must have the same zero with at least the same multiplicity.

With regard to the behavior of the reflection coefficient pp at
any point in the right half-plane or on the imaginary axis, at which %t has
a zero of multiplicity n, Eq. (8) indicates that pp and 1ts first 2n-1
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derivatives are equal, respectively, to pi and 1ts corresponding derivatives,
and therefore are independent of the network N¥, The special case of a zero
of t at a point of the imaginary axis at which the denominator of Eq. (6)
vanishes will be dlscussed later,

For reasons that wlll become clear later, 1t 1s more convenlent
to consider the behavior of the function ln 1/pl ingtead of the reflection
coefficient 1tself. On the other hand, if p; and 1ts first 2n-1l derivatives
are independent of N?, the corresponding value and derivatives of 1ln l/p1
are also independent of N", It follows that the filrst 2n coefficients of
the Taylor serles for 1n l/pl about a zero of t' of multiplicity n in the
right half-plane or on the imaglnary axis will be independent of N*, In
addition these coefficients are simply related to the locations of the
zeros and poles of pi, as indicated below,

In the particular case of a zero of t' at the origin, one has

1 _ 0 0.3 ) 2n~3 2n-1
Ingx = JB A M AZAT L+ A a + A2 1A + 0ea(?)

where B is equal to zero or m, depending on the sign of Pye The coeffi-
clents of this serles are all real because on the imaginary axis the
magnitude of py 1s an even function of w and the phase 1s an odd function
of we In addition the even coefficients up to and including Az(n-l) vanish
because of the zero of t of multiplicity n at the origin, The odd coeffi-
cients are given by

where the xoi and the kpi are, respectively, the zeros and the poles of p1e
For a zero of t! at infinity one obtains similarly

-

In 7}1- = 3B+ BN BaTS i am(3078) g am(20m1) ()

where

Kps1 = T € a2kt 2k+1) . (10)

In the case of a zero of t' at a point w_ of the imaginary axis, the sven

v
coefficlents are real and the odd coefficlents are imaginary up to and

including the order 2n-l, One has then



2 3
In L = B0+ A 0 = Jw)) + BP0 = Ju) ¥ AT = Jw) + ..

P1
(11)
w 2n=-2 w 2n=1
v v - + 40
+ JBop s\ = Juw) + Ay a (N = Juy)
where
1 - 3p7
(1n 91)"=3‘”v = J13B,, (12)
“y
JBy for k even € 2n-2
1 - o - k| _
i‘[%"‘oi Jw,) f("pi Juy) ] . (13)

Ak" for k odd < 2n-1.

It 1s, of course, understood that if t! has a zero at a point Jwv 1t must
also have a conjugate zero at —jwv. The coefficients of the serles about
the point -jwb are the conjJugates of the coefficlents of the series (11).

In considering the case of a zero of t! at a point L of the
positive real axis, one must remember that the reflection coefficient PL
may have a zero of multiplicity n, at that point, in which the case it
must also have a pole of the same multiplicity at the symmetrlcal point
-o°. Since the function In 1/py 1s then singular at the point T, one
considers 1n its place the functien

' A =o\To
2 v
in o ()\ ™ *v) } (14)

from which the two singularities have been removed. Followlng the same
line of thought as in the case of 1n l/pl, one can show without difficulty
that the value of the new function (14) and 1ts first (2n-n,-1) derivatives
at -the point G‘v are independent of N", Using the Taylor series for this -
function, 1n 1/pl can be written finally in the form

+o- o i o o 2
1 _ M v Vs o Vg o
S noln)\_%-i-Ao+JB+A1(7\.‘$)+A2()\°;,)+...

(15)

+ T (}\_q.)2n~no-2 + v (?\_r)Zn-no-l +
A2n-'no~2 v Agn-no-]_ v Y

™



where

A=< .
1 v) v
1 = AV + (18)
i ()‘+°‘v - o B
v 1 o)k _ -k ,
A’ = ¢ %()\oi o) %(xpi-r ) . (17)

The zero at =, and the pole at -0;, must, of course, be excluded from the

sbove summations. The case of a zero of t! at an arbitrary point >‘v of
the right half-plane is treated in the same manner. One obtains in this

cage

(A=r, ) (AA,) A A A A A A 2

1 ) v v v ) v v v

in == = g ln == +(a_"+3B_ ")+ (A +IB ) (Nh )+ (A, P 3B, ) (NA )+
S VT A e v 2 v

A A A A
v + v _y }Yen-ng-2 v v 5+ yen-n_-1
oot [A(Zn—no-E) JB(Bn-no-z)](k ) +[‘A‘(Zn-xrxo—l)"'JB(2n-~no—l)](7" Ap) o ...

(18)
where
A, A (A=A, ) (A=A_) %o
TS I AR TS
A, +3B, PL| (A+A) (M) y ’ (19)
A A - -
Ak"-t-JBk" = Tl:' [21 (Ng1=hy) k. %(Api-)\v) k:l . (20)

Also in tlﬁ.s case the pair of zeros at )‘v and-fv and the palr of poles at
=\, and -')‘v must be excluded from the above summations. The coefficlents
of the series about the zero of t! at -Xv are the conjJugates of the coeffl-
clents of the series (18).

The coefficients of the series (7), (9), (11), (15), and (18) up
to the order 2n-no-l included are completely fixed by the given network NV,
with the possible exception of the lagt coefficients, of order 2n-l, in
the case of a zero of t! on the imaginary axis. Such an exceptlon arises
from the fact that the factor 1l-pl pi‘_, in Eqs. (5) and (6) may have a zero
of multiplicity one coinciding with a zero of %! on the imaginary axis.
This situation leads to what may be called a degenerate case, because t*
must have then a zero at the same point whlch effectively combines with the
zero of t%, In fact, the resulting multiplicity of the zero of the over—all
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transmission coefficlent t is, in thls case, one less than the sum of the
multiplicities of the zeros of t' and t" at the same point, as indicated -
by Ed. (5)¢ The impedances measured at the common terminals of N! and N*
in the two directlions at this freauency must be pure reactances with equal
magnitudes and opposite signs.

Two simple examples of degenerate zerog are shown in Fig. 4 for
the case of a zero at infinity (a),and a zero at A=tju_ (b). It 1s clear in
these examples that the zeros of transmission of N! and N* will combine in
such a way that the (gn-l)th derivative of p; will depend on N% a5 well as
on N! and therefore will not be equal to the corresponding derivatives of pi.

r
! I

Nll

z
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(b)

Figure 4, Two examples of degenerate zerog of transmission,

Equation (6) shows that this 1s true in the general case of a degenerate

zero of transmission. The examples of Fig. 4 indicate, however, that the
change of the behavior of the input reflection coefficient when N®* is con-
nected to N! must take place in a particular direction. For instance, in
the case of Flg, 4a, the fact that the total shunt capacitance Gl+02 is
larger than the capacitance in Nt alane must somehow restrict the possible
change of behavior. It can be shown that, in the case of a zero of t!

of multiplicity n on the imaginary axis, the coefficient Azn-l of the Taylor

* For a proof of this and other similar statements, see the original

Doctorate Thesls, available in the Library of the Massachusetts Institute
of Technology. ’
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series 1s always increased by the presence of N when n is odd, and is
always decreased when n 1s even. The physical significance of this restric-
tion and its practical importance willl become clearer in the next section,

The analysls carried out above has led to the formulation of a
number of necessary conditions that must be satlisfied by the functlons
representing the network N 1n order to be physically realizable by means
of the given network N! and the arbitrary network N¥ connected in cascade,
These necessary conditions are summarized below for convenience. With
reference to Fig. 3, all the zeros of t' which lie in the right half-plane
or on the imaginary axls must appear as zeros of t with at least the same
multiplicity. Moreover,a certain number of coefficlents of the Taylor
gseries for 1ln l/pl about each of the zeros of transmission must be equal
to the corresponding coefficients for 1n l/pi or, in other words, must
be independent of N¥, The resulting number of real quantities independent
of N" 1g equal to the multiplicity of the corresponding zero of transmission
in the case of a zero located at the origin or at infinity, to twice the
multiplicity in the case of a palr of zeros on elther the real or the
imaginary axis, to four times the multlplicity in the case of a quadruplet
of complex zeros. If a palr of zeros of t! at -\, and :iv in the left
half=plane is partially or totally eliminated by a palr of poles of t? of
multiplicity ng located at the same points, a number 2no of these real
quantities independent of N" are missing., In this case, however, an
equlvalent number of conditions are imposed by-}he fact that Py must have
a palr of poles of multiplicity n, at -kv ggd ~kv and, therefore, a palr of
zeros with the same multipliclty at kv and Av(see Appendix I). A similar
situation arises 1n the case of the elimination of a zero of transmission
at ~o, on the real axls. The case of a degenerate zero on the imaginary
axls does not lead to any speclal difficulty.

Darlington has shown3 that any two=terminal-palr reactive network
can be constructed as a chailn of sectlons each representing a simple zero
of transmission, a palr of zeros, or a guadruplet of zeros; zeros of multi-
plicity n are represented by n similar sections., The order in which the
sectiong are connected 1s immaterial, as far as the physlcal realizability
of the network is concerned, Each section involves a number of elements
equal to the number of zeros represented by the section plus the number of
real guantities necessary to specify the location of the zeros. The
resulting network is shown to require a minimum number of elements.

It 18 clear at this point that the number of necessary condi-
tions imposed on Py and t by N! is equal to the number of independent
parameters by which N?! is completely specified. On the other hand, the
conditions imposed by N' are independent of one another; it can be shown,
in fact, by interchanging the sections forming N?! that any one of these
conditions can be changed without dlsturbing the others. To prove that

-11-~



these conditions of physical realizablillty are sufficient as well as neces~-
sary one needs only to observe, in addition, that the network N defined by
pp and t can be constructed in two parts, the first of which contains all
the sections representing the zeros of t!. If the correct sign of pp 1is
used’ (the sign differentiates the deslred network from 1ts reciprocal),
thls first part with an appropriate 1ldeal transformer at the output terminals,
can be identified with the given network N?!, because all the sections con-
tained in 1t are completely specified by the conditions of physical
realizabllity imposed on P1s which, on the other hand, completely specify
N?!', The second part of the network is certainly realizable because i1t can
be obtalned by simply completing the synthesls procedure developed by
Darlington.

The gbove analysie has led thus to the determination of neces-
sary and sufficlent conditions for the physical realizability of the
reflection coefficlent p; when pi and t! are specified, In a practical
matehing problem, however, p! and t{ are given indirectly through pé, whiech,
in turn, is specified by the load impedance Z;. On the other hand, pi and
t! are completely specified by pé, epart from an arbitrary all=pass network
connected to terminals (1) of N!, This arbitrary network, however, can be
neglected because 1t does not produce any reflection by itself nor does it
change the phase of any other reflection when the network N! is driven from
terminals 2. Therefore, for the purposes of this discussion, N! is com-
pletely specified by Zye On the other hand, one can observe that the
reflection coefflcent which 1s measured in an actual matching problem is
not P but Pos since the source is connected to terminals 2 of N, This
fact, however, 1s lmmaterial since only the magnitude of pp 18 of importance
in most cases and lpo} = 1P1) for A=jw. Moreover, 1f one were interested in
the whole function Pos 1t would be a simple matter to express the conditions
of physical reallzabllity in terms of the zeros and poles of Pos slnce they
are simply related to the corresponding singularities of Py (see Appendix I).

3. Limltations on the Tolerance and the Bandwidth

The next step in the solution of the matching problem is the
transformation of the condltlong of physlcal realizability derived above
into a set of relations suitable for the determination of the theoretical
limitations on the bandwidth and tolerance of match. Such relations
must involve the behavior of the magnitude of the reflection coefficient
on the imaginary axls, that 1s at real frequencies, and the coefficients
of the Taylor series which are fixed by the given load impedance.

Cauchy 's integral relatlons provide the appropriate tool for the
desired transformation. The function 1n 1/p 1is multiplied first by a

=12~
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function having poles of appropriate multiplicity at the zero, palr, or quad-
ruplet of zeros of %! under consideration and 1s integrated then over the
contour formed by the imaglnary axls and the semicirecle at infinity 1in the
right half-plane; approprlate indentations must be provided when the poles
are located on the imaginary axis. If Py has zeros in the right half-plane,
1t 1s more convenlent to use ingtead of Py the function Po obtalned from Py
by moving all the zeros in the right half-plane to symmetrlcal positions in
the left half-plane. This new function Po has the same magnlitude as py on
the imaginary axis., It is also convenient to make Po positive at the origin
by changing 1ts sign 1f necessary. The coefficlents F and G of the Taylor
geries for 1n l/po corresponding to the A's and B's for 1n 1/p1 are given
in Table II. The integral relations obtalned by following this procedure
are collected in Table I and the weighting functions f and g, which are

part of the integrand are tabulated in Table III, The kri appearing in
Table II are the zeros of py that lie in the right half-plane.

TABLE I. Integral Relations Obtained from the Conditlons
of Physical Realizability

Frequency
|_Zero of t! variable Integral relation
(=%}
origin w lo -°(k+l)ln(1/|p D aw = (-1)% g ng+1
Ika
infinit (- s
g w LW 1n(1/ Jpy | ) aw = (-1)k F2k+l
0
- Yktl o 2k
3w, X = w/wv ‘[gék ln(l/lpll) dx = (=1) 5 Wy G2k
&
w
# v = (=7)k n 2k+1
‘ Toger 10(1/ [py|) ax = (~1)" 5 w) F2k+1
g
to, x = we| "1n(1/ lpgl ) ax = (-1)k %o:pk Fk”
k
toxiu | x=o/ln £o0 1n(1/[py) ) ax = (<105 T |2 | % sz

Ykl . 2k v
(=107 T a | agp

A
oopy 1001/ ]py]) ax = (<) Z | | 0

[
%
" v J; n(1/ |oy| ) &x
e
Lo

_1)x n lk |2k+l

8o+ 1n(1/ IPJ.] ) ax = ( Gr21;+1
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Table II. The Coefficlients Appearing in the Integral Relations of Table I.

0 _ A0 -(2k+1)
Foxs1 = Aokl = BT 1’: A

o e 2 2K+l
Fors1 IO e i M Ny

w w A = Jw
Gv=Bv+J[Zln rl )
° ° i Apg = oy,

w, w,
v v - kot
Foes1 = Appey = meT Re zi: Oy -"”v)'é el

A - [§ (g = )7 - % (A = %)-k]

A - A
p"+JG"=A”+JB"~Z1n —2 + 18
o i Ay v
A A A A -
v voo_ v v_l - =k _ - - -
R+ 30, A+ 3BT - [%. (g =) 12 (=2, xv)’%
0 if py(0) and p () have the same sign
B = °
™ if py(0) and p,(0) have opposite signs

Table IIT. The Functions Appearing in the Integral Relatione of Table I.

Moo (14 )2 (E*1) | (1 )B k1)
2x+l T 2(l_x2)2(k+1)
UJU - (1+x)2k+1 )21{"’1
b2k 2(1-x )21‘+1
T T 579 okttt T € 5 b
k 2(14X2)k+l
A
0 = (-1)k
2k
~{2k+1 -(2k+1)
N {6+j(x+ 1- &“‘)] (2e+1) - [«- 5+j(x-,£—82):| +
gy = (-1)K*1 -
- -(2k
{ ] {6+J(x- -52)] (2e+1) - [- 5+ 3 (x+ 5-62)} ( +1)}

A
.0 = - -
:k+1 (;1)1‘“ [8+J(x+ >~ )J 2(k+1) . [-G-I-J(x- r—_az):l 2(k+l)}+
v
- ~2(k+1)
{I} {[{H_j(x_ 1_52)] 2 (k+1) . [_5+3(x+ 6-62)] }

=

Box+1

.
5 = el
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The integral relations of Table I are the crux of the paper because
they express the conditlons of physical realizability in terms of the observ-
able behavior of a physical guantity, namely the behavior, over the
frequency spectrum,of the magnitude of the reflection coefficlent, To obtain
the optimum tolerance of match, one must determine then the function ‘pll
which is a solutlon of the set of equationsg formed by these integral rela-
tiong and whose maximum deviation from zero over a prescribed fregeuncy
band is a minimum. This problem was solved only in very speclal cases;
however, the relationg of Table I yleld directly useful information on the
nature of the theoretical limitations on the tolerance and bandwldth of
match, as indicated below,

The speclal case of a network N! having all the zeros of trans=
mission at infinity will be considered first. Such a network can be
realized in either the form of a low-pass ladder structure of the type
ghown in Fig. 5, or in the dual form (starting with a shunt capacitance).

T s —————— |
Ly L3 Ln-2 Lo |
LTI~ T oo |-e
' 1
| i —r I "
| i CZ T C4 T T~ Cn—l ! N |
i ]
o Lo —o0— o
e e e e e —————— — -
Nl

Figure 5. Network N! with n zeros of transmission
at infinity, and matching network N¥,

In this former case the coefficient Al depends on Ll alone, A3 depends on
L, and Gy, A5 depends on L., Cy, and Lzy ?nd so forth, since each of the
elements represents a zero of transmission at infinity. The integral rela-
tions which apply to the case of a zero of transmisslon at infinity of
multiplicity equal to 3 are rewritten below for convenlence,

[ ]
1
[1:1 o = 2 -2 S Ay (21)
“ 2
‘.,/"’2 1n—‘—pl~l—'-dw = ~2(5-% %7‘?1’ (22)
4 1 T a0 _ 2 5
,!w; 1n Y aw = F (A5~ ? ADy) (23)

The kri are the zeros of P1 that lie in the right half-plane.
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The left-hand side of the first equation represents the area
under the ecurve 1ln 1/|91| versus frequency. The coefficlient K{ is fixed
by the first element L1 of the network NV, while the kriare arbitrary
quantities subject only to two restrictions; namely, that thelr real parts
must be positive and that they must appear in conjugate pairs 1f they are
complex. It follows that the summation in Eq. (21) is always real and posi-
tive so that A{'sets an upper limit to the area represented by the integral,
It is clear that the best possible utilization of this area is obtained
when 1n 1/‘pﬂ 1s kept constant over the desired frequency band and 1s
made equal to zero over the rest of the frequency gspectrum, Thls situa-
tion 1s illustrated for the low-pass case in Fig., 6. If w 1s the desired

A

x|

o
We w

Figure 6. Optimum frequency response,

bandwidth (w = w, in Fig. 6) the best possible tolerance is given by

o B = F T - toa

This theoretical limitation was first found by Bode, as polnted
out above., In fact, when the load consists of a parallel RC combinatlion,
the coefficlent Ef'becomes equal to 2/RC., Bode, however, did not consider
the case of a network N! consisting of more than one element. In thls case
a number of equations equal to the number of elements in Nt will have to be
gatisfied simultaneously. Suppose, for instance, that N! contains two
elements, L, and 02; that 1s,N'has a zero of transmission of multiplicity
equal to two, so that Egs. (21) and (22) must be satisfied simultaneously.
If the rectangular function which ylelds the optimum tolerance according to
Eq. (24) 1s used in Bq. (22), the value of the integral may be larger or
smaller than =mA7/2 (A3 is in general negative). If it is smaller, it 1s a
simple matter to reduce the magnitude of the right-hand slde of Eq. (22).

-16-
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In fact, it was pointed out before that in the case of a degenerate zero
of transmission, the algebrailc value of.@; can be increasedy that is, 1lts
abgolute value can be decreased, Physically this operation amounts to
gtarting the matching network N" with a shunt capacitance which has the
effect of increasing the value of the capaclitance 02 in N*, If on the
contrary the value of the integral in Eq. {22) is larger than -mA%/2, the
optimum tolerance given by Eq. (24) cannot be reached. One observes then
that the value of the summation in Eq. (22) can be either positive or
negative, so that the value of the right-hand side of Eq. (22) can be
increased by introducing appropriate zeros of P1 in the right half of the
plane, These zeros, however, reduce necessarily the value of the right-
hand side of Eq. (21), so that the area represented by the integral of
Eq. (22) is increased at the expense of the area represented by the
integral of Eq. (21).

With reference to Fig. 6, as an example, let the maximum value
of 'ln 1/{py} be equal to nK/2. One obtains from Eqs. (21) and (22) that

w K A-2 &2

c ; ri ? (25)

3
ri*

o o0

wx=-3a‘g+2127\ (26)

The kri 2Pst be :flected g0 as to maximlze the value of K for given values
of w,, A, and Aq. It will be observed, first of all, that p; can be multi-
plied by any factor of the type (kf%r)/(k+hr) without changing the value of
in 1/]91| on the imaginary axis, so that the behavior of the magnitude of
the reflection coefficlent and the values of the xri can be controlled
independently. One obgerves next that since the summation in Eq. (22) must
be made positive, both equatlions can be satisfied by usling a single zero
kr==C;r located on the positive real axis. On the other hand, maximizing K
is equivalent to making 2; Aii ag large as possible while keeping E?Arl

as small as possible., Moreover, if Re Af,i?O, then Re )‘?ﬂ.i«ii’ and ~

%; Re x3r15;(§§ °'r1)3‘ It follows that the maximum value of K is obtained

by using a single zero located at ¥,. Equations (25) and (26) then become

w, K = AT =29, , (27)
wIK = -3 +290 (28)

Solving these two equations by eliminating % yields the maximum theoretical
value of K as a function of the cut—off frequency Wy e The maximum pass—band

=-17=-




value of 1n 1/!p1| 1s plotted in Fig. 7 as a function of w /Al for dif-
ferent values of the parameter -AS/(AI) e« The curve K = Al/w forms the
boundary of the reglon in which the optimum design is obtained by simply
increasing the value of the second element.,

000 003
x ' 0.06
H«
350 4

e
e

!
P/

!

009

Pﬁf
]
°

L
" PARAMETER = (.—2?::)_,- \Q \\§
\

O. ‘
\
ol 0.2 0.5 0.4 0. 06 o7 08 09 K

Flgure 7. Optimum tolerance of match for a C-L-R impedance.
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When the network N! consists of three or more elements, the problem
of determining the optimum tolerance of match becomes much more difficult, and
no general solution has been obtalned. However, a few general considerations
can be made, In the first place, the rectangular form of frequency behavlor
for 1n l/|p]] ylelds the optimum tolerance in all cases, because 1t provides
the best utilization of the areas represented by the successive integrals.

In the case of a passband extending from zero freguency to Wos the equations
to be satisfied take the general form

k4l . (_q)k ® s . 0ktl
Wtk = (-1)E | (2e1)aAF 2%7\“ . (29)

In the last equation of the set k = n+l, n being the number of
elements in the network N!', It seems reasonable to expect that the number
of xri for which K is a maximum will be equal, in general, to the minlimum
number required for the solution of the get of equations. The reasoning
followed in the case of two elements, however, could not be extended
rigorously to the case of n elements. Moreover, the solution of such a
system of equatlons might yield kri with negative real parts which, of
course, would not be acceptable., In this case more Ari would have to be
used, and thelr values would have to be determined by maximizing K,

The coefflcient Aen-l in the last equatlion of any particular set
can be changed, but only in one direction, by combining one zero of trans=
mission of N!' with a similar zero of transmission of N", as pointed out
above, It will be observed that the direction in which A, _, can be
changed corresgponds always to a decrease of the area represented by the
integral on the right slde of the same equation. It follows that one must
determine first the optimum tolerance that can be obtained by neglecting
the last element of the network NV, as was done in the case of two elements,
to check whether the mame tolerance could be obtalned by simply increasing
the value of thls last element,

It is hardly necessary to point out that when the network N?
contains three or more elements, the actual determination of the optimum
tolerance requires the solutlon of a system of algebraic equations of fifth
or higher degree. Thls difficulty cannot be avoided as long as the mathemet-
ical formulation of the problem remalns the same, It is aulte possible,
however, that a different physlical approach, such as, for instance, one

based on the time response of the network rather than on the frequency
response; might avold thls difficulty and be more successful.

The results obtained above can be applied directly to a number
of networks derivable from the low=pass ladder structure by means of
avpropriate transformations of the freguency variables 7,8 , notably the
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high-pass and the band-pass ladder structures. The high-pass structure has
all 1ts zeros of transmission at the origin, and can be obtalned from the
low=pags structure by interchanging inductances and condensers. The band-
pass structure has zeros of transmlssion in equal number at the origin and
at infinlty; it can be obtained from the low-pass structure by tuning to
the mean frequency every inductance with a seriles condenser, and every
capacitance with a shunt inductance. When such a procedure is followed,
the resulting pass band is numerically equal to the cut—=off frequency of
the original low=-pass structure.

An additional remark ig in order with regard to networks with
zeros of transmission at both the origin and infinity. If the multiplicity
of the zero at the origin is n, and the multiplicity of the zero at infinity
1s n,, the conditions of physical reallzablility for the matching network
will yield n,+n, equations of the types indicated in Table I. When a
rectangular- shaped function 1s used for 1n l/|p1|’ these equations take the
forms

(1,24 = ZH1) K = (-1)% | (2u41) A5, - 2E AT |, (30)
(wln(zk"'l)'- wg-(zk+l)) K o= (-1)%](2x+1) Ads1 2% )‘;§.2K+l) » (31)

where wy and wy are, respectively, the low~frequency and the high=frequency
ends of the pass band and K 1s the pass—band value of 1ln 1/|p1| divided by n/2,
To determine the maximum value of K,one must solve simultaneously the whole
set of equations. However, if Wo DWWy the two sets of equations relating to
the two zeros of transmission can be solved separately. In other words, the
high-frequency response of the network can be considered independently of

the low-freauency response., The two sets of equations will yield different
values of K for given wy and wo, the smaller of which will represent the
optimum tolerance of match.

The integral relations of Table I all have the same general form,
irrespective of the location of the zero of transmission to which they
refer, The integrand on the left-hand side conslsts of the function
1n 1/.p1| multiplied by a weighting functlion which depends on the location
of the zero of transmission., The right~hand side consists of the difference
between a coefficlent specified by the network N' and a summation involving
the zeros of py that lle in the right half-plane and the location of the
zero of transmission,

In the simple case concerning zeros of transmission at infinity
and at the origin, the weightlng functions are the even powers, positive and

=20~
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negative respectlvely, of the frequency w. These functions have the effect
of preéventing the arbitrary distribution over the frecguency spectrum of the
area under the 1ln l/lpﬂ -versus~frequency curve. In particular they
prevent the value of 1n l/,pl| from remaining large when the frequency
approaches infinlty in the one case and zero in the other.

 The welghting functions have similar properties in the case of a
zero of transmission on the imaginary axis. In the firdgt place the area
represented by the integral in the equation involving A?” can be equal, at
most, to mA;%w /2 because the summation on the right-hand side of th@
equation is always positive, The corresponding weighting function fl ’
plotted in Fig. 8, has a sort of even gymmetry with respect to the point
w=w . This fact would indicate that the area represented by AP can be
divided arbitrarily between the two sides of w,,e Such anwarbitrary division,
however, 1s not possible because the weighting function gov (plotted in
Fig. 8) in the first equation of the set has a sort of odd symmetry with
respect to thewsame point Wy, The divlision of the area is thus limited by
the value of B Y and by the fact that the use of any zero of P in the
right half-plane to modify B S results in a decrease of the area represented
by the integral in the eouation involving Al o The welghting functions of
higher order are, alternatively, of the even-symmetry and of the odd-sym=-
nmetry types, and rige faster and faster with thelr order when w approaches
w,, as indlcated in Flg. 8.

In the case of a zero of transmission on the real axis, the integral
in the first equation can never be larger than m A ”/2 and, in addition, the
integral in the second equation can never be smaller than (--'rrO'A1 ”/2). It
will be noted in this regard that thgzyeighting function f V ig positive for
all values of w, while the function fl is positive for w<cr and negative
for wo>e, pr 88 ghown in Fig, 9., It follows that, roughly speaking, the value
of 1n 1/’pﬂ is limited at low frequencies by the first equation and at
high ?requencies by the second equation, If the multiplicity of the zero
of transmission is larger than one, the areas represented by the integrals
in these first two equations are prevented from being distributed arbltrar-
1ly over the frequency spectrum by equations of higher order. The first six
welghting functions corresponding to a zero of transmission of multipliclty
equal to three are plotted in Fig. 9.

In the case of zeros of transmlssion at complex frequencles, the
weighting functions fk'and 8k lead to limitations very similar to the ones
discussed above for the cases of zeros of transmission on the real and
on the imaginary axis. They reduce actually to the corresponding functlons
for these cases when the parameter § = o /|2 | approaches infinity and
zero, respectively. The welghting functions of orders O,1,and 2 are plotted
in Figs. 10 to 15 for 8 equal to 0.5 and 0.05,

v
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4, The Design of Simple Matching Networks

The integral relations derived above indicate that the ideal type
of behavior for the return loss at the input terminals of a matchling net-
work ls represented by the rectangular-shaped function used in the determina-
tion of the optimum tolerance., Such a behavior cannot be obtained in prac-
tice because 1t reculres a matching network with an infinite number of
elements, but can be approximated sufficiently well for practical purposes
by means of a reasonably small number of elements. In other words, the
function representing lpll must be selected in such a way as to approximate
a constant over the pass band and unity over the attenuation band, Just as
in the case of conventlonal filters. It must be pointed out, however, that
filters are designed in most cases to provide a perfect match at a number
of frequencles in the pass band, while such a situation 1is to be avoided in
the case of matching networks. In fact, making 1n 1/]pl] very large at
any point of the pass band leads to an inefficient use of the areas repre-
sented by the integralg discussed above, and results, therefore, in a
reduction of the bandwldth of approximate match. In splte of this essential
difference between the characteristics of fllters and matching networks, the
same techniques can be used in both cases for the solution of the approxi~
matlion problem. This point 1s made clear by the illustrative examples dis-
cugsed below,

A very simple and important type of matching problem 1s presented
by the case of a load impedance congisting of a resistance in series with an
inductance, or by the dual case of a resistance shunted by a condenser,
Practical problems of this type arise, for instance, in connection with the
broadbanding of the high-frequency response of matching transformers, or
when a resigtive load is shunted by a stray capacitance. A method of
deslgnlng appropriate matching networks for a series RL impedance 1s
developed below. The same method will be directly applicable to the dual
case of a shunt RC admittance.

The pass band desired in most of these problems extends from
zero frequency to some cut-off frequency w,s the ideal behavior for the
return loss 1s, therefore, that 1llustrated in Fig. 6. Let Ll be the
value of the inductance normalized with respect to the series resistance,
that is divided by it. The coefficient AT is, by definition,

2L,

= | L =

A = |5 (In ) = fl- . (31)
Y My L0

The maximum theoretical pass-band value of 1n 1/|p1| i1s, therefore, according
to Eq. (24)

(In I/jpq) dpax = L= * (33)
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The problem consiste then of approaching this theoretical 1limit by means of
a matching network involving a finlte and prescribed number of elements,

The general remarks made above indlcate that the inductance Ll’
which forms the network N?!, may be considered as the first element of a
low-pass filter, the network N, whose input reflectlon coefficlent is p,.
This reflection coefficient cannot be measured in practice, because the
inductance L1 is inseparable from the resistive termination; 1lts magnitude,
however, 1s equal to the magnitude of the reflection coefficient Po at the
other terminals of the filter to which the generator will be connected in
actual operation,

Two types of functions are used for the solution of the approxima=-
tion problem in the case of low=pass filters 3,8 e« The first type of func-
tion 1s the Tchebysheff polynomlal Tn(w/wc) which leads to a function 'pll
which oscillates between two given values in the pass band, and asymptoti-
cally approaches unity in the attenuation band, as illustrated in Fig. 16,

Al
LO-———;—«.— — — . ———— — ——o— s, — — — —— — — o——] AU PR —
|
0.
06
= ettt Rt Slas— G tant— o
O4r———— — i S, R~ S
—I | A [max.
02 | MmN,
B W
X=—4—
I | l | I I 1 | e
0] 0.2 04 06 08 1.0 2 .4 1.6

Figure 16, Typlcal frequency behavior of p7 with Tchebysheff
approximation (computed for the network of Fig. II-1).

The second type of function is the Jacobian elliptic function which leads
Yo an osclllatory behavior of ‘pl\ in both the pass band and the attenua-
tion band. In the first case, all the zeros of transmission are at
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infinity so that the network consists of a simple ladder structure with a
total of n serles inductances and shunt condensers. In the second case,
zeros of transmission are present at finite frequencies as well as at
infinity, and the resulting network has a form similar to the *m-derived"
filters, The design involving elliptic functions leads to a slightly better
tolerance, but the difference does not seem to be worth the resulting
theoretical and practical complications,

The Tchebysheff polynomlal of the first kind and order n 1s
defined by

Tn(x) = cos (n cos~lx).

It ia clear that this function oscillates between plus and minus one for
{xl< 1, and aspproaches e for |x| »1l. In order to obtain the functlion
|pl[? one first constructs a function lt’z which has oscillatory behavior
in the pass band, is smaller than unity, and has all 1ts zeros at infinity,
Letting x = w/w,, one obtains

171612 = (145°%) + & 2(x) ,

where K and ¢ are arbitrary constants. The corresponding magnltude of the
reflection coefficlent becomes, after appropriate manipulation. "

-1 -1

[ cosh n sinh-lz b) cosh n(si e )| (1 even) :
. 0 | cosh n(sinh ~z-a) cosh n(sinh ~z+a)|z=Jx

lpgl® = 1=1t1% = [él(z)pl(-z)}z=3x = (34)

ginh n(sinhflz-bz sinh n(sinh-1;+b2J (n odd)

| sinh n(sinh ~z=a) sinh n(sinh z+a)]z=Jjx

-

where g = A/wc, sinh®nb = (K/c)z, and sinhzna = (1+K2)/¢2. The poles of

this function are evidently given by

{ ginh [1 a+)

sinh [i a+ ]

(m+%ﬂ (n even) |,
(35)

=] = B -

nq (n oda) ,

where m 1s an integer or zero. The zeros are glven by the same expression

in which b is substituted for a. It wlll be noted that the poles lie on

an ellipse centered at the origin with semiaxes equal to cosh a and

sinh a, as indicated in Fig. 17 for the two cases of n=3 and n=4. The

zeros lie similarly on an ellipse of semlaxes equal to cosh b and sinh b,
The poles of p, are necessarily those poles of [pl(}\)pl(")\)]

which lie in the left halfeplane; that is, g must be taken with the
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Figure 17. Location of the poles of pl()\)pl(")\) for
a network with three or four elements,

negative sign. The zeros of py» ON the contrary, can be located any-
where in the complex plane, as far as the physical realizability of the
function 1s concerned. It has been shown before, however, that the area
represented by [ i1n 1/ |Pal dw 1s a maximum for a given A;_' when all the
zerog of p; are 1n the left half-plane, Therefore b must be taken also
with the negative sign. The coefficlent AT corresponding to the resulting
function p; 1s then computed by means of Eq. (10) as follows

o0
A

= - - - 1 b
‘? 99 7‘p1) = W sin 1/2n (36)

The quantitles a and b must satisfy this equation since Kf is specified by
the load impedance through Eq. (32). In addition, g and b must be chosen
so as to minimize the tolerance of matech., One obtains from Eq. (34)

.. gcogh nb

(Plimax = cosh na (37)

This value is then minimized, subject to the condition imposed by Eq. (36),
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by using the method of indeterminate multipliers, The result is

tanh na _ tanh nb
cosha  ocoshbd * (z8)

The parameters g and b are determined, finally, by solving simultaneously
Eqs. (36) and (38). The resulting optimum value of sinh a is plotted in
Fig. 18 as a function of A;Vwc for dilfferent values of n up to and including
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Figure 18. Design curves for a ladder network with n elements.

8.* The corresponding values of sinh b can be obtalned by means of
Eq. (36).

The optimum value of the tolerance can be determined by means of
Eq. (37). Figure 19 presents a plot of 1n 14plfmax as a function of
A{?wc for different values of n., The curve indicated with n=00 is the
straight line of slope equal to w/2 which represents the limiting value of
the tolerande given by Eq. (24). It will be noted that this limiting
value 1is approached reasonably well with a relatively small number (n-1)
of elements in the matching network. In the limit, when n approaches

* These curves are obtained from computations made by Dr. M. Cerrillo,
following a graphical procedure suggested by Dr. E. A, Guillemin.

-30~-




. .

2.4--13;5 ' /A//%i
= 7/

/

,/2
/

\

N

AN

N\
NN

08 // // — I
/
04
r””’ Ape
W
0 02 04 ) 8 T ¥ T 3 8 20

Figure 19, Tolerance of match for a low-pass
ladder structure with n elements

infinity and both a and b approach zero as 1//n, Eqs. (36) and (37) yield
Eq. (24), as one would expect.

After determining the function plaone can compute, finally, the
values of the elements of the matching network. For this purpose, any one
of the avallable synthesls procedures can be followed, a discussion of
which is beyond the scope of this paper 3,8 « It seems appropriate, on
the other hand, to mention a method of computing the element values
developed by the author in connection with the matching problem. This
method has the advantage of permitting direct and independent computation
of the individual elements from the values of a and b determined above,

Consider a ladder structure consisting of serles inductances and
shunt condensers. The A% coefflclents can be computed from the poles and
zeros of P, by means of Eq. (10). On the other hand, the coefficlent
Agi-l depends only on the first k elements of the ladder, so that the
value of the kth element depends only on the coefficlents with subscript
smaller than or equal to 2k=l1., It should be possible, therefore, to com-
pute the values of the elements directly from the Vgl coefflclents, and
these in turn from the values of the parameters a and b. Appropriate
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equations have been derived for k=4, by computing the K’for a ladder
structure with 4 elements, and solving the resulting set of equations for
the element values. The procedure is straightforward but very laborlous,
and therefore only the final results are given here,

Let the successive elements of the ladder be Ll’ 02, LS’ etces,
and also let

00 oS
o Az 4_1_ _ .6 _ A
a; = 2 )3 1/3, ag =2 w)s 1/5, @y =2 X /7 . (39)
1 &4
One has for the elements
L a 11
1
L, = &, ¢, =~=2%, L
1 ﬁ; s V2 a; ? 3 = 1+<:1.:5 (as/a )
(40)
2
o [i+a3 (a5/a ] 1 .
4

3[1+0.3 (ag /oy )+(a5/a (a7/a3)]

In the particular case of the functional form for py discussed above, one
obtains by means of Egq. (10)

® -2 3 ,8inh 3a - ginh Sb inh - ginh b
Ag = =2 7 w, ( 3 sin(3w/2n) sin (m/2n) ), (41)

oa 2—4 5 (sinh S5a - sinh 5b + inh 3a - sinh 3b +
Ag Yo 5 sin (bm/2n) sin (3m/2n)

(42)
ginh a2 = sinh b
+2 sin (11/2n )
_ _0o=6 7 ¢ginh 7a - sinh 7b sinh 5a - sinh 5b
A7—2“)('7:31n /2n + sin (51m/2n
(43)

sinh 3a - sinh 3b ginh a - sinh b
+3 sin (3m/2n +5 sin (n/2n ).

It will be noted that the equations given above are sufficient for the
deslgn of a structure with 8 elements. In fact 4 elements can be computed
by operating from one end of the network and the other four by operating
from the other end. The reflection coefficient Py which must be used in
the second part of the design can be obtained from Py in a simple manner,
as indicated in Appendix I. One must keep in mind, however, that the

-32=




network will,in general,involve an ldeal transformer, since both termina-
tions are assumed to be equal to one ohm. The turns ratio of the trans-
former can be determined easlly from the zero-frequency behavior of the
network, Illustratlive examples are presented in Appendix IT.

Next consider the design of a matching network for a load imped-
ance consisting of a capacltance shunting a series RL combination. A
problem of this type may arise in connectlon with the high-frequency
response of step-up transformers,as discussed in Appendix III. The limiting
tolerance for thls matching problem 1s gilven by the curves in Fig., 7. This
optimum tolerance was obtained by introducing a zero of P1 at a point'c}
of the pogitive real axis together with a symmetrical pole on the negative
real axis, The same technique 1s used in obtaining the appropriate function
for P1 when the matching network must contaln a specified number of elements.
Alsc the same approximation function can be used for ‘pl‘ as in the casge
discussed above, because the addition of a zero and a pole symmetrically
located with respect to the imaginary axis leaves the value oflpl)unchanged
for imaginary values of A. One obtains, in this cage, from the conditions
of physical realizability for P1e

oy = 2fuly = LRSI D ¢ o0 fu, (44)

- ﬁ;/wg = 2—2(‘{;/%)3 (L, /0y + 1/3) =

(45)
_ »=2¢8inh 3a - sinh 3b . sinh a - ginh by _ 3
= 2 "(5z5nm (3m/2n) + =5in (7/2n) ) = 2/3 (Fu/w,)” .

The meximum pass-band value of [py| is still given by

_ cosh nb
|pllmax ~ cosh na * (46)

The parameters a, b, and.O} must be determined in such a way as to minimize
the value of Jedl max 204 satlisfy, at the same time, the equations above.
This minimization process involves the solution of a system of transcenden-
tal equations. No convenient graphical procedure could be developed in
thls case.

Once a, b, and o, have been determined,the values of the elements
can be computed by following a procedure ve similar to the one discussed
above, but in this case a Darlington section of type C (see Fig. III-2) 1is
present in addition because of the zero of transmission at %=c§. An

11lugtrative design 1s carried out in Appendix III.
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The design of matching networks for impedances of a more complex
nature than those considered above 1s hampered in most cases by mathemati- -
cal difficulties which lead to laborious numerical and graphical computa-
tiona. It must be said, however, that many matching problems of practical
interest are of the types discussed above, or can be reduced to these types
by means of simple changes of the frequency varlable. In addition,a
rigorous method of design can at times be combined effectively with a cut-
and-try procedure. For instance, the frequency behavior of a given load
impedance might Tirst be modified empirically 1in such a way as to approxi-
mate, over the desired frequency band, the behavior of a simpler impedance
function for which a rigorous design procedure is avallable. In such
cases the ingenulty of the designer becomes of primary importance, since
the technigue to be used may vary conslderably from one type of vproblem to
another,
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APPENDIX I

The reflectlion and transmission coefficlents of 2 two-terminal-
palr reactive network represent the characteristics of the network when one-
ohm terminations are connected to both pairs of terminals, as shown 1in
Fig. I-1. The two reflection coefficients are defined by

Z,-1 2v,
1 2yt E =0
Zo-1 [ 2V,
= L = |2 . -
Pp = ZAT ~ 5, 1]}:1:0 s (1-2)

where Zl and Z, are the impedances measured at the two pair of termlnals
when the voltage sources are short-circuited, The transmission coefficient
ig defined, with reference to Fig. I-1l, by

2V2 2V1
t = 'E—- = £ - IS (1-3)
1 E2=0 2 ml—O

NETWORK

REACTIVE | Z
22 1v2 152

Figure I-l. Two-termlnal-palr reactive network
with one~ohm termlnations.

The physical significance of these coefficients is best understood by
inserting two transmission lineg of unit characteristic impedance between
the network and the terminations. The refiection coefficient py 1s then
the ratlio of the voltage of the reflected wave to the voltage of the
incident wave measured at terminals 1 for E2=0; Po has the same signifi~
cance for terminals 2. The transmission coefficient t 1s the ratio of
the voltage of the transmitted wave at termlnals 2 to the voltage of the
incident wave at terminals 1, for E2=0. Because of the reclprocity theorem,
the same value of t is obtained for transmission 1n the opposite direction.
It is clear from the above definitions that |p1|2 is the per
- unit power reflected and |t|2 is the per unit power transmitted. Since the
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network 1is non-dissipative, one obtains
[erl® = Jegl® = 1-13f% (1-4)

This equation implies that any function of the complex variable A=%+jw which
is to represent a reflection or transmigsion coefficient must have a magni-
tude smaller than,or equal to,unity at all points of the imaginary axis,
that is at real frequencles. In addition,all the poles of thils function
must lie in the left half of the complex plane, because, otherwise, the
network would osclllate upon any random disturbance. It can be shown3’8
that thls condition on the poles together with the condition on the magni-
tude on the imaginary axis are sufficlent as well as necessary conditions
for the physical reallzabllity of a reflection coefficlient. In the case of
a transmission coefficlent, one must add the condition that the zeros be
present in palrs symmetrical with respect to the imaginary axisz’e. It 1s
undersgstood, of course, that any reflection or transmission coefficient of
a lumped-element network must be the ratio of two real polynomlials in the
complex varlable A,

If the reflectlon coefflclent p; of a network 1s written in the

form
b)) = ¥ ek i hozieres Whon) (z5)
pl p2 e e e 00 pn .
1t can be shown that the reflection coefficient p, 1s given by
po(n) = (-1)PTK e - - . (I-6)
2 R N PN O )
The A,y and the xpi are, respectively, the zeros and poles of p1s K 18
a real constant. -
A relation between the reflectlon coefficlents and t can be
obtained by noting that
(A) py(-n) = 2 = | po(A) pol-n) = B oy (I77)
1) o (M) angy = [ea]hmge = P2 (N algy = [Rg Thage (T
and
[s00 s ]ang = 18Py = 2 fey P - (1-8)
~Z6—~




It follows that the reflection and transmission coefflcients have the same
denominator, and therefore the same poles, The numerator of t is elther an
even or an odd polynomlaly because the zeros of t must be present in pairs
of aquadruplets symmetrical with respect to the origin, It follows that the
numerator of [t(x)t(-k)] must be a perfect square; that is, 1ts zeros must
have even multiplicity. It must be pointed out in this regard that the
function computed from either reflection coefficient by means of Eq.(I-S)
might not satisfy this requirement. In such a case 1t is necessary to
multiply both the numerator and the denominator of the function [t(k)t(-x}]
by the root factors of the numerator having odd multiplicitys’s. Thesge
root factors must be carried back into P and pz,in which they wlll appear
after appropriate eliminations as pairs of zeros in the right half-plane
together with symmetrical palirs of poles in the left halfeplane. Such
quadruplets of singularities do not change the magnitude of the reflection
coefficlent on the imaginary axis, but introduce only a phage shift. A
corresponding elimination of zeros and poles in the left half-plane will
take place in the transmission coefficient. In gome cases t contains a
phase~-shift factor, consisting of zeros in the right half-plane, and sym-
metrical poles in the left half-plane, and Po containg the same factor
squared while such a factor is missing in P This situation indicates
that an all-pass network of unit characteristic impedance is connected at
terminals 2 of the network so as to introduce a phase shift in both t
and p, without affecting Pye

It can be concluded on the basis of the above discussion that a
two-terminal-palr reactive network is completely specified by eilther
reflection coefficient, apart from an arbiltrary all-pass phase-shifit net-
work connected in cascade at the opposite terminals.
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APPENDIX IT

A convenlent example for 1llustrating the method of designing
matching networks for series RL or shunt RC lmpedances 1s the high-fre-
quency broadbanding of a matching transformer., Suppose a transformer is
to be used to match a low-impedance resigtive load to a high~impedance
generator, The transformer is known to behave at high frequency as an
inductance L (leakage inductance) in series with the load reslstance RL.
Let wh=2RL/L be the half-power angular freguency of the transformer when
the load is matched to the generator at low frequencies., It is desired
to broadband this trangformer so as to make the loss smaller than 1 db up
to a frequency wc=3wh/2. Incidental dissipstion will be neglected 1ln this
example,

It is convenient to normalize the network to 1 ohm impedance
level, in which case the normallzed inductance becomes L1=L/RL. One has

then, from Eq. (32),

Ajw, = 2/3. (11-1)

A transmission loss of 1 db corresponds to a value 1ln 1/|pll=0.79.

Figure 19 shows that the optimum tolerance for 1ln l/lpﬂ is 1.04, and .
that a value of 0,86 can be obtained with n=4, that 1s,with a matching net- )
work consigting of two capacltances and one inductance. The corresponding bl

value of |p1|max 1s 0,424 and the resulting transmission loss is 0.86 4db.
One obtains then from Fig. 18 and Eq. (38).

ginh a = 0.615, a
sinh b = 0,363, b

0.582, (11-2)
00356.

"

The corresponding function |p1| is plotted in Fig: 16 versus the normalized
frequency variable x=w/wc.
In computing the element values one obtains from Eqs. (39)-(43)

@z = -4.493, ag = 34,05, @, = -435.1, (11-3)

C, = 0.2225L,,L; = 1.10L;, C, = 0,1043 L, (I11-4)

The turns ratio of the ideal transformer is specified by the zero-freguency
value of |pq|, that 1s, in this case, by [P1) pax+ One has then




turns ratio = %fg.igi = 1.57 . (II-5)

The resulting network for l-ohm impedance level is shown in Fig., II-1(a).

In practice, the ideal transformer is comblned with the matching transformer
by performing a suitable change of impedance level. Figure II-1(b) shows the
final network for a half-power frequency W, = 50,000 rad/sec, a load
impedance of 10 ohms and a source impedance of 1000 ohms.

= —_— r—e—=—

| 1 1157 ﬁ‘"-“—u [ L

| | |
[ C4=0.1043L, I |
® | == — . |
] C;r02225L, =
I b
| |
| oo—
1
Cooeaw — = L ]
MATCHING NETWORK GIVEN LOAD
(a) '
1000 2 178 mh 1:6.36
—A\\\—o0-0 IR 00
® =1=00I03 pt =1<0022 pf H 1o
00 -0-0—r-
MATCHING
TRANSFORMER

(b)

Figure II-1, Networks for the high-frequency
broadbanding of a matching transformer,

The same design technique can be applied to the case of a load
conglsting of a serles (or parallel) tuned circuilt if the frequency band
over which the load is to be matched 1s centered at the resonance frequency
LN of the tuned circult, A practical example is offered by the broad-
banding of a quarter-wave grounded antenna which behaves, to a first
approximation,as a series tuned circult. Suppose, for instance, that an
antenna with radiation resistance of 30 ohms, resonance frequency of 10 Mc/sec,
and Q of 10 is to be matched to a 50-ohm transmission line over a 3-Mc/sec
band with a loss smaller than 1 db. When this band-pass problem 1s reduced
to the equivalent low-pass problem, the game design data are obtained as in
the previous example, and tnerefore the game basic matching network.
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Figure II-2 shows the network obtained by transforming the basic low-pass
structure of the previous example into the appropriate band-pass structure -
with the required impedance level. This network can be transformed further

into a chain of tuned coupled coils, and appropriate changes of lmpedance

level can be performed so ags to eliminate the ideal transformer.

ree————— "1 |_————'__—1
: 4.92 5|.6f 447 568 |
| 11215 ph_ Agt I ”IRRP l |
| ) | :
046 0.215
| Kh = Eh T I | 30
' 553 118Q| I 201
l Bt ? ! |
l L |
-O—0O—1
50 ohm | DEAL ] L _

LINE MATCHING NETWORK ANTENNA

Figure II-2, Matching network for a resonant antenna.




APPENDIX III

The broadbanding of the high-frecguency response of a step-up
transformer forms a convenilent example of the technique used 1n matching
a load impedance consisting of an inductance L in serlies with a parallel
RC combination., In thls case R 1s the load reslstance, C is the stray
capacitance of the secondary coil, and L 1g the total leakage inductance,
all of them referred to the primary of the transformer. With reference to
Fig. III-1, suppose the normalized values of the elements forming the load

_____________ - ————— e e
La ' r Lo —-}
”'1c}*3‘f‘4 6156 e |
) |
| |
L [ 4
csa— | l c| ™~ l
R 7 !
] | |
L |
_j<><>= . ,

- e e e e e e

MATGHING NETWORK GIVEN LOAD
; o 1205 , cp08I3 oa|3 L33 337

We

0.66 1135 4.63
L~ we 5 Lo w, s MlsLe 5 Cr=g=

Figure ITI-1. High-frequency broadbanding of a matching
transformer with stray capacitance loading.

impedance are glven by

Cl = 1.205/wc, L2 = 2.3/0.)0,

where w, is the upper limit of the frequency band over which the impedance

c
is to be matched., One obtains from Eqs. (44) and (45) after interchanging C
and L,

Ay/w, = 1.66, —A3/(A1) = 0.0475, =A;/w, = 0.217 .
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The optimum tolerance for 1n ll\pll is glven by the curves of Fig. 7
as 1,32, %o which correspond a value of |p1|max equal to 0,275,

To obtain the proper value of sinh a, one should minimize the
value of |pq| .. of Eq. (46) subject to the conditions imposed by Eas. (44)
and (45). To avold this tedlous computation,there will be assumed for sinh a
the same value that would be obtained if L2 were not a part of the specifled
load impedance., In addition the data of the problem have been selected, for
the sake of simplicity, to yleld for n=4 the same values of a and b as in
the example discussed in Appendix II, so that the maximum value of |p;| is
8t11l 0.424 corresponding to 1n l/lpl\max=o'86' The corresponding value
of O‘v/wc is 0.5,

The next step in the design is the computatlon of the cquantities
Gzy G5y Gme. In this case the quantities %’0%5 and'% r7 must be
added to the right-hand sides of Egs. (41) and (42) to take into account the

zero of Py at oL and the pole at -0}. One obtains

= -0.523, @ = 0.156, = =-0,666 .

%y
The values of 03 and L4 in Fig,., III-1 are computed by means of Egs. (40)

with due regard again to the fact that C and L must be interchanged because

the first element of the ladder is, in this case, a capacitance instead of

an inductance. It results that ‘.

C; = 0.813/w,, L, = 3.37/w, !

The ratio of the ideal transformer is still 1.57,as 1in the case considered
in Appendix II, but the transformer is revérsed in direction because the
dual network is being deslgned; that 1s, impedance has been interchanged with
admlttance, '

In addition to the elements already computed, the presence of a
zero of transmission of the matching network at ~0n (resulting from the
zero-pole palr of pl) leads to a Darlington section of type C illustrated
in Flg. III-2, To determine the elements of this section it 1s convenient
to operate on the reflection coefficient Pos that is,from the opposite end
of the network. It can be geen by inspection that if M is a pogitive
quantity,

) 2
M, = 1k = 1/aw”.

At the same time, the reflection coefficient Ps nust have a zero at o
and therefore the impedance measured at the L6 terminals must be one for
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h=d;. It follows that

op Lg + 1/, Cp) = 1,

o, = (1/2L6)[l:t 1-(4L5/C7)] .

The + sign must be used when py(A+e,)/(A-9) 1s positive for A=o_. The
third equation required for the determination of the three elements is
obtained by considering the quantity (see Eq. (16))

o A=O"

I‘_ r -
A, = 1n EZTX:E;T JB

L+M L.+M

o, > O

Figure III-2, Darlington section of type C for a zero
of transmission on the real axis,

which 1s completely determined by the elements of the gection. One
obtaing also, from Fig, III-2,

r

A, =-%1n (1 - 4L5/Cy).

-
The numerical value of Aor is found to be -2. Remembering that L5L6=M2
one has finally

The 1ldeal transformer can be moved to the end of the structure
and combined with the actual transformer, so that the load resistance
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measured from the primary side and normalized with respect to the source

resistance will be equal to 1.572=2.47 ohms,., Finally, the coupling ccef-
ficient of the transformer in the section of type C is made smaller than

unity by combining the transformer with the adjacent inductance L,. The

final network 1s shown in Flg. III-3, 1n which the values of all elements
are normalized with respect to the source resistance.

M ses |

We

+———————f—

Figure III-3., Transformation of the network shown in Fig. III-1.
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