

 Python Programming Course Syllabus

 Course Overview

Welcome to the Python Programming Course, a comprehensive journey from beginner to

advanced Python development! This course covers Python 3.12 (the latest release as of August

2025) and equips you with skills to build real-world applications in web development, data

science, automation, and more. Through hands-on projects, case studies, and modern tools, you'll

master Python and prepare for a career in tech.

Duration: 12 weeks (3 months) (4–6 hours/week)

Course Fee: Rs. 15,000 INR

Format: Lectures, coding exercises, projects, and quizzes

Prerequisites: Basic computer skills (no prior programming required)

Target Audience: Beginners to intermediate learners aiming to become Python developers

 Course Objectives

By the end of this course, you’ll:

 Master Python syntax, data structures, and object-oriented programming.

 Build modular, reusable code with functions and packages.

 Create data-driven applications using Pandas and Matplotlib.

 Develop web applications with Django and deploy them.

 Apply modern Python features like type hints and asynchronous programming.

 Solve real-world problems through hands-on projects.

 Course Structure

The course is divided into 15 modules, each with clear learning outcomes, hands-on exercises, and

case studies. Weekly quizzes and a capstone project ensure practical mastery.

 Detailed Syllabus

 Module 1: Introduction to Programming and Python

Duration: 1 Week

Objective: Understand programming basics and Python’s versatility.

 What is Programming?

 Types of languages: High-level vs. low-level

 Translators: Compiler vs. Interpreter

 Scripting vs. programming languages

 Paradigms: Procedural, Object-Oriented, Functional

 Why Python?

 Python’s history, features, and real-world applications

 Python 3.12 updates (improved type hints, exception groups)

 Python 2.x vs. 3.x, 3.11 vs. 3.12

 Industry use cases: Web, AI, automation

 Setup and Tools

 Python distributions: CPython, Anaconda

 Installation: Windows, macOS, Linux

 IDEs: VS Code, PyCharm, Jupyter Notebook

 Virtual environments: virtualenv , poetry

 Case Study: Set up a Python environment with Poetry and VS Code

 Module 2: Python Language Fundamentals

Duration: 1 Week

Objective: Learn Python’s core syntax and structure.

 Python Basics

 Keywords, identifiers, literals

 Data types: int , float , str , bool , bytes

 Python vs. Java

 Python syntax

 Running Python

 Interactive mode (REPL)

 Scripting mode

 Debugging with pdb and breakpoint()

 Variables and I/O

 Local, global, nonlocal variables

 Input/output: input() , print()

 Type conversion: int() , float() , str()

 Command-line arguments with argparse

 Case Study: Build a command-line calculator

 Module 3: Operators and Control Structures

Duration: 1 Week

Objective: Master operators and control flow for decision-making.

 Operators

 Arithmetic, comparison, assignment

 Logical, bitwise, membership (in), identity (is)

 Ternary operator, operator precedence

 Control Structures

 Conditional: if , if-else , if-elif-else , nested if

 Loops: for , while , nested loops

 Branching: break , continue , pass , return

 Case Study: Create a number guessing game

 Module 4: Data Structures (Collections)

Duration: 2 Weeks

Objective: Manipulate Python’s built-in data structures.

 Overview

 Importance of data structures

 Types: Sequence (str , list , tuple , range), Non-sequence (set , dict , frozenset)

 Strings

 Indexing, slicing, f-strings

 String methods, immutability

 Lists

 Creation, comprehension, mutability

 Indexing, slicing, nested lists

 Shallow vs. deep copy, zip()

 Tuples

 Immutability, methods

 List vs. tuple

 Sets

 Operations: Union, intersection, difference

 Frozen sets

 Dictionaries

 Creation, comprehension, methods

 Accessing, updating, sorting

 Case Study: Build a contact management system

 Module 5: Functions

Duration: 1 Week

Objective: Write modular, reusable code with functions.

 Function Basics

 Defining and calling functions

 Types: No args/no return, with args/with return

 Recursion, lambda functions

 Functional tools: map() , filter() , reduce()

 Advanced Functions

 Default, keyword, *args , **kwargs

 Decorators, generators, iterators

 Type hints with typing module

 Case Study: Create a decorator to log function

execution time

 Module 6: Modules and Packages

Duration: 1 Week

Objective: Organize code with modules and packages.

 Modules

 Pre-defined vs. user-defined

 Importing: import , from ... import

 Module aliasing

 Packages

 Creating and importing packages

 Package vs. folder

 Package management: pip , poetry

 Case Study: Build a modular project with a custom package

 Module 7: Object-Oriented Programming (OOP)

Duration: 2 Weeks

Objective: Build structured code using OOP principles.

 OOP Basics

 Classes, objects, self , cls

 Encapsulation, polymorphism, inheritance

 Instance, class, static methods

 Advanced OOP

 Method/constructor overriding

 Operator overloading

 Inheritance types: Single, multilevel, multiple

 Abstract base classes (abc), method resolution order (MRO)

 Case Study: Design a library management system

 Module 8: Exception Handling

Duration: 1 Week

Objective: Handle errors gracefully.

Exception Basics

 Syntax vs. runtime errors

 Common exceptions: ValueError , IndexError

try , except , else , finally

 Advanced Exceptions

 Handling multiple exceptions

 Custom exceptions with raise

 Exception groups (Python 3.12)

 Case Study: Build a file parser with error handling

 Module 9: Regular Expressions

Duration: 1 Week

Objective: Extract data using pattern matching.

 Regular Expressions re module: match() , search() ,

findall()

 Patterns: Email, phone, URL

 Special characters, character classes

 Case Study: Extract emails and URLs from text

 Module 10: File and Directory Handling

Duration: 1 Week

Objective: Manage files and directories.

 File Operations

 Read, write, append modes

pathlib vs. os

 CSV, JSON, XML parsing

 Serialization with pickle

 Directory Operations

 Create, rename, delete directories

 os , shutil modules

 Case Study: Build a file organizer script

 Module 11: Advanced Python Features

Duration: 1 Week

Objective: Explore advanced Python tools.

 Logging

 Logging levels, custom loggers

 Date and Time datetime , timedelta

, time zones

 OS Module

 File system operations, shell commands

 Multithreading & Async threading vs.

multiprocessing

 Async programming with asyncio (task groups in Python 3.12)

 Garbage Collection gc module,

manual collection

 Case Study: Build a multithreaded web scraper with logging

 Module 12: Database and Network Programming

Duration: 1 Week

Objective: Connect Python to databases and networks.

 Database Programming

 MySQL/PostgreSQL with mysql-connector , psycopg2

 CRUD operations, transactions

 Network Programming

 Sockets: socket module

 Client-server applications

 Case Study: Build a database-backed inventory system

 Module 13: GUI Programming and Data Visualization

Duration: 1 Week

Objective: Create GUIs and visualize data.

 GUI Programming

 tkinter : Widgets, layouts, event handling

turtle for simple graphics

 Data Visualization matplotlib : Bar, scatter,

pie charts seaborn for enhanced

visuals

 Case Study: Build a GUI-based data dashboard

 Module 14: Data Science with Python

Duration: 2 Weeks

Objective: Analyze and visualize data.

 NumPy

 Arrays, indexing, slicing

 Linear algebra, statistical functions

 Pandas

 Series, DataFrame

 Merging, grouping, cleaning

 SciPy

 Scientific computing

 Machine Learning Intro

 ML types: Supervised, unsupervised scikit-

learn basics

 Case Study: Analyze a dataset and visualize results

 Module 15: Web Development with Django

Duration: 1 Week

Objective: Build web applications.

 Django Basics

 MVT pattern

 Models, views, templates, URLs

 Advanced Django

 Django REST Framework for APIs

 Authentication, deployment with Docker

 Case Study: Build a blog application

 Projects and Assessments

Mini Projects (Weekly)

 Command-line calculator

 Contact management system

 File organizer

 Multithreaded web scraper

 Capstone Project (Final 2 Weeks)

 Build a web app or data pipeline (e.g., e-commerce site, data dashboard)

Integrates Django, Pandas, and databases

 Assessments

 Weekly quizzes

 Coding challenges (LeetCode, HackerRank)

 Peer-reviewed project submissions

 Tools and Technologies

Python Version: 3.12

IDEs: VS Code, PyCharm, Jupyter Notebook

Package Managers: pip , poetry

Libraries/Frameworks: numpy , pandas , matplotlib , seaborn , scikit-learn , django ,

tkinter , asyncio

Databases: MySQL, PostgreSQL

Version Control: Git, GitHub

Deployment: Docker, AWS, Heroku

 Learning Outcomes

By the end, you’ll be able to:

 Write clean, efficient Python code.

 Build modular applications.

 Analyze and visualize data.

 Develop and deploy web apps.

 Apply modern Python features like asyncio and type hints.

 Additional Notes

 Features Python 3.12 (type hints, exception groups, task groups).

 Modern tools: poetry , pathlib .

 Real-world projects aligned with industry needs.

 Contribute to open-source on GitHub for hands-on experience.

