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1 Introduction

Brockwell [1] discusses a Fractional Kelly investment framework to describe the evolution
of a leveraged portfolio over time. In such a portfolio, we maintain a fixed proportion of
total capital in each of a number m of investment instruments, and accrue/pay interest at
a risk-free rate on the remaining cash/debt. In this context, Kelly’s formula gives the same

1



prescription for leverage as the solution of a Markowitz mean-variance optimization problem,
and it is possible to characterize the distribution of portfolio returns over any period of time.

However, the results rely on knowledge of the drift and diffusion parameters of the risky
instruments in the portfolio. In practical applications, one must use estimates of these quan-
tities, since the true values are unknown. These parameter estimates are corrupted by noise
in the realization of past data. In addition, they commonly exhibit random variation over
time, which makes it difficult even to quantify what we hope to achieve with an estimator,
let alone ensure good long-term portfolio behavior.

In this paper we generalize the framework of [1] to account for both of these types of uncer-
tainty. Specifically, we state a general result that relates long-term performance to the joint
limiting distribution of various quantities. In most cases, knowledge of the leverage selection
process itself, along with some minimal assumptions, is sufficient to determine these limiting
distributions, and consequently, to evaluate long-term performance.

We provide an example that illustrates performance analysis for a fractional-Kelly portfolio
when the covariance matrix (diffusion parameters) is taken to be known, but means (drift
parameters, scale-equivalent to Sharpe ratios) are unknown and must be causally estimated.
The respective unknown quantities in the fractional-Kelly leverage formula are replaced by
their estimates. We then see how portfolio growth can be decomposed into three parts: a
base term familiar from contemporary portfolio theory, a second term representing potential
improvement due to accurate tracking of a time-varying Sharpe ratio, and a third term
representing losses incurred by the tracking process itself. The first of these three terms is
known and well-understood. To the author’s knowledge, this paper is the first to quantify the
impact of active portfolio management and uncertainty that is encompassed in the additional
terms.

2 Time-Varying Diffusion Models for Prices

2.1 Notation

In [1], we introduced a standard multivariate geometric Brownian motion describing the
evolution of prices of m investment instruments in our portfolio. We now generalize that
formulation to allow for time-varying parameters. Assume the existence of a probability
space (Ω,F ,P) equipped with a filtration (Ft)t∈R, and on the space let

{Pt = (Pt,1, Pt,2, . . . , Pt,m)T , t ∈ R} (1)

denote a price process satisfying the system of stochastic differential equations

dPt = diag(µt)Ptdt+ diag(σt)diag(Pt)dUt, (2)
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where {Ut ∈ Rm} is a multivariate Brownian motion with time-varying correlation matrix
Rt, so that

E [dUt] = 0, Var (dUt) = Rtdt, (3)
and diag(·) represents a square matrix with diagonal elements given by the vector argument,
and zeros in all off-diagonal positions. It will be convenient to define the covariance matrix

Σt = diag(σt)Rtdiag(σt). (4)

As argued in the previous work, when µt and Σt are constant over time, (2) provides a fairly
good description of the evolution of prices of financial instruments over time. Specifically,
they evolve according to a multivariate geometric Brownian motion. Here we have simply
generalized that model to allow for time-heterogeneity. The variance and covariance terms
σt, Rt and Σt are referred to as the diffusion parameters, while the components of the mean
vector µt are referred to as the drift parameters.

The drift and diffusion parameters may be known or unknown, but much of this paper will
address the scenario where Σt is known and µt is unknown, and study the impact on leverage
selection and portfolio performance. Leverage selection was the focus of [1], where we saw
how best to amplify returns of individual instruments to obtain good aggregate portfolio
performance. In this paper, we also allow for leverage to vary with time,

kt = (kt,1, . . . , kt,m)T . (5)

As in [1], we assume that at any given point in time t, for each j = 1, 2, . . . ,m, the portfolio
maintains proportions kj of total capital At in each of the respective instruments, and allo-
cates the remainder to cash holdings (if positive) or debt (if negative). As before we define
the total leverage

κt =
m∑
j=1

kj,t. (6)

We also assume that cash earns risk-free interest rate r, while debt pays that same rate, and
for notational convenience, we define the vector

r = (r, r, . . . , r)T ∈ Rm. (7)

In the time-varying framework of this paper, We need to be careful with regard to causality,
so we will generally require

Assumption 2.1 Assume that {µt}, {Σt} and {kt} are almost surely continuous in t, and
adapted to the filtration {Ft.}

Intuitively, this is a statement that the future does not get tangled up with the past. For
example, choice of kt = µt+δ, δ > 0 would violate this assumption.
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By a straightforward adaptation of the argument in [1] based in Itô’s formula, when As-
sumption 2.1 holds, we find that

d log(Pt) = (µt − σ2
t /2)dt+ dQt. (8)

where {Qt} is a multivariate Brownian motion with

E[dQt] = 0, Var (dQt) = Σtdt. (9)

Furthermore, the total capital {At} generated by the portfolio is a geometric Brownian
motion satisfying

d log(At) = r + (kt · (µt − r)− kTt Σtkt/2)dt+ (kTt Σtkt)1/2dWt, (10)

where {Wt} is a standard Brownian motion.

2.2 Ergodicity

The primary task of the investor is to choose the leverage vector kt. When µt and Σt are
known and constant, it is straightforward to balance growth rate against volatility to make
this choice. In this paper we will investigate the far more complex problem of choosing
leverage in the face of uncertainty.

The first step is to develop a framework for analysis. To do so, we will need to bring in the
machinery of ergodic theory for stochastic processes. Some early results in this field are due
to [4], but more recent developments that apply directly to solutions of stochastic differential
equations can be found in the literature.

2.3 Relating Uncertainty to Performance

Uncertainty in portfolio parameters is a known problem, and has been addressed in various
ways. One notable approach is the use of Bayesian priors, which can be effective, but
introduces an element of subjectivity to the problem. Here we adopt a different approach.
Our goal is to measure the impact of this uncertainty on performance directly without
resorting to Bayesian methods, and to provide explicit statements on long-term performance
and its connection with uncertainty.

The following result is the key to analysis of portfolio behavior. It shows that long-term
performance is governed by the limiting joint distribution of three time-varying random
processes.
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Theorem 2.2 (Ergodic Investment Theorem) Suppose that the price process {Pt} sat-
isfies (2) and we apply a time-varying leverage vector kt to its components. If Assumption 2.1
holds, and the process

{(µt,kt,Σt), t ≥ 0} (11)

is ergodic with limiting distribution π, then the long-term expected log-return per unit time
of capital {At} is

L = lim
t→∞

E [logAt − logA0]/t =
∫

(k · µ− kTΣk/2)dπ(k, µ,Σ). (12)

Furthermore, the long-term log-return variance per unit time is

V = lim
t→∞

Var (logAt − logA0) /t =
∫

kTΣkdπ(k, µ,Σ). (13)

Proof: Under the conditions of the theorem,

logAt − logA0 =
∫ t

0
d logAt (14)

=
∫ t

0
(kt · µt − kTt Σtk/2)dt+

∫ t

0
(kTt Σtk)1/2dWt. (15)

Taking expectations on both sides and dividing by t, we have

E [logAt − logA0]/t = 1
t
E
[∫ t

0
(ku · µu − kTuΣtku/2)du

]
(16)

(17)

Taking limits as t→∞, the result then follows from the ergodicity of (kt, µt) �

In financial terms, Theorem 2.2 directly quantifies the effect of uncertainty on portfolio
performance. It covers uncertainty caused by various real-time parameter estimation schemes
that may feed into the choice of kt, as well as uncertainty due to the random drift of µt over
time, for example, due to regime changes. The result states that knowledge of the limiting
joint distribution of kt, µt, and Σt, is sufficient to determine long-term performance.

Following from the arguments in [1], we will be particularly interested in the case where kt
is chosen using a fractional Kelly approach. However, it is worth noting that Theorem 2.2
applies to far more general schemes for leverage selection.
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3 Uncertainty in Leverage Selection

In the previous section we established a result that explains how long-term portfolio perfor-
mance depends on the limiting distribution of the quantities kt, µt and Σt. These quantities
may vary randomly over time. To apply the result, we need to

1. make assumptions about the (random) evolution of these processes,

2. specify our (causal) procedure for leverage-selection at every point in time, and

3. determine the joint limiting distribution of kt, µt, and Σt.

In this section we demonstrate one approach to carry out such analysis. We will take Σt = Σ
to be a known constant, since this simplifies the analysis. Of course Theorem 2.2 still applies
in the more general setting, and future work could address the impact on performance of
time-varying and/or unknown Σt.

3.1 Time-Varying Drift Parameter Model

To determine long-term performance of our portfolio, we need to describe the random evo-
lution of µt over time. However, to construct a model that can be easily interpreted, we do
this indirectly, first applying a change of basis

St = Σ−1/2µt, (18)

where Σ−1/2 is the upper triangular part of the Cholesky decomposition of the inverse of Σ,
so that

Σ−1 = (Σ−1/2)T (Σ−1/2). (19)

The process {St} can be thought of as a vector of time-varying Sharpe ratios of a “whitened”
or “de-correlated” version of our portfolio.

We next present a formal model for these time-varying Sharpe ratios. Let {St} be the
stationary and causal solution of

dSt = −h(St − S)dt+ C1/2dεt, (20)

where h > 0, S ∈ Rm is a vector, C1/2 is the lower triangular component in the Cholesky
decomposition of a positive definite matrix C = C1/2(C1/2)T , and {εt} is a standard m-
dimensional Brownian motion with

E [εt] = 0, Var (εt) = tIm×m. (21)
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Equation (20) defines a standard Ornstein-Uhlenbeck process, sometimes also referred to
as a continuous-time first-order autoregressive process (see, e.g. [2]). It has the following
properties.

1. E [St] = S, and Var (St) = (2h)−1C.

2. The vector St “reverts” to S, that is, when components of St are larger/smaller than
the corresponding components of S, there is a negative/positive instantaneous drift in
the respective part of dSt.

For convenience we will also define the vector

µ = (Σ−1/2)−1S, (22)

and we define the portfolio Sharpe ratio by

S = (µTΣ−1µ)−1/2, (23)

even though the vectors S and µ are typically unknown. It is easily verified that

STS = µT (Σ−1/2)TΣ−1/2µ = µTΣ−1µ = S2. (24)

3.2 Drift Parameter Estimation

We can measure prices Pt over time, but we do not directly observe µt or its long-term mean
µ, or the corresponding (basis-changed vectors) St and S, at any point in time. Even so,
we can come up with useful estimators for these quantities, by constructing an Ornstein-
Uhlenbeck process. Let us define the rate of our estimator by a constant

g > 0. (25)

Then define the m-dimensional process

M0 = 0, (26)
dMt = −g[Mtdt− Σ−1/2(d log Pt − σ2

t dt/2)]. (27)

We already know that

d log Pt = (µt − σ2
t /2)dt+ dQt, dQt ∼ N(0,Σdt), (28)

so it follows directly that

dMt = −g(Mt − St)dt+ gΣ−1/2dQt. (29)
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In the form (27), dMt is expressed as a function of only the current value of the estimator
Mt itself, the (vector) price process {Pt}, and the known vector σ. Hence the estimator Mt

is computable at time t using only current and past observable quantities. 1

In the equivalent form (29), we see that the estimator evolves as an Ornstein-Uhlenbeck
process over time, hence we can easily establish a range of useful properties. In fact, we will
construct a joint process starting with equations (20) and (29) as follows. Combining the
two stochastic differential equations, we have

d

[
St
Mt

]
=
[
−hIm×m 0
gIm×m −gIm×m

] [
St − S
Mt − S

]
+ dZt, (30)

where {Zt} is a 2m-dimensional Brownian motion with

E [dZt] = 0, Var(dZt) =
[
C 0
0 g2Im×m

]
dt. (31)

Applying the results in Appendix A.1, we can establish the following properties.

1.
[

St
Mt

]
is multivariate normal, since it is the solution of a Gaussian Ornstein-Uhlenbeck

stochastic differential equation.

2.
lim
t→∞

E
[

St
Mt

]
=
[

S
S

]
. (32)

Among other things, this means that Mt is an asymptotically unbiased estimator of
St, and Mt is an asymptotically unbiased estimator of S.

3.
lim
t→∞

Var
([

St
Mt

])
=
[
V11 V12
V T

12 V22

]
(33)

where
V11 = C/(2h), V12 = gV11/(g + h), V22 = V12 + gIm×m/2. (34)

3.3 Plug-In Fractional Kelly Portfolio Performance

We now need to specify our leverage vector kt. If we knew the underlying value of µt, it
would make sense to use the fractional Kelly leverage αΣ−1µt for some appropriately-chosen

1In practice, we would typically use an Euler approximation to evaluate {Mt, t = 0, δ, 2δ, . . .}.
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risk level α ∈ [0, 1]. In this case we do not observe µt, but since Mt is an asymptotically
unbiased estimator of St = Σ−1/2µt, it is natural to use the “plug-in” leverage

kt = α(Σ−1/2)TMt. (35)

In this section we apply Theorem 2.2 to examine portfolio performance using (35).

3.3.1 Limiting Distributions

As a first step, we need to find the means of the limiting distributions of kt · µt and kTt Σkt.

It follows from (32), (33) and (35) that

lim
t→∞

E
[
kTt · µt

]
= lim

t→∞
αE
[
MT

t (Σ−1/2)(Σ−1/2)−1St
]

= lim
t→∞

αE
[
MT

t St
]

= lim
t→∞

αE
[
tr
(
MT

t St
)]

= α lim
t→∞

E
[
tr
(
StMT

t

)]
= α lim

t→∞
tr
(
E
[
StMT

t

])
= αtr

(
(V12 + SST )

)
= α(tr (V12) + tr

(
SST

)
)

= α
(
γg/(g + h) + S2) , (36)

where we define
γ = (2h)−1tr (C) . (37)

We also have

lim
t→∞

E [ktΣkt] = lim
t→∞

α2E
[
MT

t Σ−1/2Σ(Σ−1/2)TMt

]
= α2 lim

t→∞
E
[
tr(MT

t Mt)
]

= α2 lim
t→∞

tr
(
E
[
(MtMT

t

])
= α2tr

(
V22 + SST

)
(38)

= α2tr
(
V12 + gIm×m/2 + SST

)
(39)

= α2(γg/(g + h) +mg/2 + S2). (40)

Now we can make the following statement, which is a direct application of Theorem 2.2.

Corollary 3.1 Suppose that the m-dimensional price process {Pt} follows (2), and that the
time-varying unobserved process {µt}, after change of basis to the “Sharpe process” St =
Σ−1/2µt, satisfies (20). Let the “Sharpe estimator” Mt be defined defined by (26,27). If the
leverage vector is

kt = α(Σ−1/2)TMt, (41)
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then the portfolio has long-term expected log-return per unit time

L = L0 + L1 + L2, (42)

where

L0 = (α− α2/2)S2, (43)
L1 = (α− α2/2)γg(g + h)−1, (44)
L2 = −α2mg/4, (45)

with γ = (2h)−1tr (C), and S = (µTΣ−1µ)1/2 denoting the (unknown) portfolio Sharpe ratio.
Furthermore, the portfolio’s long-term log-return variance per unit time is

V = α2[S2 + γg/(g + h) +mg/2]. (46)

Proof: This is a straightforward application of Theorem 2.2, making use of equations (36)
and (40). �

Corollary 3.1 has significant implications for optimal portfolio management. The components
of growth rate in (42) have natural interpretations.

1. L0 is the base performance that we could obtain if µt and Σt were both constant and
known. This term is essentially at the core of the bulk of modern portfolio theory.

2. L1 represents a potential improvement in performance obtained by tracking Sharpe
ratios over time with an estimator whose rate of variation is specified by g. L1 is only
positive if the following conditions hold:

(a) g > 0, that is, we are tracking Sharpe ratios, and
(b) γ > 0, that is, there is some natural variation in Sharpe to be tracked.

3. L2 represents loss in performance incurred by active modification of leverage over time.
It is negative, and its proportionality to portfolio dimension m can be regarded as a
“curse of dimensionality” penalty to performance when tracking Sharpe ratios.

4 Discussion

Building on the framework of [1], we have developed theory that allows us to analyze the
performance of an investment scheme, accounting for two very important properties of in-
vestment portfolios: imprecise measurement of prior Sharpe ratios, and the time-varying
nature of these Sharpe ratios.
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Using the framework, we have established new results. To the author’s knowledge, The-
orem 2.2 has not been stated in the literature, although it has critical implications for
long-term performance of managed portfolios. Furthermore, Corollary 3.1 illustrates how
standard tracking approaches to portfolio weighting both help by adjusting as Sharpe ratios
change, and hurt by injecting additional noise into the process.
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A Supporting Results

A.1 Multivariate Ornstein-Uhlenbeck Process Behavior

First we establish a property of (multivariate) Ornstein-Uhlenbeck processes.

Lemma A.1 Suppose that a multivariate process {Xt} satisfies the system of stochastic
differential equations

dXt = −A(Xt − µ)dt+ dVt, (47)
X0 = x0, (48)

where {Vt} is a multivariate Brownian motion with

dVt ∼ N(0, Sdt). (49)

If the eigenvalues of A are strictly positive, then

E [Xt] = exp(−At)x0 + (I − exp(−At))µ (50)

and
Var(Xt)→ V, (51)

where V satisfies
V AT + AV = S. (52)

In some cases, we can write down the component equations of (52) and solve the system.
Explicit methods for solving equation (52) can also be found in [3].
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