
Theoretical Limitations on the Broadband Matching
of Arbitrary Impedances

R. M. FANO

TECHNICAL REPORT NO. 41

January 2, 1948

RESEARCH LABORATORY OF ELECTRONICS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



The research reported in this document was made possible
through support extended the Massachusetts Institute of Tech-
nology, Research Laboratory of Electronics, jointly by the Army
Signal Corps, the Navy Department (Office of Naval Research),
and the Army Air Forces (Air Materiel Command), under the
Signal Corps Contract No. W-36-039 sc-32037.

,-

f1



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Research Laboratory of Electronics

Technical Report No. 41 January 2, 1948

THEORETICAL LIMITATIONS ON THE BROADBAND MATCHING
OF ARBITRARY IMPEDANCES

by

R. M. Fano

Abstract

!" This paper deals with the general problem of matching
an arbitrary load impedance to a pure resistance by means of a
reactive network. It consists primarily of a systematic study
of the origin and nature of the theoretical limitations on the
tolerance and bandwidth of match and of their dependence on the
characteristics of the given load impedance. Necessary and suf-
ficient conditions are derived for the physical realizability of
a function of frequency representing the input reflection coef-
ficient of a matching network terminated in a prescribed load
impedance. These conditions of physical realizability are then
transformed into a set of integral relations involving the
logarithm of the magnitude of the reflection coefficient. Such
relations are particularly suitable for the study of the limita-
tions on the bandwidth and tolerance of match. Definite expres-
sions for these quantities are obtained in special cases. The
practical problem of approaching the optimum theoretical toler-
ance by means of a network with a finite number of elements is
also considered. Design curves are provided for a particularly
simple but very important type of load impedance. In addition,
a very convenient method is presented for computing the values
of the elements of the resulting matching network.

* The work presented in this paper is part of a thesis with the
same title submitted by the author in partial fulfillment of
the requirements for the degree of Doctor of Science at the
Massachusetts Institute of Technology (June. 1947). A summary
was presented to the National Electronics Conference in
Chicago on November , 1947.

____1 4_1 ·_1_1__ 1 1 11ll ___~~l - Illll l~ lll~-LI~--·L~~--·--·- - -----



kg

f

A

A

-



THEORETICAL LIMITATIONS ON THE BROADBAND MATCHING
OF ARBITRARY IMPEDANCES

1. The Matching Problem

The transfer of power from a generator to a load constitutes one

of the fundamental problems in the design of communication systems. A

problem of this type involves in every case the design of a lossless cou-

pling network to transform a given load impedance into another specified

impedance. One refers to this operation as impedance matching". In most

practical cases this problem can be idealized as indicated in Fig. 1. The

ZL

Figure 1. Matching network for an arbitrary load impedance.

generator is assumed to consist of an ideal voltage source in series with a

pure resistance; maximum power transfer is then obtained when the impedance

presented to the generator is equal to the source resistance.

It will be shown later that it is not possible to match an arbi-

trary impedance to a pure resistance over the whole frequency spectrum, or

even at all frequencies within a finite frequency band. On the other hand,

it is evidently possible to obtain a match at any desired number of fre-

quencies, provided the given impedance has a finite resistive component at

those frequencies. Such a matching, however, has little practical value

because it is incorrect to assume that one can obtain a reasonable match

over a frequency band by correctly matching at a sufficiently large number

of frequencies within the desired band.

It becomes clear at this point that the statement of any matching

problem must include the maximum tolerance on the match as well as the

minimum bandwidth within which the match is to be obtained. Furthermore,

it is reasonable to expect that, for a given load impedance and a given

maximum tolerance, there is an upper limit to the bandwidth that can be

obtained by means of a physically realizable coupling network. It follows
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so

that an investigation of such a limit should be the first step in any sys-

tematic study of matching networks. Before this problem can be stated in a

precise manner, however, one must define an appropriate measure of the match

so as to give to the tolerance a definite quantitative meaning.

In view of the fact that matching is used to maximize the load

power, it appears reasonable to measure the match in terms of the actual

load power PL divided by the maximum power P that could be delivered by

the generator. Actually, the most convenient quantity for this purpose is

the per unit power rejected by the load, that is

PL
IP2 = 1 L . (1)

It will be recognized that p is the reflection coefficient defined by

= Z-1
P Z+l

where Z is the impedance presented to the generator as indicated in Fig. 1.

If the generator were connected to the coupling network by a transmission

line of characteristic impedance equal to the source resistance, the vol-

tage standing-wave ratio on the line would be given by

VSWR = l+1Io (2)

The problem of the broadband matching of an arbitrary impedance

can now be stated as follows. With reference to Fig. 1, ZL is a given

impedance function of frequency, subject only to the restriction of being

realizable by means of a finite number of linear passive elements. A non-

dissipative coupling network must be designed such that, when terminated in

ZL, the magnitude of the input reflection coefficient is smaller thanor

equal toga specified value IPImax at all frequencies within a specified

band.

The exclusion from the system of distributed-constant elements

such as transmission lines, cavity resonators, etc., is required by the fact

that the available techniques of network analysis and synthesis are limited

to lumped-element systems. Such a limitation, however, is not so serious

as it may appear at first because, in many practical cases, the results

obtained in the case of lumped-element networks can be extended, in an

approximate fashion, to the case of distributed-constant systems. For

instance, such a technique has been successfully employed by the author in

the design of microwave filters.

* In Fig. 1 as well as in the rest of this paper all the impedances are
normalized with respect to the source resistance unless otherwise stated.

1 See references p. 34. -2-
-2-
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An additional remark must be made on the fact that the coupling

network is assumed to be lossless. In practice, of course, a certain

amount of incidental dissipation will be present, which will result in a

distortion of the characteristics of the coupling network. Techniques for

computing this distortion and correcting for it have been developed in

connection with the design of filters 2,3 It seems appropriate, there-

fore, to neglect the presence of losses in the following analysis, and to

rely on the available techniques for any correction that might become nec-

essary in the final stage of a particular design.

Matching networks have been designed in the past following a step

by step procedure leading to a ladder structure of reactances. Such a

procedure has two main weaknesses. In the first place the designer does

not know whether the requirements that he is trying to meet are consistent

with the given load impedance. In the second place, it is implicitly

assumed that a process based on successive improvements converges to the

optimum design, or, at least, to a design reasonably close to the optimum.

This is not the case, in general. An improved procedure of the same type,

suggested by Bode 45 in 1930 suffers still from most of the same weak-

nesses.

The first step toward a systematic investigation of matching

networks was made by Bode 6 some time later, in connection with a very

special but important type of load impedance. He considered the case of

an impedance consisting of a resitance R shunted by a capacitance C, and

showed that the fundamental limitation on the matching network takes the

form
O

fIn -ll dw (RC3)

where p is the input reflection coefficient corresponding to the impedance

Z in Fig. 1. If Ipl is kept constant and equal to IPImax over a frequency

band of width w (in rad. per sec.) and is made equal to unity over the rest

of the frequency spectrum, Eq. (3) yields

w In lPmax - (4)

In words, the product of the bandwidth by the minimum pass-band value of

In 1/lpImax, has a maximum limit fixed by the product RC. Equation (3)

indicates also that approaching a perfect match, that is, making IpI very

small at any frequency, results in an unnecessary waste of the area

represented by the integral, and, therefore, in a reduction of the bandwidth.

It is also clear that the limitation found by Bode applies to any impedance

consisting of a reactive two-terminal-pair network terminated in a parallel

-3-
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RC combination. In this case, however, it is to be expected that additional,

and possibly more stringent, limitations would be imposed by the reactive

network. These additional limitations were not investigated by Bode.

The above discussion indicates the existence of definite limita-

tions on the broadband matching of any given load impedance. These limita-

tions must originate from some conditions of physical realizability of the

function p representing the input reflection coefficient, conditions which

must, in their turn, depend on the load impedance. For the purpose of

discussion, one can then divide the matching problem in three parts as

follows.

1. Given an impedance function ZL, subject only to the restric-

tion of being realizable by means of a finite number of lumped elements,

find the conditions of physical realizability for the reflection-coefficient

function p of a reactive two-terminal-pair network terminated in ZL.

2. From the conditions of physical realizability for p, determine

the minimum tolerance on the magnitude of the reflection coefficient over

a prescribed frequency band.

3. Obtain appropriate functions for p which satisfy the condi-

tions of physical realizability and, at the same time, lead to a matching

network requiring a finite number of elements.

2. Physical Realizability

Darlington has shown 3 that any physically realizable impedance

function can be considered as the input impedance of a reactive two-terminal-

pair network terminated in a pure resistance. This resistance can be made

equal to one ohm in all cases by incorporating an appropriate ideal trans-

former in the reactive network. The network shown in Fig. 1 can then be

transformed as indicated in Fig. 2.

Z REACTIVE
as) {MATCHING

NETWORK

ZL
I

P= z+l

Figure 2. Matching of an arbitrary load impedance.
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At this point the problem under consideration takes a form partic-

ularly interesting from a general network-theory point of view. It can be

shown that the over-all characteristics of a two-terminal-pair reactive net-

work are completely specified, apart from an all-pass netwdrk in cascade,

by the input impedance (or the reflection coefficient) measured at one pair

of terminals when a one-ohm resistance is connected to the other pair of

terminals. It follows that the conditions of physical realizability for p

(see Fig. 2) are the same as the conditions that must be satisfied by any

other function or set of functions representing the over-all characteristics

of the two reactive networks of Fig. 2 in cascade. In conclusion the

problem can be restated as follows:

Given two reactive two-terminal-pair networks of which one is

fixed, the other arbitrary, determine the conditions of physical realiza-

bility for the over-all characteristics of the two networks connected in

cascade.

In studying this problem it is convenient to turn the network of

Fig. 2 end to end, as indicated in Fig. 3, so that the network resulting

from the Darlington representation of the load impedance becomes the net-

work N, and the matching network to be determined becomes N".. The reflec-

tion coefficients P1 and P2 refer to the whole netwdrk N terminated on

both sides in one-ohm resistances. The transmission coefficient t of N

NETWORK N

f-NETWORK NETWORK N
F- .. ,

3 I

Figure 3. Two reactive networks in cascade.

is defined as the ratio of the voltage of the transmitted wave to the vol-

tage of the incident wave with one-ohm terminations. The primed and double-

primed symbols refer to the networks N and N respectively, and represent

the reflection and transmission coefficients of these two networks when

they are separately terminated in one-ohm resistances. These coefficients

are functions of the real frequency w, and more precisely, are analytic

functions of the complex frequency variable X =cr+jw. The functional prop-

erties of the ps and the ts and the relations between them are summarized

in Appendix I.
-5-

__

I



In considering the physical realizability problem, the first

question that one is likely to ask is: Are there any characteristics of Ns

which must belong also to the whole network N, irrespective of N? A

partial answer to this question is suggested immediately by the physical

structure of the system. If t t is zero at a real frequency, that is, at

any point of the imaginary axis of the -plane, then a wave of that fre-

quency traveling from left to right would be completely stopped by N, so

that no part of the wave would come out of N or even enter it. It follows

that any point of the imaginary axis which is a zero of the transmission

coefficient t must necessarily be a zero of transmission for the whole

network N, and, therefore, must be a zero of t. Furthermore, the reflected

wave at the input terminals cannot depend on N if no part of the incident

wave reaches N. Therefore, P1 must be equal to p for any value of =jw

for which tt is zero.

It is clear at this point that one should investigate carefully

the effects on P1 and t of the presence in t of a zero of arbitrary multi-

plicity located at any point of the complex -plane. The starting point for

such an investigation is provided by the two equations

tI t '
t 1 - pt tH (5)

P2 Pl

P1 = P1+ (6)

It is clear that all the zeros of t I are also zeros of t with at least the

same multiplicity, provided the denominator of Eq. (5) is finite. It can

be shown, on the other hand, that this denominator cannot vanish in the

right half of the -plane, and that if it has a zero on the imaginary axis,

this zero must have multiplicity equal to one and must coincide with a zero

of t". On the contrary, the zeros of t in the left half of the X-plane

may not be present in t because the factor in the denominator can have

zeros of arbitrary multiplicity in that part of the plane. It must be noted,

however, in this regard, that if t has a zero in the left half-plane, it

must also have a zero symmetrically located in the right half-plane (see

Appendix I), which must be present in t. Therefore the elimination of a

zero in the left half-plane is, in a certain sense, only apparent. In

conclusion, if t has a zero in the right half-plane or on the imaginary

axis, t must have the same zero with at least the same multiplicity.

With regard to the behavior of the reflection coefficient P at

any point in the right half-plane or on the imaginary axis, at which t has

a zero of multiplicity n, Eq. (6) indicates that P1 and its first 2n-1

-6-
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derivatives are equal, respectively, to p and its corresponding derivatives,

and therefore are independent of the network N". The special case of a zero

of t at a point of the imaginary axis at which the denominator of Eq. (6)

vanishes will be discussed later.

For reasons that will become clear later, it is more convenient

to consider the behavior of the function In 1/p1 instead of the reflection

coefficient itself. On the other hand, if P1 and its first 2n-1 derivatives

are independent of N, the corresponding value and derivatives of In /p1

are also independent of N". It follows that the first 2n coefficients of

the Taylor series for n 1/p1 about a zero of tI of multiplicity n in the

right half-plane or on the imaginary axis will be independent of NH, In

addition these coefficients are simply related to the locations of the

zeros and poles of P1, as indicated below.

In the particular case of a zero of t at the origin, one has

ln 1 ' + A X + i .+ n+ 2n- + n-l + 2n + (7)

where is equal to zero or Tn. depending on the sign of P1. The coeffi-

cients of this series are all real because on the imaginary axis the

magnitude of P1 is an even function of w and the phase is an odd function

of w. In addition the even coefficients up to and including (A(n-l) vanish

because of the zero of t of multiplicity n at the origin. The odd coeffi-

cients are given by

0 k+J (I (2k+l) -(2k+) (8)
2k+ i pi

where the ?oi and the pi are, respectively, the zeros and the poles of pl

For a zero of t t at infinity one obtains similarly

in jP + + A + 00 X A (98

In -1 3 J + 1 X -l + -3 + ... - (2n-) + -(2n-) +

where

A2 k+l (2k+l oi - p2k+i) (10)

In the case of a zero of t at a point wV of the imaginary axis, the even

coefficients are real and the odd coefficients are imaginary up to and

including the order 2n-1. One has then



W W 2 wV 3
in JB0V ( + ?1 V(X - jw,) + jB2 ( - w ) + A3 (- Jwv) + . ..

P1
(11)

w 2n-2 w 2n-1
+ B2n-2( - JwV) + A2nl( w) + 

where

(in ) w =j Bo (12)
P1 ?=Jw,

(Bk for k even _ 2n-2

-jW -k (x (iW V ) (13)

i v for k odd e 2n-1.

It is, of course, understood that if t' has a zero at a point jw, it must

also have a conjugate zero at -jwv. The coefficients of the series about

the point -jw are the conjugates of the coefficients of the series (11).

In considering the case of a zero of t at a point -V, of the

positive real axis, one must remember that the reflection coefficient pi

may have a zero of multiplicity no at that point, in which the case it

must also have a pole of the same multiplicity at the symmetrical point

-v-. Since the function n 1/pl is then singular at the point V,n one

considers in its place the functiqn

l - o-no

in (P1 + G) (14)

from which the two singularities have been removed. Following the same

line of thought as in the case of in 1/pl, one can show without difficulty

that the value of the new function (14) and its first (2n-nO-1) derivatives

at the point av are independent of N". Using the Taylor series for this

function, in 1/p1 can be written finally in the form

n in - nn + A v + J + AlV(X- eV) + A(X-v) + .Xn0 X- + A 0 + 2+...
p V(15)

A o_ 

-8-



where

Lv 
L = Av (17)[1 ( n Xn~j V (16)

Ak - k 0 - pi. V

The zero at cv and the pole at -aF must, of course, be excluded from the

above summations. The case of a zero of tt at an arbitrary point Xv of

the right half-plane is treated in the same manner. One obtains in this

case

In r n10in v +(AoV+JBoV)+(A1 +JBL )(X-X)+(A2 +JB2 )(X-xv )+

0 o 2n2) X +B(2 ol)] )2n-no-l+.*-p+ p12n-no-2)+ -2jB,2·)JX X +A(2n-no- )B B(12n-no-l) Xv) °++*

(18)

where

AoV+JBov = in 1 no V V n (19)

AV+jBk k oi pi (20)

Also in this case the pair of zeros at Xv and Xv and the pair of poles at

-kv and -v must be excluded from the above summations. The coefficients
of the series about the zero of t at Xv are the conjugates of the coeffi-

cients of the series (18).

The coefficients of the series (7), (9), (11), (15), and (18) up

to the order 2n-no-1 included are completely fixed by the given network N,

with the possible exception of the last coefficients, of order 2n-1, in

the case of a zero of t on the imaginary axis. Such an exception arises

from the fact that the factor -ppu, in Eqs. (5) and (6) may have a zero

of multiplicity one coinciding with a zero of t on the imaginary axis.

This situation leads to what may be called a degenerate case, because t"

must have then a zero at the same point which effectively combines with the

zero of t. In fact, the resulting multiplicity of the zero of the over-all

-9-
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transmission coefficient t is, in this case, one less than the sum of the

multiplicities of the zeros of tt and t" at the same point, as indicated

by Eq. (5). The impedances measured at the common terminals of N and Nu

in the two directions at this frequency must be pure reactances with equal

magnitudes and opposite signs.

Two simple examples of degenerate zeros are shown in Fig. 4 for

the case of a zero at infinity (a) and a zero at -=+JWv (b). It is clear in

these examples that the zeros of transmission of N and N will combine in

such a way that the (2n-l)th derivative of P1 will depend on N as well as

on N and therefore will not be equal to the corresponding derivatives of p.i,

0-

0-

, I

II I IiT 1
;I 1 - -

i , IF

-0

-0

(a)

L C =L2C 2 L 3C3

(b)
Figure 4. Two examples of degenerate zeros of transmission.

Equation(6) shows that this is true in the general case of a degenerate

zero of transmission. The examples of Fig. 4 indicate, however, that the

change of the behavior of the input reflection coefficient when N is con-

nected to N must take place in a particular direction. For instance, in

the case of Fig. 4a, the fact that the total shunt capacitance C1+C2 is

larger than the capacitance in N alone must somehow restrict the possible

change of behavior. It can be shown that, in the case of a zero of t t

of multiplicity n on the imaginary axis, the coefficient A2 n-l of the Taylor

* For a proof of this and other similar statements, see the original
Doctorate Thesis, available in the Library of the Massachusetts Institute
of Technology.

-10-
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series is always increased by the presence of NU when n is odd, and is

always decreased when n is even. The physical significance of this restric-

tion and its practical importance will become clearer in the next section.

The analysis carried out above has led to the formulation of a

number of necessary conditions that must be satisfied by the functions

representing the network N in order to be physically realizable by means

of the given network N t and the arbitrary network N connected in cascade.

These necessary conditions are summarized below for convenience. With

reference to Fig. 3, all the zeros of t which lie in the right half-plane

or on the imaginary axis must appear as zeros of t with at least the same

multiplicity. Moreover a certain number of coefficients of the Taylor

series for In 1/pI about each of the zeros of transmission must be equal

to the corresponding coefficients for in l/p~ or, in other words, must

be independent of N". The resulting number of real quantities independent

of N is equal to the multiplicity of the corresponding zero of transmission

in the case of a zero located at the origin or at infinity, to twice the

multiplicity in the case of a pair of zeros on either the real or the

imaginary axis, to four times the multiplicity in the case of a quadruplet

of complex zeros. If a pair of zeros of t at -Xv and -XX in the left

half-plane is partially or totally eliminated by a pair of poles of tt of

multiplicity n located at the same points, a number 2no of these real

quantities independent of N" are missing. In this case, however, an

equivalent number of conditions are imposed by the fact that P1 must have

a pair of poles of multiplicity no at -Xv and -Xv and, therefore, a pair of

zeros with the same multiplicity at X v and Xv(see Appendix I). A similar

situation arises in the case of the elimination of a zero of transmission

at -- on the real axis. The case of a degenerate zero on the imaginary

axis does not lead to any special difficulty.

Darlington has shown3 that any two-terminal-pair reactive network

can be constructed as a chain of sections each representing a simple zero

of transmission, a pair of zeros, or a quadruplet of zeros; zeros of multi-

plicity n are represented by n similar sections. The order in which the

sections are connected is immaterial, as far as the physical realizability

of the network is concerned. Each section involves a number of elements

equal to the number of zeros represented by the section plus the number of

real quantities necessary to specify the location of the zeros. The

resulting network is shown to require a minimum number of elements.

It is clear at this point that the number of necessary condi-

tions imposed on P1 and t by N is equal to the number of independent

parameters by which N is completely specified. On the other hand, the

conditions imposed by N are independent of one another; it can be shown,

in fact, by interchanging the sections forming N that any one of these

conditions can be changed without disturbing the others. To prove that



these conditions of physical realizability are sufficient as well as neces-

sary one needs only to observe, in addition, that the network N defined by

P1 and t can be constructed in two parts, the first of which contains all

the sections representing the zeros of tt. If the correct sign of P is

used' (the sign differentiates the desired network from its reciprocal),

this first part with an appropriate ideal transformer at the output terminals,

can be identified with the given network N, because all the sections con-

tained in it are completely specified by the conditions of physical

realizability imposed on P1, which, on the other hand, completely specify

Nt. The second part of the network is certainly realizable because it can

be obtained by simply completing the synthesis procedure developed by

Darlington.

The above analysis has led thus to the determination of neces-

sary and sufficient conditions for the physical realizability of the

reflection coefficient P, when p and t are specified. In a practical

matching problem, however, p and t are given indirectly through p, which,

in turn, is specified by the load impedance ZL. On the other hand, pi and

t1 are completely specified by p, apart from an arbitrary all-pass network

connected to terminals (1) of N. This arbitrary network, however, can be

neglected because it does not produce any reflection by itself nor does it

change the phase of any other reflection when the network N is driven from

terminals 2. Therefore, for the purposes of this discussion, N is com-

pletely specified by ZL . On the other hand, one can observe that the

reflection coefficent which is measured in an actual matching problem is

not P1 but 2, since the source is connected to terminals 2 of N. This

fact, however, is immaterial since only the magnitude of P2 is of importance

in most cases and iP2 = P1l for X3=w. Moreover, if one were interested in

the whole function 2, it would be a simple matter to express the conditions

of physical realizability in terms of the zeros and poles of p2, since they

are simply related to the corresponding singularities of P1 (see Appendix 2).

3. Limitations on the Tolerance and the Bandwidth

The next step in the solution of the matching problem is the

transformation of the conditions of physical realizability derived above

into a set of relations suitable for the determination of the theoretical

limitations on the bandwidth and tolerance of match. Such relations

must involve the behavior of the magnitude of the reflection coefficient

on the imaginary axis, that is at real frequencies, and the coefficients

of the Taylor series which are fixed by the given load impedance.

Cauchyts integral relations provide the appropriate tool for the

desired transformation. The function ln 1/p is multiplied first by a

-12-
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function having poles of appropriate multiplicity at the zero, pair, or quad-

ruplet of zeros of t under consideration and is integrated then over the

contour formed by the imaginary axis and the semicircle at infinity in the

right half-plane; appropriate indentations must be provided when the poles

are located on the imaginary axis. If p has zeros in the right half-plane,

it is more convenient to use instead of p the function p obtained from 1

by moving all the zeros in the right half-plane to symmetrical positions in

the left half-plane. This new function p has the same magnitude as P on

the imaginary axis. It is also convenient to make p positive at the origin

by changing its sign if necessary. The coefficients F and G of the Taylor

series for In 1/po corresponding to the As and B's for n 1/p1 are given

in Table II. The integral relations obtained by following this procedure

are collected in Table I and the weighting functions f and g, which are

part of the integrand are tabulated in Table III. The rti appearing in

Table II are the zeros of P1 that lie in the right half-plane.

TABLE I. Integral Relations Obtained from the Conditions
of Physical Realizability

-13-
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Frequency
Zero of t variable Integral relation

origin w - ' 2(k+l)ln(l/Ipl) dw () Fo~ ol ~~~ 2 1/~l)~ - 2k+l

infinity w f2k ln(l/ pll) d = () k Fk+ 

J~ WV |x = W/W-V l X WV ln(1/jP11) dx = (-1 )k+l r 2k wv
|+ | vx l ~/ fg2k v 2k

| | In |/ 2k+v lntl 1 Pl) d (-1)k I 2k+ l vLJ0 I i2k+l '' lIpl d = -1) 2 V 2k+l

x = J. klfn'ln(/!IPl) dx =(-1)k n Fv

_W- .~ xwI?) l I=f ln(llpll) dx- (- 1 )k - If 12k V 2k .2 F2k

g In p ) dx (l 1)k+l IT 2k
~~g2k G"\1 C)12 1~' 2k

U T~h V n . 2k+l v

;V ll= I(/ ) = -)k I 2k+l
g~l 2 V 2k+l



Table II. The Coefficients Appearing in the Integral Relations of Table I.

k+l = k+l -2- -(2k+l) i
2k+l ri

2k+l= k+l 2k+l
7 2k+l
"ri

FV - R ri -{k+JGo = Bo + ln ] + 2k+l = Ak+l v 2 Re ( J
i

G v = Im Z
i

r - %v_ri V
Xri V

F = A - Re 
0 0 R i

kr =[ Ak [ (ri )k (ri -]

o X AV j B ~ l -Xri vFo + jGO = Ao + JBo - ln + P

X Jk Ak +ri - k 

Fk )+ B i rri
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Table III. The Functions Appearing in the Integral Relations of Table I.
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The integral relations of Table I are the crux of the paper because

they express the conditions of physical realizability in terms of the observ-

able behavior of a physical quantity, namely the behavior, over the

frequency spectrumof the magnitude of the reflection coefficient. To obtain

the optimum tolerance of match, one must determine then the function P1

which is a solution of the set of equations formed by these integral rela-

tions and whose maximum deviation from zero over a prescribed freqeuncy

band is a minimum. This problem was solved only in very special cases;

however, the relations of Table I yield directly useful information on the

nature of the theoretical limitations on the tolerance and bandwidth of

match, as indicated below.

The special case of a network N having all the zeros of trans-

mission at infinity will be considered first. Such a network can be

realized in either the form of a low-pass ladder structure of the type

shown in Fig. 5, or in the dual form (starting with a shunt capacitance).

N

.
NI

Figure 5. Network N' with n zeros of transmission
at infinity, and matching network N".

In this former case the coefficient A1 depends on L alone, A3 depends on

L1 and C2, A5 depends on L1, C2, and L3, and so forth, since each of the

elements represents a zero of transmission at infinity. The integral rela-

tions which apply to the case of a zero of transmission at infinity of

multiplicity equal to 3 are rewritten below for convenience.

r

ln 1 d 2 (21)IP l 2 t ri

w2 ln -i dw 2 -)3 ) (22)
oJ"l 2 3 Pri

4 ln dw = 5 Hri) (23)

The ri are the zeros of P1 that lie in the right half-plane.
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The left-hand side of the first equation represents the area

under the curve In 1/l pl versus frequency. The coefficient A is fixed

by the first element Lh of the network it, while the Xri are arbitrary

quantities subject only to two restrictions; namely,that their real parts

must be positive and that they must appear in conjugate pairs if they are

complex. It follows that the summation in Eq. (21) is always real and posi-

tive so that AO sets an upper limit to the area represented by the integral.

It is clear that the best possible utilization of this area is obtained

when In 1/ 1 l is kept constant over the desired frequency band and is

made equal to zero over the rest of the frequency spectrum. This situa-

tion is illustrated for the low-pass case in Fig. 6. If w is the desired

K

WC W

Figure 6. Optimum frequency response.

bandwidth (w = wc in Fig. 6) the best possible tolerance is given by

[ Pl max = A (24)

This theoretical limitation was first found by Bode, as pointed

out above. In fact, when the load consists of a parallel RC combination,

the coefficient A becomes equal to 2/RC. Bode, however, did not consider

the case of a network NO consisting of more than one element. In this case

a number of equations equal to the number of elements in N
t will have to be

satisfied simultaneously. Suppose, for instance, that N' contains two

elements, L1 and C2; that is, N'has a zero of transmission of multiplicity

equal to two, so that Eqs. (21) and (22) must be satisfied simultaneously.

If the rectangular function which yields the optimum tolerance according to

Eq. (24) is used in Eq. (22),the value of the integral may be larger or

smaller than -TrA$~/2 (' is in general negative). If it is smaller, it is a

simple matter to reduce the magnitude of the right-hand side of Eq. (22).
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In fact, it was pointed out before that in the case of a degenerate zero

of transmission, the algebraic value of A" can be increased; that is, its

absolute value can be decreased. Physically this operation amounts to

starting the matching network N with a shunt capacitance which has the

effect of increasing the value of the capacitance C2 in N'. If on the

contrary the value of the integral in Eq. (22) is larger than -A /2, the

optimum tolerance given by Eq. (24) cannot be reached. One observes then

that the value of the summation in Eq. (22) can be either positive or

negative, so that the value of the right-hand side of Eq. (22) can be

increased by introducing appropriate zeros of P1 in the right half of the

plane. These zeros, however, reduce necessarily the value of the right-

hand side of Eq. (21), so that the area represented by the integral of

Eq. (22) is increased at the expense of the area represented by the

integral of Eq. (21).

With reference to Fig. 6, as an example, let the maximum value

of n 1/lpll be equal to rK/2. One obtains from Eqs. (21) and (22) that

wcK = A - 2 ri (25)

c ri

The Xri must be selected so as to maximize the value of K for given values

of wc, , and A'. It will be observed, first of all, that P1 can be multi-

plied by any factor of the type (X-r)/(X+)r) without changing the value of

In 1/lPl on the imaginary axis, so that the behavior of the magnitude of

the reflection coefficient and the values of the Xri can be controlled

independently. One observes next that since the summation in Eq. (22) must

be made positive, both equations can be satisfied by using a single zero

Xr = rr located on the positive real axis. On the other hand, maximizing K

is equivalent to making ri as large as possible while keeping Xkri

as small as possible. Moreover, if Re >O,, then Re ri ri, and

Re k3ri rri) . It follows that the maximum value of K is obtained

by using a single zero located at er. Equations (25) and (26) then become

w3 K = - 3 *+2 3 (28)

Solving these two equations by eliminating O, yields the maximum theoretical

value of X as a function of the cut-off frequency we. The maximum pass-band

-17-
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value of n 1/ Pl is plotted in Fig. 7 as a function of wc/A for dif-

ferent values of the parameter -/(A) 3. The curve K A/w c forms the

boundary of the region in which the optimum design is obtained by simply

increasing the value of the second element.

0.00 .0

34 ~~~~~~0.06
1%1W

x

K __ __ 1 0.09

&C~~~~~~~~~~~~~~~~~~~~~~~~~~0 00 A .12 .15

.0 _

PARAMETER (Al

0.

IR/At

Figure 7. Optimum tolerance of match for a C-L-R impedance.
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When the network N consists of three or more elements, the problem

of determining the optimum tolerance of match becomes much more difficult, and

no general solution has been obtained. However, a few general considerations

can be made. In the first place, the rectangular form of frequency behavior

for In 1/ipij yields the optimum tolerance in all cases, because it provides

the best utilization of the areas represented by the successive integrals.

In the case of a passband extending from zero frequency to wc, the equations

to be satisfied take the general form

K = ( 1)k [(2kl)A-l 2 ri] (29)

In the last equation of the set k = n+l, n being the number of

elements in the network N. It seems reasonable to expect that the number

of ri for which K is a maximum will be equal, in general, to the minimum

number required for the solution of the set of equations. The reasoning

followed in the case of two elements, however, could not be extended

rigorously to the case of n elements. Moreover the solution of such a

system of equations might yield ri with negative real parts which, of

course, would not be acceptable. In this case more ri would have to be

used, and their values would have to be determined by maximizing .

The coefficient A2nl in the last equation of any particular set

can be changed, but only in one direction, by combining one zero of trans-

mission of N with a similar zero of transmission of N", as pointed out

above. It will be observed that the direction in which A2n-l can be

changed corresponds always to a decrease of the area represented by the

integral on the right side of the same equation. It follows that one must

determine first the optimum tolerance that can be obtained by neglecting

the last element of the network N, as was done in the case of two elements,

to check whether the same tolerance could be obtained by simply increasing

the value of this last element.

It is hardly necessary to point out that when the network NO

contains three or more elements, the actual determination of the optimum

tolerance requires the solution of a system of algebraic equations of fifth

or higher degree. This difficulty cannot be avoided as long as the mathemat-

ical formulation of the problem remains the same. It is uite possible,

however, that a different physical approach, such as, for instance, one

based on the time response of the network rather than on the frequency

response, might avoid this difficulty and be more successful.

The results obtained above can be applied directly to a number

of networks derivable from the low-pass ladder structure by means of

appropriate transformations of the frequency variables 7,8 , notably the

-19-
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high-pass and the band-pass ladder structures. The high-pass structure has

all its zeros of transmission at the origin, and can be obtained from the

low-pass structure by interchanging inductances and condensers. The band-

pass structure has zeros of transmission in equal number at the origin and

at infinity; it can be obtained from the low-pass structure by tuning to

the mean frequency every inductance with a series condenser, and every

capacitance wth a shunt inductance. When such a procedure is followed,

the resulting pass band is numerically equal to the cut-off frequency of

the original low-pass structure.

An additional remark is in order with regard to networks with

zeros of transmission at both the origin and infinity. If the multiplicity

of the zero at the origin is no and the multiplicity of the zero at infinity

is n, the conditions of physical realizability for the matching network

will yield n+n, equations of the types indicated in Table I. When a

rectangular-shaped function is used for ln 1/1plj these equations take the

forms

(a2k+1 2k+1) = (- [ [ (2k+1) k 2 X' (30)k+ ri J (3)

(l-(+ )_ 2(2k+l ) ) K = (1)k[(2k+l) k+l - 2k+l) 

where wl and w2 are, respectively, the low-frequency and the high-frequency

ends of the pass band and K is the pass-band value of ln 1/ipli divided by /2.

To determine the maximum value of Kone must solve simultaneously the whole

set of equations. However, if w2>>wl the two sets of equations relating to
the two zeros of transmission can be solved separately. In other words, the

high-frequency response of the network can be considered independently of

the low-frequency response. The two sets of equations will yield different

values of K for given w1l and w2, the smaller of which will represent the
optimum tolerance of match.

The integral relations of Table I all have the same general form,

irrespective of the location of the zero of transmission to which they

refer. The integrand on the left-hand side consists of the function

ln 1/pl I multiplied by a weighting function which depends on the location

of the zero of transmission. The right-hand side consists of the difference

between a coefficient specified by the network N and a summation involving

the zeros of P1 that lie in the right half-plane and the location of the

zero of transmission.

In the simple case concerning zeros of transmission at infinity

and at the origin, the weighting functions are the even powers, positive and

-20-
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negative.respectively, of the frequency w. These functions have the effect

of preventing the arbitrary distribution over the frequency spectrum of the

area under the In l/lplj -versus-frequency curve. In particular they

prevent the value of In 1/iP 11 from remaining large when the frequency

approaches infinity in the one case and zero in the other.

The weighting functions have similar properties in the case of a

zero of transmission on the imaginary axis. In the first place the area

Wvrepresented by the integral in the equation involving AV can be equal, at
most, to TrAlwv/2 because the summation on the right-hand side of th&

equation is always positive. The corresponding weighting function flv ,

plotted in Fig. 8, has a sort of even symmetry with respect to the point

wtw v. This fact would indicate that the area represented by Al can be

divided arbitrarily between the two sides of wV . Such anwarbitrary division,

however, is not possible because the weighting function go (plotted in

Fig. 8) in the first equation of the set has a sort of odd symmetry with

respect to the same point w. The division of the area is thus limited by

the value of B V and by the fact that the use of any zero of P1 in the

right half-plane to modify B results in adecrease of the area represented

by the integral in the equation involving Alv. The weighting functions of

higher order are, alternatively, of the even-symmetry and of the odd-sym-

metry types, and rise faster and faster with their order when w approaches

w.t as indicated in Fig. 8.

In the case of a zero of transmission on the real axis, the integral

in the first equation can never be larger than AoV/2 and, in addition, the

integral in the second equation can never be smaller than (-naA,1 /2). It
0V

will be noted in this regard that the weighting function f is positive for

all values of w, while the function f is positive for wcrv and negative

for w >¶,o as shown in Fig. 9. It follows that, roughly speaking, the value

of n 1/lpj is limited at low frequencies by the first equation and at

high frequencies by the second equation. If the multiplicity of the zero

of transmission is larger than one, the areas represented by the integrals

in these first two equations are prevented from being distributed arbitrar-

ily over the frequency spectrum by equations of higher order. The first six

weighting functions corresponding to a zero of transmission of multiplicity

equal to three are plotted in Fig. 9.

In the case of zeros of transmission at complex frequenciesthe

weighting functions fk and gk lead to limitations very similar to the ones

discussed above for the cases of zeros of transmission on the real and

on the imaginary axis. They reduce actually to the corresponding functions

for these cases when the parameter 8 = wv/,)J approaches infinity and

zero respectively. The weighting functions of orders 0Ol, and 2 are plotted

in Figs. 10 to 15 for 8 equal to 0.5 and 0.05.
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4. The Design of Simple Matching Networks

The integral relations derived above indicate that the ideal type

of behavior for the return loss at the input terminals of a matching net-

work is represented by the rectangular-shaped function used in the determina-

tion of the optimum tolerance. Such a behavior cannot be obtained in prac-

tice because it requires a matching network with an infinite number of

elements, but can be approximated sufficiently well for practical purposes

by means of a reasonably small number of elements. In other words, the

function representing Ipll must be selected in such a way as to approximate

a constant over the pass band and unity over the attenuation band, ust as

in the case of conventional filters. It must be pointed out, however, that

filters are designed in most cases to provide a perfect match at a number

of frequencies in the pass band, while such a situation is to be avoided in

the case of matching networks. In fact, making n 1/fPlj very large at

any point of the pass band leads to an inefficient use of the areas repre-

sented by the integrals discussed above, and results, therefore, in a

reduction of the bandwidth of approximate match. In spite of this essential

difference between the characteristics of filters and matching networks, the

same techniques can be used in both cases for the solution of the approxi-

mation problem. This point is made clear by the illustrative examples dis-

cussed below.

A very simple and important type of matching problem is presented

by the case of a load impedance consisting of a resistance in series with an

inductance, or by the dual case of a resistance shunted by a condenser.

Practical problems of this type arise, for instance, in connection with the

broadbanding of the high-frequency response of matching transformers, or

when a resistive load is shunted by a stray capacitance. A method of

designing appropriate matching networks for a series RL impedance is

developed below. The same method will be directly applicable to the dual

case of a shunt RC admittance.

The pass band desired in most of these problems extends from

zero frequency to some cut-off frequency wc; the ideal behavior for the

return loss is, therefore, that illustrated in Fig. 6. Let L be the

value of the inductance normalized with respect to the series resistance,

that is divided by it. The coefficient A is, by definition,

Al 1 (ln (31)

to Ea. (24)

(in I/IPlj )max - Ll (33)
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The problem consists then of approaching this theoretical limit by means of

a matching network involving a finite and prescribed number of elements.

The general remarks made above indicate that the inductance L,

which forms the network N', may be considered as the first element of a

low-pass filter, the network N, whose input reflection coefficient is Pl.

This reflection coefficient cannot be measured in practice, because the

inductance L1 is inseparable from the resistive termination; its magnitude,

however, is equal to the magnitude of the reflection coefficient P2 at the

other terminals of the filter to which the generator will be connected in

actual operation.

Two types of functions are used for the solution of the approxima-

tion problem in the case of low-pass filters 3,8 . The first type of func-

tion is the Tchebysheff polynomial Tn(w/w c) which leads to a function iPll

which oscillates between two given values in the pass band, and asymptoti-

cally approaches unity in the attenuation band, as illustrated in Fig. 16.

0.4 0.6 0.8 1.0 L2 1.4 1.6

Figure 16. Typical frequency behavior of p1 with Tchebysheff
approximation (computed for the network of Fig. II-1).

The second type of function is the Jacobian elliptic function which leads

to an oscillatory behavior of Pl in both the pass band and the attenua-

tion band. In the first case, all the zeros of transmission are at
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infinity so that the network consists of a simple ladder structure with a

total of n series inductances and shunt condensers. In the second case,

zeros of transmission are present at finite frequencies as well as at

infinity, and the resulting network has a form similar to the m-derived"

filters. The design involving elliptic functions leads to a slightly better

tolerance, but the difference does not seem to be worth the resulting
theoretical and practical complications.

The Tchebysheff polynomial of the first kind and order n is

defined by

Tn(x ) = cos (n cos 1x).

It is clear that this function oscillates between plus and minus one for

jxl< 1, and approaches ±+ for xl > 1. In order to obtain the function

Pll ,2 one first constructs a function t)2 which has oscillatory behavior
in the pass band, is smaller than unity, and has all its zeros at infinity.
Letting x = w/we, one obtains

1/tlJ2 = (l+K2) + 2 T2 (x) ,n

where K and are arbitrary constants. The corresponding magnitude of the

reflection coefficient becomes, after appropriate manipulation.

cosh n(sinh z-b) cosh n(sinh lz+b)(n even) ;
cosh n(sinhlz-a) cosh n(sinh lz+a) ezJx

l 1- l-lt12 l ( Z ) P ( -Z ) s (34)

sinh n(sinh lz-b) sinh n(sinh lz+b) (

sinh n(sinh lz-a) sinh n(sinhlz+a) n odd)z=Jx

where = /wc, sinh
2nb = (K/c)2, and sinh2na = (1+K2 )/c2. The poles of

this function are evidently given by

sinh[ a + (m+i ) (n even) ,

Z = (35)
P sinh [+ a+ J m] (n odd)

where m is an integer or zero. The zeros are given by the same expression

in which b is substituted for a. It will be noted that the poles lie on

an ellipse centered at the origin with semiaxes equal to cosh a and

sinh a, as indicated in Fig. 17 for the two cases of n=3 and n4. The

zeros lie similarly on an ellipse of semiaxes equal to cosh b and sinh b.

The poles of P1 are necessarily those poles of [pl(X)l(-X)]
which lie in the left half-plane; that is, a must be taken with the
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n-3

n-4

M
00

C.)

Figure 17. Location of the poles of l(N)pl(-X) for

a network with three or four elements.

negative sign. The zeros of Pl, on the contrary, can be located any-

where in the complex plane, as far as the physical realizability of the

function is concerned. It has been shown before, however, that the area

represented by j ln /Ipl d is a maximum for a given Al when all the

zeros of P1 are in the left half-plane. Therefore b must be taken also

with the negative sign. The coefficient A corresponding to the resulting

function P1 is then computed by means of Eq. (10) as follows

40-~(hkikpin- sinh a (36)
A: = ( (Xoi 7pi) = We sin /2n (36)

The quantities a and b must satisfy this equation since 1 is specified by

the load impedance through Eq. (32). In addition, a and b must be chosen

so as to minimize the tolerance of match. One obtains from Eq. (34)

l x os h nb (37)
P il max cosh na

This value is then minimized, subject to tne condition imposed by Eq. (36),

-29-

------- -- _ I__IIY______ ---- ·IL·~·~~-111·~



by using the method of indeterminate multipliers. The result is

tanh na tanh nb
cosh a cosh b (38)

The parameters a and b are determined, finally, by solving simultaneously

Eqg. (36) and (38). The resulting optimum value of sinh a is plotted in

Fig. 18 as a function of A/wc for different values of n up to and including

Figure 18. Design curves for a ladder network with n elements.

8. The corresponding values of sinh b can be obtained by means of

Eq. (36).

The optimum value of the tolerance can be determined by means of

Eq. (37). Figure 19 presents a plot of ln lPl~max as a function of
A17wc for different values of n. The curve indicated with n=oois the
straight line of slope equal to /2 which represents the limiting value of
the tolerance given by Eq. (24). It will be noted that this limiting

value is approached reasonably well with a relatively small number (n-l)
of elements in the matching network. In the limit, when n approaches

* These curves are obtained from computations made by Dr. M. Cerrillo,
following a graphical procedure suggested by Dr. E. A. Guillemin.
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Figure 19. Tolerance of match for a low-pass
ladder structure with n elements

infinity and both a and b approach zero as l/Fn, Eqs. (36) and (37) yield

Eq. (24), as one would expect.

After determining the function Plyone can compute, finally, the

values of the elements of the matching network. For this purpose, any one

of the available synthesis procedures can be followed, a discussion of

which is beyond the scope of this paper 3,8 It seems appropriate, on

the other hand, to mention a method of computing the element values

developed by the author in connection with the matching problem. This

method has the advantage of permitting direct and independent computation

of the individual elements from the values of a and b determined above.

Consider a ladder structure consisting of series inductances and

shunt condensers. The AS coefficients can be computed from the poles and

zeros of P1 by means of Eq. (10). On the other hand, the coefficient

A2k-l depends only on the first k elements of the ladder, so that the

value of the kth element depends only on the coefficients with subscript

smaller than or equal to 2k-1. It should be possible, therefore, to com-

pute the values of the elements directly from the A coefficients, and

these in turn from the values of the parameters a and b. Appropriate
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equations have been derived for k=4, by computing the A for a ladder

structure with 4 elements, and solving the resulting set of equations for

the element values. The procedure is straightforward but very laborious,

and therefore only the final results are given here.

Let the successive elements of the ladder be L1, C2, L3, etc..,

and also let

a = 2 _ 1/3, a5 24 - 1/5, a7 = 2 1/7 (39)
(A A7 1/) (39)

One has for the elements

L1 lL
L1 = -_ 02 -. a , L-3A 2 3 +a3(a 5/ a 3

(40)

[l+a3- (a5/a 3 )] L1C4 =
4 a 3 [l+a3-(a5/a 3 )+(a5/a 3 )2 (a7/a 3 )]

In the particular case of the functional form for discussed above, one

obtains by means of Eq. (10)

s 0 -2 3 3a sinh3b inh a - sinh b( 41)-2 w s-n3h a (41)
A =-- Wc( 3 sin(3/2n) sin (r/2n)

-4 5 sinh 5a - sinh 5b + sinh 3a - sinh 3b
A5 - 2 Wc ( 5 sin (5T/2n) + sin (3n/2n) +

(42)

+ 2 sinh a - sinh b)
sin (/2n)

A7 -6 7 (sinh 7a - sinh 7b + sinh 5a - sinh 5b
c 7 sin (7¶T/2n) sin (57T/2n)

(43)

+ 3 sinh 3a - sinh 3b + sinh a - sinh )
sin (3n/2n) + sin (n/2n)

It will be noted that the equations given above are sufficient for the

design of a structure with 8 elements. In fact 4 elements can be computed

by operating from one end of the network and the other four by operating

from the other end. The reflection coefficient 2 which must be used in

the second part of the design can be obtained from Pi in a simple manner,

as indicated in Appendix I. One must keep in mind, however, that the
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network will,in generalinvolve an ideal transformer, since both termina-
tions are assumed to be equal to one ohm. The turns ratio of the trans-

former can be determined easily from the zero-frequency behavior of the

network. Illustrative examples are presented in Appendix II.

Next consider the design of a matching network for a load imped-

ance consisting of a capacitance shunting a series RL combination. A

problem of this type may arise in connection with the high-frequency

response of step-up transformersas discussed in Appendix III. The limiting
tolerance for this matching problem is given by the curves in Fig. 7. This

optimum tolerance was obtained by introducing a zero of P1 at a point -rr

of the positive real axis together with a symmetrical pole on the negative

real axis. The same technique is used in obtaining the appropriate function

for P1 when the matching network must contain a specified number of elements.

Also the same approximation function can be used for Pll as in the case

discussed above, because the addition of a zero and a pole symmetrically

located with respect to the imaginary axis leaves the value of Pl1unchanged

for imaginary values of . One obtains, in this case, from the conditions

of physical realizability for Pl,

= 2/wL 1 - inh a - sinh b 2-/wc (44)'/Wc 2/wcL = sin (/2n) + 2r/c

3 2
A- 3S/W = 2 2(1j/w )3 (L 1 /C 2 + 1/3) =

(45)

2-2(sinh 3a - sinh3b sinh a - sinh b) 3

3 sin (3n/2n) sin (/2n) r C

The maximum pass-band value of [P1l is still given by

= cosh nb (46)
I Plmax cosh na '

The parameters a, b, and r must be determined in such a way as to minimize

the value of IPJ max and satisfy, at the same time, the equations above.

This minimization process involves the solution of a system of transcenden-

tal equations. No convenient graphical procedure could be developed in

this base.

Once a, b, andcrr have been determinedpthe values of the elements

can be computed by following a procedure veri similar to the one discussed

above, but in this case a Darlington section of type C (see Fig. III-2) is
present in addition because of the zero of transmission at X=cr. Anr
illustrative design is carried out in Appendix III.
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The design of matching networks for impedances of a more complex

nature than those considered above is hampered in most cases by mathemati-

cal difficulties which lead to laborious numerical and graphical computa-

tions. It must be said, however, that many matching problems of practical

interest are of the types discussed above, or can be reduced to these types

by means of simple changes of the frequency variable. In additiona

rigorous method of design can at times be combined effectively with a cut-

and-try procedure. For instance, the frequency behavior of a given load

impedance might irst be modified empirically in such a way as to approxi-

mate, over the desired frequency band, the behavior of a simpler impedance

function for which a rigorous design procedure is available. In such

cases the ingenuity of the designer becomes of primary importance, since

the technique to be used may vary considerably from one type of problem to

another.
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APPENDIX I

The reflection and transmission coefficients of two-terminal-

pair reactive network represent the characteristics of the network when one-

ohm terminations are connected to both pairs of terminals, as shown in

Fig. I-1. The two reflection coefficients are defined by

P1 (I- )
pl Z+l E1

P2 Z+1 [ E2 E (I-2)=
4', 2 El=

where Z and Z2 are the impedances measured at the two pair of terminals

when the voltage sources are short-circuited. The transmission coefficient

is defined, with reference to Fig. I-1, by

t = ElJ EE O (-3)

l~ ~ ~ 1E-O2E=

El tE2

Figure I-1. Two-terminal-pair reactive network
with one-ohm terminations.

The physical significance of these coefficients is best understood by

inserting two transmission lines of unit characteristic impedance between

the network and the terminations. The reflection coefficient P1 is then

the ratio of the voltage of the reflected wave to the voltage of the

incident wave measured at terminals 1 for E2--O; P2 has the same signifi-

cance for terminals 2. The transmission coefficient t is the ratio of

the voltage of the transmitted wave at terminals 2 to the voltage of the

incident wave at terminals 1, for E2=O. Because of the reciprocity theorem,

the same value of t is obtained for transmission in the opposite direction.

It is clear from the above definitions that pl 2 is the per

unit power reflected and ItI2 is the per unit power transmitted. Since the
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network is non-dissipative, one obtains

Ip12 = 1P212 t- 1- 2 . (1-4)

This equation implies that any function of the complex variable =r+jw which

is to represent a reflection or transmission coefficient must have a magni-

tude smaller thansor equal to unity at all points of the imaginary axis,

that is at real frequencies. In addition,all the poles of this function

must lie in the left half of the complex plane, because, otherwise, the

network would oscillate upon any random disturbance. It can be shown3 '8

that this condition on the poles together with the condition on the magni-

tude on the imaginary axis are sufficient as well as necessary conditions

for the physical realizability of a reflection coefficient. In the case of

a transmission coefficient, one must add the condition that the zeros be

present in pairs symmetrical with respect to the imaginary axis3'8 . It is

understood, of course, that any reflection or transmission coefficient of

a lumped-element network must be the ratio of two real polynomials in the

complex variable .

If the reflection coefficient P1 of a network is written in the

form

P ( -= K (X-12) (-on) (I-5)

it can be shown that the reflection coefficient P2 is given by

p2 (X) = (-1 )n+lK (x+o)(+xo2 ) * (I-6)( x p)(~_p2). 

The o, and the Xpi are, respectively, the zeros and poles of pl; K is

a real constant.

A relation between the reflection coefficients and t can be

obtained by noting that

[P1() p1( )- = iPl2 =jw = [p2(X) P2(- h)]Xjw = P2 2 Xjw (1 7)

and

[t(X) t(-)JX=Jw = ttl k=Jw = 1 - pl1 2= Jw '-8)
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It follows that the reflection and transmission coefficients have the same

denominator, and therefore the same poles. The numerator of t is either an

even or an odd polynomial because the zeros of t must be present in pairs

of quadruplets symmetrical with respect to the origin. It follows that the

numerator of [t(?)t(-k)] must be a perfect square; that is, its zeros must
have even multiplicity. It must be pointed out in this regard that the

function computed from either reflection coefficient by means of Eq.(I-8)

might not satisfy this requirement. In such a case it is necessary to

multiply both the numerator and the denominator of the function t(N)t(-)]
by the root factors of the numerator having odd multiplicity3' 8 . These

root factors must be carried back into P1 and p2ain which they will appear

after appropriate eliminations as pairs of zeros in the right half-plane

together with symmetrical pairs of poles in the left half-plane. Such

quadruplets of singularities do not change the magnitude of the reflection

coefficient on the imaginary axis, but introduce only a phase shift. A

corresponding elimination of zeros and poles in the left half-plane will

take place in the transmission coefficient. In some cases t contains a

phase-shift factor, consisting of zeros in the right half-plane, and sym-

metrical poles in the left half-plane, and P2 contains the same factor

squared while such a factor is missing in pl. This situation indicates

that an all-pass network of unit characteristic impedance is connected at

terminals 2 of the network so as to introduce a phase shift in both t

and P2 without affecting P1.

It can be concluded on the basis of the above discussion that a

two-terminal-pair reactive network is completely specified by either

reflection coefficient, apart from an arbitrary all-pass phase-shift net-

work connected in cascade at the opposite terminals.
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APPENDIX II

A convenient example for illustrating the method of designing

matching networks for series RL or shunt RC impedances is the high-fre-

quency broadbanding of a matching transformer. Suppose a transformer is

to be used to match a low-impedance resistive load to a high-impedance

generator. The transformer is known to behave at high frequency as an

inductance L (leakage inductance) in series with the load resistance RL.

Let w=2RL/L be the half-power angular frequency of the transformer when

the load is matched to the generator at low frequencies. It is desired

to broadband this transformer so as to make the loss smaller than 1 db up

to a frequency wc=3wh/2. Incidental dissipation will be neglected in this

example.

It is convenient to normalize the network to 1 ohm impedance

level, in which case the normalized inductance becomes L1=L/RL. One has

then, from Eq. (32),

~Al/we= 2/3 (II-1)

A transmission loss of 1 db corresponds to a value n 1/jp=0--.79.

Figure 19 shows that the optimum tolerance for n 1/Ilp is 1.04, and '-

that a value of 0.86 can be obtained with n=4, that is,with a matching net-

work consisting of two capacitances and one inductance. The corresponding

value of IPllmax is 0.424 and the resulting transmission loss is 0.86 db.

One obtains then from Fig. 18 and Eq. (36).

sinh a = 0.615, a = 0.582, (11-2)

sinh b = 0.363, b = 0.356.

The corresponding function 1Pll is plotted in Fig: 16 versus the normalized

frequency variable x=w/wc.

In computing the element values one obtains from Eqs. (39)-(43)

aS = -4.493, a5 = 34.05, a 7 = -435.1 , (11-3)

C2 = 0 .2 2 2 5L1, L3 = 1.10 L1, C4 = 0.1043 L. (II-4)

The turns ratio of the ideal transformer is specified by the zero-frequency

value of IP11, that is, in this case, by IPllmax' One has then
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turns ratio =1-0.424 1.57 . (11-5)

The resulting network for 1-ohm impedance level is shown in Fig. II-l(a).

In practice, the ideal transformer is combined with the matching transformer

by performing a suitable change of impedance level. Figure II-l(b) shows the

final network for a half-power frequency wc = 50,000 rad/sec, a load

impedance of 10 ohms and a source impedance of 1000 ohms.

1

1I
I I

I
I
I
I

_ >

MATCHING NETWORK GIVEN LOAD
(a )

IKOO, 17.8mh 1:6.36

B2 pf IO .0

i I I I
O-C

MATCHING
TRANSFORMER

(b)

Figure II-1. Networks for the high-frequency
broadbanding of a matching transformer.

The same design technique can be applied to the case of a load

consisting of a series (or parallel) tuned circuit if the frequency band

over which the load is to be matched is centered at the resonance frequency

wo of the tuned circuit. A practical example is offered by the broad-

banding of a quarter-wave grounded antenna which behaves, to a first

approximation,as a series tuned circuit. Suppose, for instance, that an

antenna with radiation resistance of 30 ohms, resonance frequency of 10 Mc/sec,

and Q of 10 is to be matched to a 50-ohm transmission line over a 3-Mc/sec

band with a loss smaller than 1 db. When this band-pass problem is reduced

to the equivalent low-pass problem, the same design data are obtained as in

the previous example, and therefore the same basic matching network.
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Figure II-2 shows the network obtained by transforming the basic low-pass

structure of the previous example into the appropriate band-pass structure

with the required impedance level. This network can be transformed further

into a chain of tuned coupled coils, and appropriate changes of impedance

level can be performed so as to eliminate the ideal transformer.

, __ -- m__ 21 I --- - --6.
1 4.92 51 4 1 1 447 56. I

w

I
> I
> 30
> aI

LINE MATCHING NETWORK ANTENNA

Figure II-2. Matching network for a resonant antenna.
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APPENDIX III

The broadbanding of the high-frequency response of a step-up

transformer forms a convenient example of the technique used in matching

a load impedance consisting of an inductance L in series with a parallel

RC combination. In this case R is the load resistance, C is the stray

capacitance of the secondary coil, and L is the total leakage inductance,

all of them referred to the primary of the transformer. With reference to

Fig. III-1, suppose the normalized values of the elements forming the load

1.57:1 L4 I

Cl= 1.205 23 0.813 3.37

0.66 ; L1.135 Mua ; 4 63
L 5 W L W= iWC

Figure III-1. High-frequency broadbanding of a matching
transformer with stray capacitance loading.

impedance are given by

C1 = 1.205/wc, L2 = 2.3/wc,

where w0 is the upper limit of the frequency band over which the impedance

is to be matched. One obtains from Eqs.(44)and (45 after interchanging C

and L,

A;/wc = 1.66, -I 3/(Aj3 = 0.0475, -= 0.217 .
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The optimum tolerance for n l/Ipl is given by the curves of Fig. 7

as 1.32, to which correspond a value of IPllmax equal to 0.275.

To obtain the proper value of sinh a, one should minimize the

value of pl max of Eq. (46) subject to the conditions imposed by Eqs. (44)

and (45). To avoid this tedious computation,there will be assumed for sinh a

the same value that would be obtained if L2 were not a part of the specified

load impedance. In addition the data of the problem have been selected, for

the sake of simplicity, to yield for l=~4 the same values of a and b as in

the example discussed in Appendix II, so that the maximum value of PIl is

still 0.424 corresponding to n 1/1pllmax=0.86. The corresponding value

of / is 0.5.

The next step in the design is the commutation of the quantities

aS' m5' o. In this case the quantities 2 5 and r 7 must be

added to the right-hand sides of Eqs. (41) and (42) to take into account the

zero of P1 at r and the pole at -r. One obtains

a3 = -0.523, a5 = 0.256, a 7 = -0.666 .

The values of 03 and L4 in Fig. III-1 are computed by means of Eqs. (40

with due regard again to the fact that C nd L must be interchanged because

the first element of the ladder is, in this case, a capacitance instead of

an inductance. It results that

C3 - 0.813/wc, L4 = 3.37/Wc 

The ratio of the ideal transformer is still 1.57,as in the case considered

in Appendix II, but the transformer is reversed in direction because the

dual network is being designed; that is, impedance has been interchanged with

admittance.

In addition to the elements already computed, the presence of a

zero of transmission of the matching network at -ar (resulting from the

zero-pole pair of pl) leads to a Darlington section of type C illustrated

in Fig. III-2. To determine the elements of this section it is convenient

to operate on the reflection coefficient 2, that isfrom the opposite end

of the network. It can be seen by inspection that if M is a positive

quantity,

MC7 = 1 = 1/4w 2

At the same time, the reflection coefficient P2 must have a zero at -rr

and therefore the impedance measured at the L6 terminals must be bne for
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X=Gc. It follows thatr

wr L6 + 1/r r 7) = 1 ,

r = (1/2L6 )[ ± 1 -(4L6/0 7) .

The + sign must be used when p2(X+r)/(-~T) is positive for =a-. The

third equation required for the determination of the three elements is

obtained by considering the quantity (see Eq. (16))

Ar r
P2+r

C

- J7

O

Figure III-2. Darlington section of type C for a zero
of transmission on the real axis.

vwhich is completely determined by the elements of the section. One

obtains also, from Fig. III-2,

or
Ao =- ln (1 - 4L6/C7).

The numerical value of Aor is found to be -2. Remembering that L5L6=M
2

one has finally

L6 = 1.135/w0, L5 = 0.66/wc, M = 0.865/wc , C7 = 4.63/wc .

The ideal transformer can be moved to the end of the structure

and combined with the actual transformer, so that the load resistance
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measured from the primary side and normalized with respect to the source

resistance will be equal to 1.572=2.47 ohms. Finally, the coupling coef-

ficient of the transformer in the section of type C is made smaller than

unity by combining the transformer with the adjacent inductance L4. The

final network is shown in Fig. III-3, in hich the values of all elements

are normalized with respect to the source resistance.

* - - -

L_ _ IL J

Figure III-3. Transformation of the network shown in Fig. III-1.
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