

HONG KONG LIKA ELECTRONICS CO., LTD

Adapter/Charger/Power supplier

M/N: 90W/GB-C15/GB19474

Trademark: LIKA

Prepared for : HONG KONG LIKA ELECTRONICS CO., LTD

Address : Rm. 1318-20, 13/F, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon,

Hong Kong.

Prepared by : Shenzhen BEL Technology Co., Ltd.

Address : 415# ChuangYe Building, No.7 ChuangYe 2 Road, 24 District Bao' an,

Shenzhen Guangdong China.

Report Number : **BEL201500009916**

Date of Test : Jun. 15 - Jun. 23, 2015

Date of Report : **Jun. 23, 2015**

TABLE OF CONTENT

Shenzhen BEL Technology Co., Ltd.

Test Report Declaration	Page
1. GENERAL INFORMATION	6
1.1 Description of Device (EUT)	6
1.2 Test Facility	
1.3 Tested System Details	7
1.4 Test Uncertainty	7
2. TEST INSTRUMENT USED	8
2.1 For Conducted Emission Test	8
2.2 For Radiated Emission Test	
2.3 For Harmonic & Flicker Test	
2.4 For Electrostatic Discharge Immunity Test	
2.5 For RF Field Strength Susceptibility Test	
2.6 For Electrical Fast Transient /Burst Immunity Test	
2.7 For Surge Test	
2.8 For Injected Currents Susceptibility Test	
2.9 For Magnetic Field Immunity Test	
2.10 For Voltage Dips Interruptions Test	
3. POWER LINE CONDUCTED EMISSION TEST	
3.1 Block Diagram of Test Setup	
3.2 Test Standard	
3.3 Power Line Conducted Emission Limit	
3.4 EUT Configuration on Test	
3.6 Test Procedure	
3.7 Test Result	
4. RADIATION EMISSION TEST	
4.1 Block Diagram of Test Setup	
4.2 Test Standard	
4.3 Radiation Limit	
4.4 EUT Configuration on Test	
4.5 Operating Condition of EUT	
4.6 Test Procedure	
4.7 Test Result	15
5. HARMONIC CURRENT EMISSION TEST	16
5.1 Block Diagram of Test Setup	16
5.2 Test Standard	16
5.3 Operating Condition of EUT	
5.4 Test Procedure	16
5.5 Test Results	16
6. VOLTAGE FLUCTUATIONS & FLICKER TEST	17
6.1 Block Diagram of Test Setup	
6.2 Test Standard	
6.3 Operating Condition of EUT	
6.4 Test Results	
7. ELECTROSTATIC DISCHARGE IMMUNITY TEST	18
7.1 Block Diagram of Test Setup	
7.2 Test Standard	
7.3 Severity Levels and Performance Criterion	
7.4 EUT Configuration	19

Shenzhen BEL Technology Co., Ltd.

7.5 Operating Condition of EUT	
7.6 Test Procedure	
7.7 Test Results	
8. RF FIELD STRENGTH SUSCEPTIBILITY TEST	22
8.1 Block Diagram of Test Setup	22
8.2 Test Standard	
8.3 Severity Levels and Performance Criterion	
8.4 Operating Condition of EUT	
8.5 Test Procedure	
8.6 Test Results	
9. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TE	
9.1 Block Diagram of EUT Test Setup	
9.2 Test Standard	
9.3 Severity Levels and Performance Criterion	
9.4 EUT Configuration on Test	
9.5 Operating Condition of EUT	
9.6 Test Procedure	
9.7 Test Results	
10. SURGE TEST	
10.1 Block Diagram of EUT Test Setup	
10.2 Test Standard	
10.3 Severity Levels and Performance Criterion	
10.4 EUT Configuration on Test	
10.5 Operating Condition of EUT	
10.6 Test Procedure	
10.7 Test Result	
11. INJECTED CURRENTS SUSCEPTIBILITY TEST	
11.1 Block Diagram of EUT Test Setup	29
11.2 Test Standard	
11.3 Severity Levels and Performance Criterion	
11.4 EUT Configuration on Test	
11.5 Operating Condition of EUT	
11.6 Test Procedure	
12. MAGNETIC FIELD IMMUNITY TEST	
12.1 Block Diagram of Test Setup	
12.2 Test Standard	
12.3 Severity Levels and Performance Criterion	
12.4 EUT Configuration on Test	
12.5 Operating Condition of EUT	
12.6 Test Procedure	
13. VOLTAGE DIPS AND INTERRUPTIONS TEST	
13.1 Block Diagram of EUT Test Setup	
13.2 Test Standard	
13.3 Severity Levels and Performance Criterion	
13.4 EUT Configuration on Test	
13.5 Operating Condition of EUT	
13.7 Test Result	
14. EUT TEST CURVES	
15. FUT PHOTOS	39

Shelizhen BEE reemiolog, co., Eta	Shenzhen	BEL	Techno!	logy	Co.,	Ltd
-----------------------------------	----------	-----	---------	------	------	-----

16. EUT TEST PHOTOS42

TEST REPORT DECLARATION

Applicant : HONG KONG LIKA ELECTRONICS CO., LTD

Rm. 1318-20, 13/F, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hong

Report No.: BEL201500009916

Kong.

Manufacture : HONG KONG LIKA ELECTRONICS CO., LTD

Rm. 1318-20, 13/F, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hong

Kong.

EUT : Adapter/Charger/Power supplier

Model No : 90W/GB-C15/GB19474

Rating(s) : INPUT:100-240Vac 50/60Hz 1.5A

OUTPUT:19Vdc 4.74A

Test Procedure Used:

EMI: EN 55022:2006+A2:2010

EN 61000-3-2:2014; EN 61000-3-3:2013

EMS: EN 55024:2010

EN 61000-4-2: 2009, EN 61000-4-3: 2006+A1:2008+A2:2010

EN 61000-4-4: 2012, EN 61000-4-5: 2014

EN 61000-4-6:2014, EN 61000-4-8:2010, EN 61000-4-11:2004

The device described above is tested by Shenzhen BEL Technology Co., Ltd. to determine the maximum emission levels emanating from the device, the severe levels which the device can endure and EUT is performance criterion. The test results are contained in this test report. BEL Testing Service Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests. Also, this report shows that the EUT is technically compliant with the EN55022, EN61000-3-2, EN61000-3-3 and EN55024. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen BEL Technology Co., Ltd.

Date of Test: Jun. 15 - Jun. 23, 2015

Prepared by(Engineer):

Reviewer(Quality Manager):

Approved&Authorized Signer(Manager):

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : Adapter/Charger/Power supplier

Model Number: 90W/GB-C15/GB19474

Power Supply : 230Vac

Applicant: HONG KONG LIKA ELECTRONICS CO., LTD

Address : Rm. 1318-20, 13/F, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hong

Kong.

Manufacturer : HONG KONG LIKA ELECTRONICS CO., LTD

Address: Rm. 1318-20, 13/F, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hong

Kong.

Date of report : **Jun. 23, 2015**

Date of Test : Jun. 15 - Jun. 23, 2015

1.2 Test Facility

Site Description

Chamber : Certificated by FCC

&Shielded room Registration Number: <u>248337</u>

December 07, 2006 Certificated by VCCI Registration Number: R-2482

February 9, 2004

Certificated by TUV Rheinland

Registration Number: N/A

January 16, 2007 Certificated by IC

Registration Number: 117715

November 07, 2006 Certificated by Intertek

Registration Number: <u>TMPSHA031</u>

November 10, 2006

Name of Firm : Shenzhen BEL Technology Co., Ltd.

Site Location : 415# ChuangYe Building, No.7 ChuangYe 2 Road, 24

District Bao' an ,Shenzhen Guangdong China .

1.3 Tested System Details

Host Personal Computer : HP Monitor : SONY

Printer : EPSON STYLUS Keyboard (USB): Genuine

M/N : P320A M/N : N/A

Modem : ACEEX Mouse : DETROIS

1.4 Test Uncertainty

Conducted Emission Uncertainty : ± 2.66 dB

Radiated Emission Uncertainty : $\pm 4.26 dB$

2. TEST INSTRUMENT USED

2.1 For Conducted Emission Test

Conducted Emission Test (A site)						
Equipment	Manufacturer	MODEL#	SERIAL#	LASTCAL.	NEXT CAL.	
EMI Receiver	Schwarzbeck	PCKL1528	1528-194	Jan. 11, 2015	Jan. 10, 2016	
LISN	Kyoritsu	KNW407	8-1789-4	Jan. 11, 2015	Jan. 10, 2016	
Spectrum Analyzer	ADVANTENT	R3132	160400093	Jan. 11, 2015	Jan. 10, 2016	
50Ω coaxial switch	Anritsu	MP59B	6200264417	Jan. 11, 2015	Jan. 10, 2016	
Pulse Limiter	R&S	ESH3-Z2	100681	Jan. 11, 2015	Jan. 10, 2016	

2.2 For Radiated Emission Test

Radiation Emission Test (966 chamber)						
Equipment	Manufacturer	MODEL#	SERIAL#	LASTCAL.	NEXT CAL.	
Spectrum Analyzer	ADVANTENT	R3132	160400005	Jan. 11, 2015	Jan. 10, 2016	
Amplifier	Tsj	MLA-10K-B01- 27	1205323	Jan. 11, 2015	Jan. 10, 2016	
Antenna	Schwarzbeck	VULB9160	9160-3206	Jan. 11, 2015	Jan. 10, 2016	
EMI Receiver	Schaffner	SCR3501	235	Jan. 11, 2015	Jan. 10, 2016	
Regulated POWER	Schaffner	NT41	16216	Jan. 11, 2015	Jan. 10, 2016	
50Ω coaxial switch	Anritsu	MP59B	6200264416	Jan. 11, 2015	Jan. 10, 2016	

2.3 For Harmonic & Flicker Test

For Harmonic / Flicker Test (A site)						
Equipment	Manufacturer	MODEL#	SERIAL#	LASTCAL.	NEXT CAL.	
Harmonic / Flicker Tester	Schaffner	CCN 1000-1	72472	Jan. 11, 2015	Jan. 10, 2016	
Power source	Schaffner	NSG 1007-5-208-413	57227	Jan. 11, 2015	Jan. 10, 2016	

2.4 For Electrostatic Discharge Immunity Test

For Electrostatic Discharge Immunity Test (A site)						
Equipment	Manufacturer	MODEL#	SERIAL#	LASTCAL.	NEXT CAL.	
ESD Simulator	SCHAFFNER	NSG 435	5866	Jan. 11, 2015	Jan. 10, 2016	

2.5 For RF Field Strength Susceptibility Test

For RF Field Strength Susceptibility Test (A site)						
Equipment	Manufacturer	MODEL#	SERIAL#	LASTCAL.	NEXT CAL.	
Signal Generator	HP	8648A	3625U00573	Jan. 11, 2015	Jan. 10, 2016	
Amplifier	A&R	500A100	17034	NCR	NCR	
Amplifier	A&R	100W/1000M1	17028	NCR	NCR	
Audio Analyzer (20Hz~1000KH z)	Panasonic	2023B	202301/428	Jan. 11, 2015	Jan. 10, 2016	
Isotropic Field Probe	A&R	FP2000	16755	Jan. 11, 2015	Jan. 10, 2016	
Antenna	EMCO	3108	9507-2534	NCR	NCR	
Log-periodic Antenna	A&R	AT1080	16812	NCR	NCR	

2.6 For Electrical Fast Transient /Burst Immunity Test

For Electrical Fast Transient/Burst Immunity Test (A site)						
Equipment	Manufacturer	MODEL#	SERIAL#	LASTCAL.	NEXT CAL.	
Modula Generator	Schaffner	MODULA 6150	34475	Jan. 11, 2015	Jan. 10, 2016	
INS6501 Stetransformer	Schaffner	INA6501	136	Jan. 11, 2015	Jan. 10, 2016	

2.7 For Surge Test

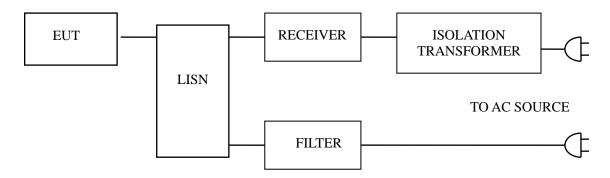
For Surge Test (A site)						
Equipment	Manufacturer	MODEL#	SERIAL#	LASTCAL.	NEXT CAL.	
Modula Generator	Schaffner	MODULA 6150	34475	Jan. 11, 2015	Jan. 10, 2016	
INS6501 Stetransformer	Schaffner	INA6501	136	Jan. 11, 2015	Jan. 10, 2016	

2.8 For Injected Currents Susceptibility Test

For Injected Currents Susceptibility Test (A site)						
Equipment	Manufacturer	MODEL#	SERIAL#	LASTCAL.	NEXT CAL.	
Signal Generator	SCHAFFNER	NSG 2070	1086	Jan. 11, 2015	Jan. 10, 2016	
CDN	SCHAFFNER	M016	20812	Jan. 11, 2015	Jan. 10, 2016	

2.9 For Magnetic Field Immunity Test

For Magnetic Field Immunity Test (A site)						
Equipment	Manufacturer	MODEL#	SERIAL#	LASTCAL.	NEXT CAL.	
Magnetic field generator	Schaffner	MFO6501	34299	Jan. 11, 2015	Jan. 10, 2016	
Magnetic field loop antenna	Schaffner	INA702	148	Jan. 11, 2015	Jan. 10, 2016	
MC2630	EM Test	MC2630	N/A	Jan. 11, 2015	Jan. 10, 2016	
Magnetic	Coils EM Test	MS100	0500-19	Jan. 11, 2015	Jan. 10, 2016	


2.10 For Voltage Dips Interruptions Test

	For Voltage Dips Interruptions Test (A site)					
Equipment	Equipment Manufacturer MODEL# SERIAL# LASTCAL. NEXT CAL.					
Modula Generator	Schaffner	MODULA 6150	34475	Jan. 11, 2015	Jan. 10, 2016	
INS6501 Stetransformer	Schaffner	INA6501	136	Jan. 11, 2015	Jan. 10, 2016	

3. POWER LINE CONDUCTED EMISSION TEST

3.1 Block Diagram of Test Setup

3.2 Test Standard

EN 55022:2006 + A2:2010

3.3 Power Line Conducted Emission Limit

Frequency	Limits dB(μV)	
MHz	Quasi-peak Level	Average Level
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*
0.50 ~ 5.00	56	46
5.00 ~ 30.00	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.4 EUT Configuration on Test

The following equipments are installed on conducted emission test to meet EN55022 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.4.1 Adapter/Charger/Power supplier (EUT)

Model Number: 90W/GB-C15/GB19474

Serial Number : BEL201500009916

Manufacturer: HONG KONG LIKA ELECTRONICS CO., LTD

3.5 Operating Condition of EUT

- 3.5.1 Setup the EUT and simulators as shown in Section 3.1.
- 3.5.2 Turn on the power of all equipments.
- 3.5.3 Let the EUT work in test modes (On) and test it.

3.6 Test Procedure

The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the **EN55022** regulations during conducted emission test.

The bandwidth of the test receiver (Schwarzbeck Test Receiver PCKL1528) is set at 10KHz.

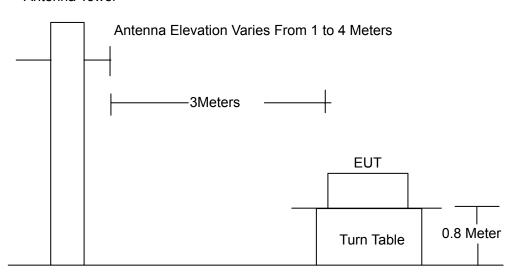
The frequency range from 150 KHz to 30 MHz is investigated.

3.7 Test Result

PASSED

Report No.: BEL201500009916

4. RADIATION EMISSION TEST


4.1 Block Diagram of Test Setup

4.1.1.Block Diagram of EUT Test Setup

4.1.2. Anechoic Chamber Setup Diagram

Antenna Tower

Ground Plane

4.2 Test Standard

EN 55022:2006 + A2:2010

4.3 Radiation Limit

Frequency MHz		Distance (Meters)	Field Strengths Limits dB(µV)/m
30	~ 230	3	40.0
230	~ 1000	3	47.0

Shenzhen BEL Technology Co., Ltd.

Remark:

- (1) Emission level $(dB(\mu V)/m) = 20 \log Emission level (\mu V/m)$
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument, antenna and the closed point of any part of the device or system.

4.4 EUT Configuration on Test

The EN55022 regulations test method must be used to find the maximum emission during radiated emission test.

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.2.

4.5 Operating Condition of EUT

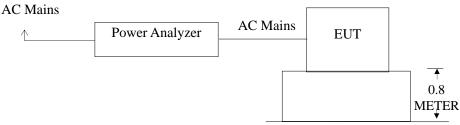
Same as conducted emission test, which is listed in Section 2.2 except the test set up replaced as Section 4.1.

4.6 Test Procedure

The EUT and its simulators are placed on a turned table that is 0.8 meter above the ground. The turned table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna that is mounted on the antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated biconical and log periodical antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. In order to find the maximum emission levels, the interface cable must be manipulated according to EN55022 on radiated emission test.

The bandwidth setting on the field strength meter (Schaffner Test Receiver SCR3501) is set at 120KHz.

The frequency range from 30MHz to 1000MHz is checked.


4.7 Test Result

Report No.: BEL201500009916

5. HARMONIC CURRENT EMISSION TEST

5.1 Block Diagram of Test Setup

(EUT: Adapter/Charger/Power supplier)

5.2 Test Standard

EN 61000-3-2:2014

5.3 Operating Condition of EUT

- 5.3.1 Setup the EUT as shown in Section 5.1.
- 5.3.2 Turn on the power of all equipments.
- 5.3.3 Let the EUT work in test mode (ON) and test it.

5.4 Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the Power of the EUT and use the test system to test the harmonic current level.

5.5 Test Results

Report No.: BEL201500009916

6. VOLTAGE FLUCTUATIONS & FLICKER TEST

6.1 Block Diagram of Test Setup

Same as Section 5.1..

6.2 Test Standard

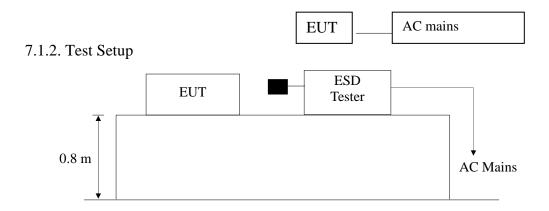
EN 61000-3-3:2013

6.3 Operating Condition of EUT

Same as Section 5.3.. The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

Flicker Test Limit

Test items	Limits
Pst	1.0
dc	3.3%
dmax	4.0%
dt	Not exceed 3.3% for 500ms


6.4 Test Results

7. ELECTROSTATIC DISCHARGE IMMUNITY TEST

7.1 Block Diagram of Test Setup

7.1.1. Block Diagram of the EUT and the simulators

7.2 Test Standard

EN 55024:2010, EN 61000-4-2:2009

Severity Level: 3 / Air Discharge: ±8KV Level: 2 / Contact Discharge: ±4KV

7.3 Severity Levels and Performance Criterion

7.3.1 Severity level

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
X	Special	Special

7.3.2 Performance criterion: A

A. The apparatus shall continue to operate as intended during and after the test.

No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.

- **B.** The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- **C.** Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

7.4 EUT Configuration

The following equipments are installed on Electrostatic Discharge Immunity test to meet EN 55024:2010, EN 61000-4-2:2009, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.4.

7.5 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 3.5 except the test setup replaced by Section 7.1.2.

7.6 Test Procedure

7.6.1 Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

7.6.2 Contact Discharge:

All the procedure shall be same as Section 7.6.1. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

7.6.3 Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the

EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

Report No.: BEL201500009916

7.6.4 Indirect discharge for vertical coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are complete illuminated.

7.7 Test Results

PASSED

Please refer to the following page.

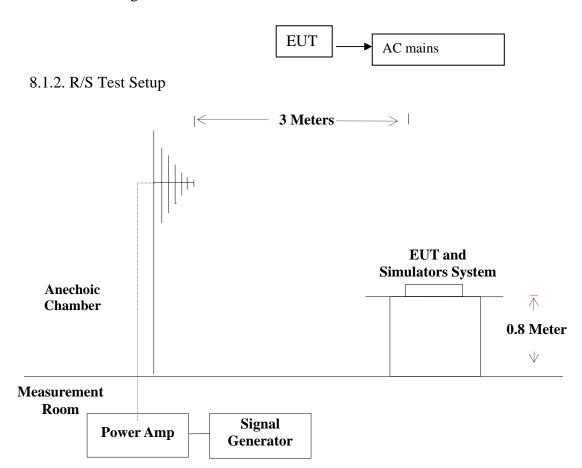
Electrostatic Discharge Test Results

Shenzhen BEL Technology Co., Ltd.

Applicant :	HONG KONG LIKA ELECTRONICS CO., LTD	Test Date :	Jun. 20, 2015
EUT :	Adapter/Charger/Power supplier	Temperature:	26℃
M/N :	90W/GB-C15/GB19474	Humidity :	51%
Power Supply:	230Vac		
Test Engineer:	Randy Zhang		

Air Discharge: ± 8KV

Contact Discharge: ± 4KV # For each point positive 25 times and negative 25 times discharge


Test Points	Air Discharge	Contact Discharge	Performance Criterion	Result
Slot of the EUT	±2,4,8KV	N/A	A	PASSED
LED	±2,4,8KV	N/A	A	PASSED
Crust	±2,4,8KV	N/A	A	PASSED
Line	±2,4,8KV	N/A	A	PASSED
Port	±2,4,8KV	±2,4 KV	A	PASSED
VCP	N/A	±2,4 KV	A	PASSED
НСР	N/A	±2,4 KV	A	PASSED

8. RF FIELD STRENGTH SUSCEPTIBILITY TEST

8.1 Block Diagram of Test Setup

8.1.1.Block Diagram of the EUT and the simulators

8.2 Test Standard

EN 55024:2010,EN 61000-4-3:2006+A1:2008+A2:2010 Severity Level 2, 3V / m $\,$

8.3 Severity Levels and Performance Criterion

8.3.1. Severity level

Level	Field Strength V/m
1.	1
2.	3
3.	10
X.	Special

8.3.2. Performance criterion: A

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed Below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed Below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- Cy Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

8.4 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.5 except the test setup replaced by Section 8.1.

8.5 Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

All the scanning conditions are as follows:

	Condition of Test	Remarks
1.	Fielded Strength	3 V/m (Severity Level 2)
2.	Radiated Signal	Modulated
3.	Scanning Frequency	80 - 1000 MHz
4.	Dwell time of radiated	0.0015 decade/s
5.	Waiting Time	1 Sec.

8.6 Test Results

PASSED

Please refer to the following page.

RF Field Strength Susceptibility Test Results

Shenzhen BEL Technology Co., Ltd.

Applicant: HONG KONG LIKA ELECTRONICS CO., LTD			Test Date : Jun. 20, 2015
EUT : Adapter/Charger/Power supplier			Temperature : 26° C
M/N : 90W/GB-C15/	GB19474		Humidity: 51%
Field Strength: 3 V/m			Criterion: A
Power Supply : 230°	Vac		Frequency Range: 80 MHz to 1000 MHz
Test Engineer: Randy Zl	nang		
Modulation: ☑ AM ☐ Pulse ☐ none 1 F		KHz 80%	
Test Mode: On			
	Frequency Range: 80-100	00MHz	
Steps	1 %		
	Horizontal	Verti	ical Result
Front	A	A	Passed
Right	A	A	Passed
Rear	A	A	Passed
Left	A	A	Passed

9. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

9.1 Block Diagram of EUT Test Setup

Report No.: BEL201500009916

9.2 Test Standard

EN 55024:2010, EN 61000-4-4:2012

9.3 Severity Levels and Performance Criterion

Severity Level 2 at 1KV, Pulse Rise time & Duration: $\underline{5}$ nS $/\underline{50}$ nS Severity Level:

Open Circuit Output Test Voltage ±10%			
Level On POWER Lines On I/O(Input/Output) Signal data and control line			
1.	0.5KV	0.25KV	
2.	1KV	0.5KV	
3.	2KV	1KV	
4.	4KV	2KV	
X.	Special	Special	

Performance criterion: B

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

9.4 EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet

EN 55024:2010, EN 61000-4-4:2012, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 3.4.

9.5 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.6 except the test setup replaced by Section 9.1.

9.6 Test Procedure

EUT shall be placed 0.8m high above the ground reference plane which is a min.1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m

9.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

9.6.2. For signal lines and control lines ports:

It's unnecessary to measure.

9.6.3. For AC input and DC output power ports:

For DC ports .It's unnecessary to measure

9.7 Test Results

PASSED

EUT: Adapter/Charger/Power supplier Temperature: 26° C M/N: 90W/GB-C15/GB19474 Humidity: 51° % Test Mode: Working Mode Test Engineer: Randy Zhang

TEST VOLTAGE	L	N	L+N
±0.5KV	В	В	В
±1KV	В	В	В

10. SURGE TEST

10.1 Block Diagram of EUT Test Setup

10.2 Test Standard

EN 55024:2010, EN61000-4-5:2014

10.3 Severity Levels and Performance Criterion

Severity Level: Line to Line, Level 2 at 1KV;

Line to Earth, Level 3 at 2KV.

Severity Level:

Severity Level	Open-Circuit Test Voltage (KV)
1.	0.5
2.	1.0
3.	2.0
4.	4.0
X.	Special

Performance criterion: B

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

10.4 EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55024:2010, EN61000-4-5:2014, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 3.4.

10.5 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.7 except the test setup replaced by Section 10.1.

Report No.: BEL201500009916

10.6 Test Procedure

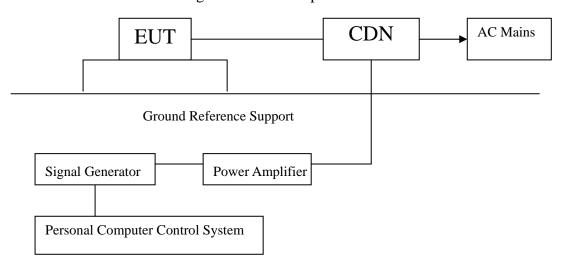
- 1) Set up the EUT and test generator as shown on section 10.1
- 2) For line to line coupling mode, provide a 1KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 3) At least 5positive and 5negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 4) Different phase angles are done individually.
- 5) Repeat procedure 2) to 4) except the open-circuit test voltage change from 1KV to 2KV for line to earth coupling mode test.
- 6) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

10.7 Test Result

EUT:	Adapter/Charger/Power supplier	Temperature:	26℃
M/N:	90W/GB-C15/GB19474	Humidity:	51%
Test Mode:	Working Mode	Test Engineer:	Randy
			Z hang

Location	Polarity	Phase Angle	No of Pulse	Pulse Voltage (KV)	Performance Criterion	Result
	±	0	5	1	В	Passed
L-N	±	90	5	1	В	Passed
L-IN	±	180	5	1	В	Passed
	<u>±</u>	270	5	1	В	Passed

Report No.: BEL201500009916


11. INJECTED CURRENTS SUSCEPTIBILITY TEST

11.1 Block Diagram of EUT Test Setup

11.1.1. Block Diagram of EUT Test Setup

11.1.2. Block Diagram of Test Setup

11.2 Test Standard

EN 55024:2010, EN61000-4-6:2014

11.3 Severity Levels and Performance Criterion

Severity Level 2: 3V(rms), 150KHz ~ 80MHz Severity Level:

Level	Field Strength V
1.	1
2.	3
3.	10
X.	Special

Shenzhen BEL Technology Co., Ltd.

Performance criterion: A

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

11.4 EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.8.

11.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.8 except the test set up replaced as Section 11.1.

11.6 Test Procedure

- 1) Set up the EUT,CDN and test generator as shown on section 11.1
- 2) Let EUT work in test mode and measure.
- 3) The EUT and supporting equipments are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane at above 0.1-0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 4) The disturbance signal described below is injected to EUT through CDN.
- 5) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 6) The frequency range is swept from 150KHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave

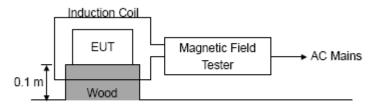
Shenzhen BEL Technology Co., Ltd.

- 7) The rate of sweep shall not exceed $1.5_{\rm X}10^{-3}$ decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 8) Recording the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

11.7 Test Result

EUT:	Adapter/Charger/Power supplier	Temperature:	26℃
M/N:	90W/GB-C15/GB19474	Humidity:	51%
Test Mode:	Working Mode	Test Engineer:	Randy
			Zhang

Frequency Range(MHz)	Injected Position	Strength	Performance Criterion	Result
150KHz ∼80MHz	AC Line	3V(rms), Unmodulated	A	Passed


12. MAGNETIC FIELD IMMUNITY TEST

12.1 Block Diagram of Test Setup

12.1.1 Block Diagram of the EUT

12.1.2 Block Diagram of Test Setup

Ground Reference Support

12.2 Test Standard

EN 55024:2010, EN61000-4-8:2010 Severity Level 1 at 1A/m

12.3 Severity Levels and Performance Criterion

12.3.1 Severity level

Level	Magnetic Field Strength A/m
1.	1
2.	3
3.	10
4.	30
5.	100
X.	Special

12.3.2 Performance criterion: B

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

12.4 EUT Configuration on Test

The configuration of EUT is listed in Section 2.9.

12.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.9 except the test set up replaced as Section 12.1.

12.6 Test Procedure

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions (1m*1m) and shown in Section 10.1. The induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

12.7 Test Results

PASSED

Please refer to the following page.

Magnetic Field Immunity Test Results

Shenzhen BEL Technology Co., Ltd.

EUT:	Adapter/Charger/Power supplier	Temperature:	26℃
M/N:	90W/GB-C15/GB19474	Humidity:	51%
Test Mode:	Working Mode	Test Engineer:	Randy Zhang


Environmental Phenomena	Test specification	Units	Performance Criterion	Result
Magnetic Field	1	A/m	A	PASSED

Note: N/A

13. VOLTAGE DIPS AND INTERRUPTIONS TEST

13.1 Block Diagram of EUT Test Setup

13.2 Test Standard

EN 55024:2010, EN61000-4-11:2004

13.3 Severity Levels and Performance Criterion

Severity Level:

Input and Output AC Power Ports.

✓ Voltage Dips.

✓ Voltage Interruptions.

Environmental	Test Specification	Units	Performance
Phenomena			Criterion
	>95	% Reduction	В
W to D'	0.5	period	Б
Voltage Dips	30	% Reduction	C
	25	period	C
Voltage Interruptions	>95	% Reduction	C
	250	period	

Performance criterion: B, C, C

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be

restored by the operation of the controls.

13.4 EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.10.

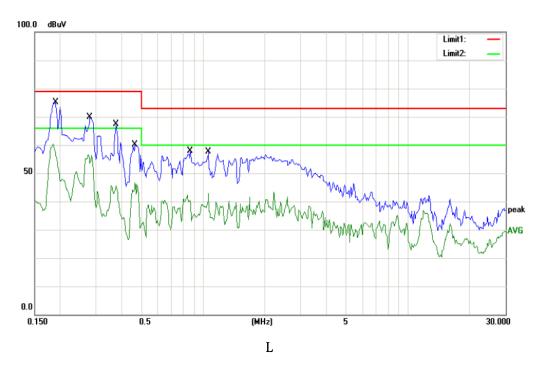
13.5 Operating Condition of EUT

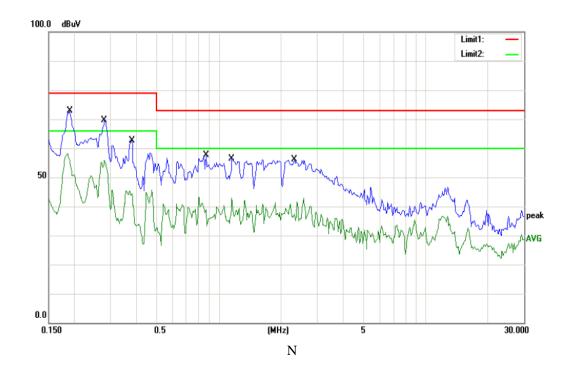
Same as conducted emission test, which is listed in Section 2.10 except the test set up replaced as Section 13.1.

13.6 Test Procedure

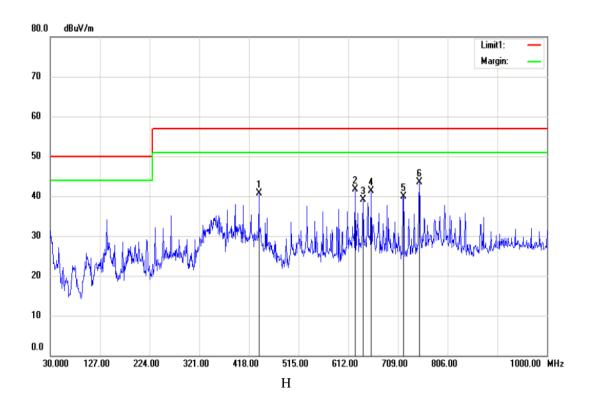
- 1) Set up the EUT and test generator as shown on section 13.1
- 2) The interruption is introduced at selected phase angles with specified duration. There is a 3mins minimum interval between each test event.
- 3) After each test a full functional check is performed before the next test.
- 4) Repeat procedures 2 & 3 for voltage dips, only the level and duration is changed.
- 5) Record any degradation of performance.

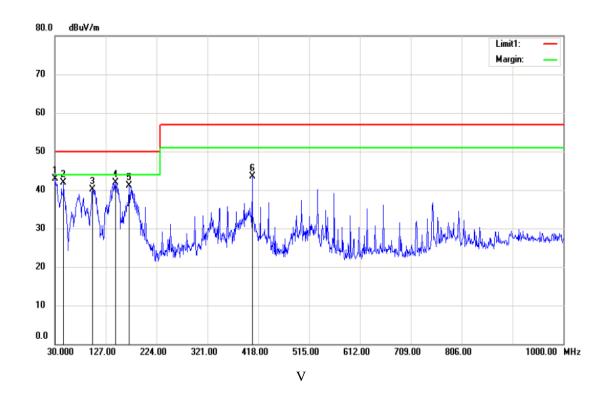
13.7 Test Result


PASSED


EUT:	Adapter/Charger/Power supplier	Temperature:	26℃
M/N:	90W/GB-C15/GB19474	Humidity:	51%
Test Mode:	Working Mode	Test Engineer:	Randy Zhang

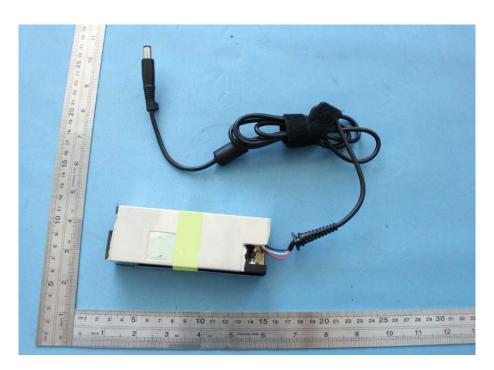
Environmental	Test Specification	Units	Performance
Phenomena			Criterion
	>95	% Reduction	D
Voltage Dips	0.5	period	В
	30	% Reduction	
	25	period	C
Voltage Interruptions	>95	% Reduction	C
	250	period	


14. EUT TEST CURVES

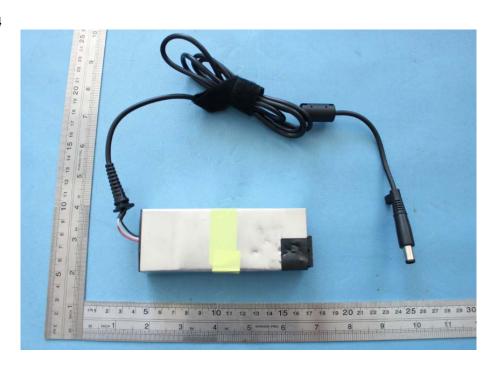


15. EUT PHOTOS

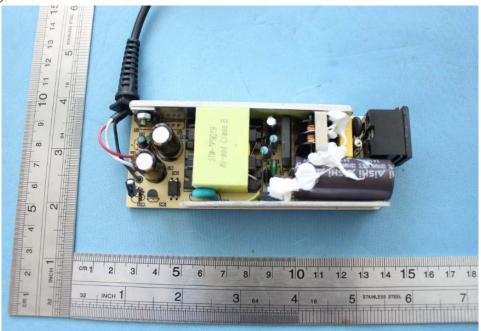
EUT Photo 1



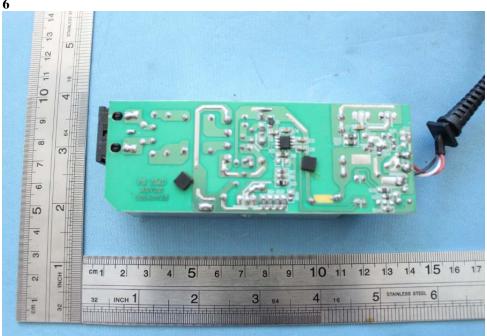
EUT Photo 2



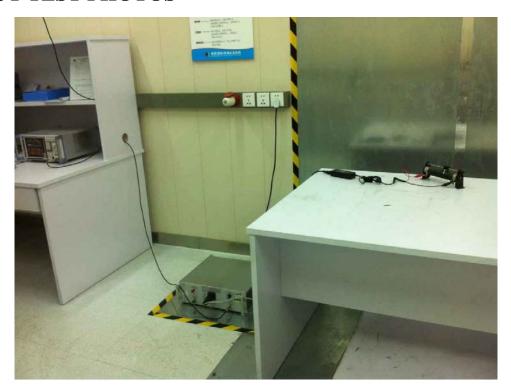
EUT Photo 3



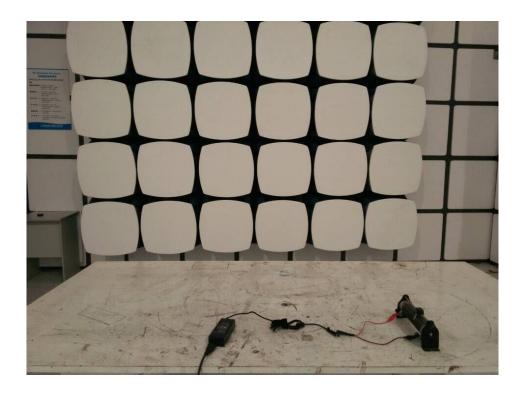
EUT Photo 4



EUT Photo 5



EUT Photo 6



16. EUT TEST PHOTOS

******** END OF REPORT *******