Plasma Kinetics

RESPONSIBLE, RENEWABLE, ENERGY SYSTEMS

Energy Transport

Problem

- \$24 Billion Hydrogen Market needs a safe and cost-effective storage and distribution of energy.
 - Current clean energy storage and distribution methods are complex or costly:
 - Battery Storage
 - Expensive
 - Not recycled & creates toxic waste
 - Heavy and potentially flammable
 - Traditional Hydrogen Storage
 - Compressed to 3,000 10,000 (200-700 bar)
 - Cooled to -423 °F (-252 °C)
 - Potentially flammable or explosive
 - Chemical Hydrogen Storage
 - Ammonia
 - Compressed and stored at 160 psi (11 bar)
 - · Synthesis/cracking is costly
 - Methanol:
 - · Synthesis/cracking is costly
 - · Potentially flammable

Solution

- No pressure or cooling needed
- No risk of fire or explosion
- No transportation restrictions
- Lower cost than batteries
- Lower cost to ship hydrogen
- 1000 kg of H₂ per 20 ft container bulk load

Light Activated Solid-state 1000 kg H₂ 20 ft Container with 70 x 17 H₂ kg Canisters bulk loaded

Solution

- Hydrogen is absorbed from multiple sources:
 - Wind/Solar

CO

 H_2

 H_2O

Total

Electrolysis

Hydrogen from flue gases

- ▶ Temperatures 20 to 400°C
- Pressures 1 to 40 bar

6.03

64.35

0.58

100

 \triangleright CO₂ concentration up to 30% Molar Mass

Electro-Reformer Prototype Syngas Post H₂O Condensation Constituents %Mol %Mass Gas Sms3/h Kg/h CH₄ 0.07 0.08 0.04 0.03 28.97 15.8 29.23 CO_2 80.43

10.66

8.17

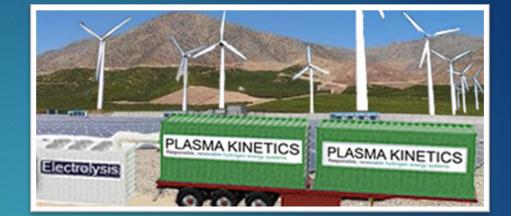
0.66

100

3.29

35.09

0.32


54.54

3.87

2.97

0.24

36.34

Results

- Thousands of containers on a single ship without modification or risk.
- Containerized shipments allow immediate distribution onto inland waterway, truck or rail transportation at destination port.
- No need for compression, decompression, specialized ships, or certifications.
- Hydrogen shipments of any size, at any time, reduces logistics and increases revenue.

7005 containers of hydrogen 1215 kg H₂ each¹ 10038 containers of hydrogen 1000 kg H₂ each¹ 0.01 μm t (2024) which enables an H₂ energy capacity of >1500 Wh/l¹

Enough energy to power 12.000 homes for 1 full year Enough energy to allow large trucks to go 150.000.000 km

Market Opportunity

Global H₂ market is expected to reach USD 24.5B by 2027.
 Allied Market Research

- Global H₂ Storage market will reach USD 992M in 2026.
 Prescient and Strategic Intelligence
- Solid H₂ storage will be the most lucrative segment by 2027.
 Allied Market Research
- Canisters can be directly implemented in trucks, ships, rail, VTOL aircraft and grid stabilization.
- PacifiCorp reports USD 2B annually would be saved with clean energy over-generation management. – PacifiCorp
- There are 20.5 million intermodal containers world-wide.

Market Opportunity

Hydrogen generation is USD 121B market.

- Grand View Research
- 95% of the 70 million metric tons of H₂ produced annually is gray hydrogen and over 70% of gray hydrogen is produced from natural gas which yields 10 kg of CO₂ per kg of H₂. Blue H₂ yields 2 to 5 kg of CO₂ per kg H₂. Green hydrogen from solar and wind can be carbon free but needs cost effective storage.

- Center for Strategic and International Studies.

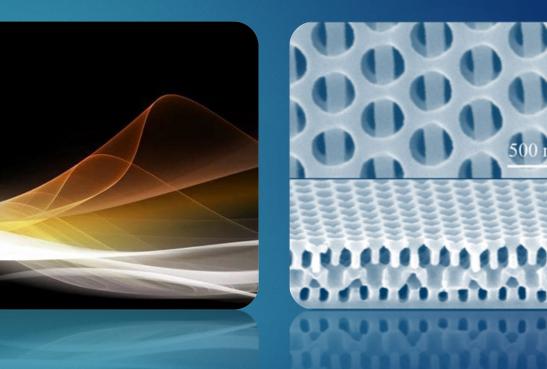
Light Activated Solid State hydrogen requires no energy to store the hydrogen, is less than 50% the cost of batteries, and approximates the cost of compressed or liquid storage without the energy cost of compression or cooling, fire risk.

Business Model

- Build:
 - Real-world hydrogen storage and transport application prototypes.
 - Pre-ordered hydrogen storage and transport products in concert with potential manufacturing licensee(s).
 - Relationships with hydrogen producers to store and ship hydrogen via container-based canisters.
 - Collection and distribution models based on shortlisted hydrogen producers and shortlisted countries.
 - Relationships with OEM truck manufactures and ship builders to implement distributed hydrogen directly from canisters without the need for compressed or liquid refueling stations.

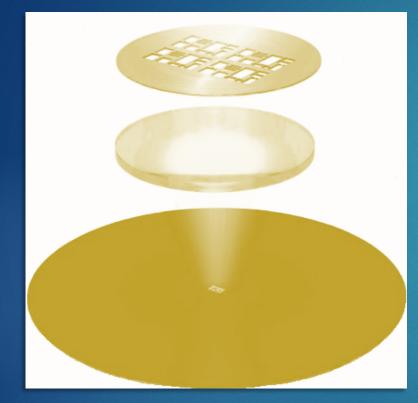
License:

Technology for H₂ producers (bio-gasification, syngas, wind and solar) and end-users (automotive, aerospace and marine, microgrids, oil refining, forklifts, airport tugs, home backup systems, data centers).

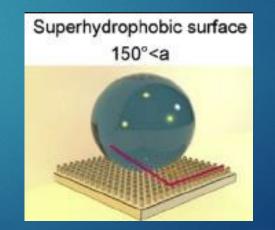


Technical – What is Nano-Photonic H₂ Thin Film?

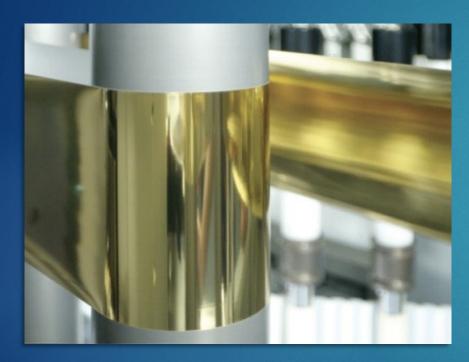
10


A 0.028 mm non-flammable thin film with a nano-structure which captures hydrogen without pressure and interacts with light to release hydrogen at desired pressure.

- 7 constituents (no rare-earths)
- PVD layering of materials
- NGF (nano-graphite-film) substrate
- High Temperature Shape Memory Alloy
- Post deposition nano-lithography
- Low CO₂ fabrication process

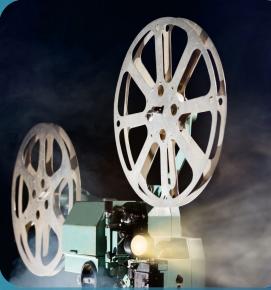

Technical Fabrication

Fabrication process is comparable to micro-chip production


- Nano graphite film substrate
- Layered PVD deposition
- Post-PVD lithographic nano-structures
- Superhydrophobic surface reduces wetting

Technical Overview

12


Light activated hydrogen storage film

- UL 94 V-0 non-flammable
- Tensile strength 35kg/cm
- Dielectric strength 8,000 volts
- Resistant to crepitation
- Heat resistant
- Rechargeable without pressure
- H_2 absorption in minutes
- Rechargeable over a hundred cycles
- Recyclable
- No rare-earth elements
- Non-toxic
- Resistant to contamination

Technical – How does it work?

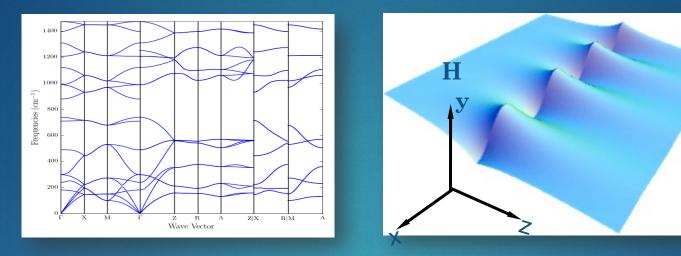
Like a movie projector or CD player. Light shines on the film or disc to release hydrogen.

13

Cassette Film

Canister Film

CD Film



Plasma Kinetics CD prototype

Technical Uniqueness

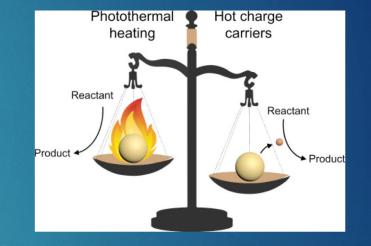
Angstroms thick shape memory alloy layers and metal hydride nanostructured layers provide a nano-photonic dielectric with black state forming constituents and a lower bond energy.

Photon absorption and polariton resonance support dissociative amplitude energies on photonic irradiation.

The result is safe, efficient, high-density, photo-reactive, solid-state hydrogen energy storage.

Recommended reading Mg-Based Thin Films as Model Systems in the Search for Optimal Hydrogen Storage Materials October 12, 2012, By Małgorzata Norek https://www.intechopen.com/chapters/40236

Technical Uniqueness


Slide from: DOE Hydrogen and Fuel Cells Program 2019 Annual Merit Review and Peer Evaluation Meeting https://www.hydrogen.energy.gov/pdfs/review19/st131 gennett 2019 o.pdf

Relevance: Task 3 Plasmonic 'on-demand' hydrogen release in hydrogen carriers

Plasmonic nanostructures concentrate photon energy and can produce heat via the localized surface plasmon resonance (LSPR)

- plasmonic nanostructures act to locally and temporally heat a limited region
- LSPR and its local intensity is determined by the material shape, size and crystallinity

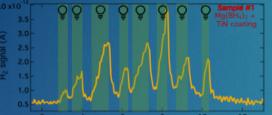
Plasmonic Hot Carriers - using low-energy photons, generate high energy electrons and holes

Utilize low energy light source to induce hydrogen sorption/desorption reactions and phase changes thermally and/or electrochemically

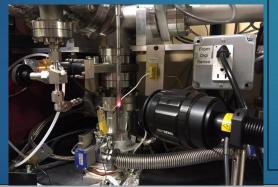
Pix from: https://<u>www.differ.nl/vac</u> ancies/internship-nea

NATIONAL RENEWABLE ENERGY LABORATORY

Technical Uniqueness

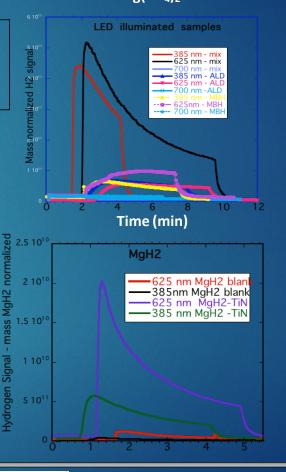

Slide from: DOE Hydrogen and Fuel Cells Program 2019 Annual Merit Review and Peer Evaluation Meeting https://www.hydrogen.energy.gov/pdfs/review19/st131 gennett 2019 o.pdf

Accomplishment: Plasmonic 'on-demand' hydrogen release


Hydrogen Desorption using Photons – $Mg(BH_4)_2$ and MgH_2 $Mg(BH_4)_2$

Mix: 20 nm TiN with $Mg(BH_4)_2$ or MgH_2 ALD: Atomic layer deposition of TiN on $Mg(BH_4)_2$ MBH: $Mg(BH_4)_2$

LEDs: 385 nm, 625 nm, 700 nm

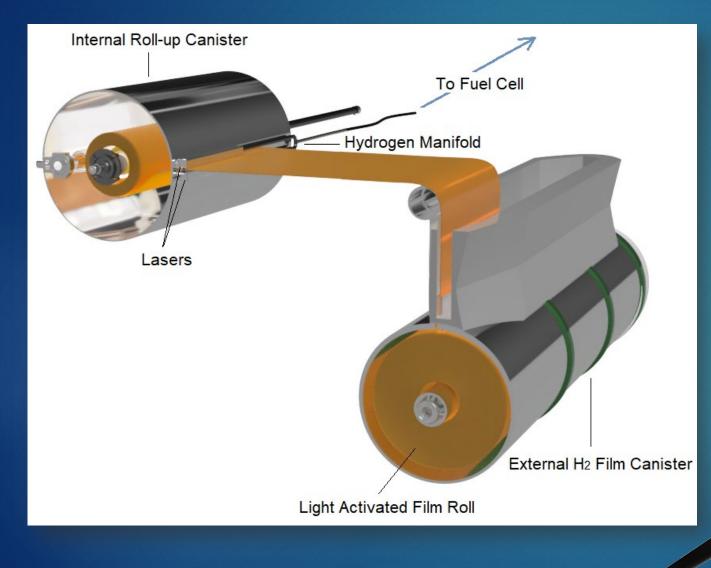


- 700 nm no hydrogen evolution
- 625 nm (plasmonic heating) only H₂ and B₂H₆ observed
- 385 nm (hot carrier)
 - H₂, B₂H₆ and possibly B₃H₈, and B₂H₇ observed

Preliminary Indications:

Non-optimized

625 nm – thermal degradation
385 nm – electrochemical reaction
Dual illumination and *in-situ* studies underway


Lawrence Livermore National Laboratory

NATIONAL RENEWABLE ENERGY LABORATORY

Technology Implementation

• Film rolls between canisters and is exposed to light to release the hydrogen.

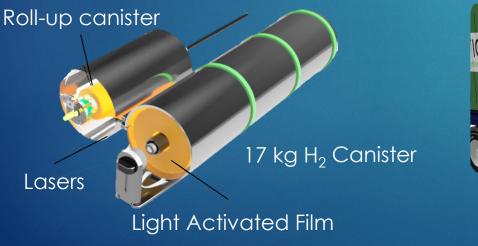
17

 Storage canister is removable for recharge. The laser canister remains with the application.

Technical Storage and Release

17Kg H_2 Canister Volume Weight • 0.04 m³/kg H_2 • 400

- 0.00124 m³/kWh •
- 806 kWh/m³
- 400 kg system wt. 33.4 kg/kg H_2
- 1.0 kg/kWh


H₂ Charging Hood

- No pressure
- Multiple canisters
- No fire risk

H₂ Charged in 20ft Container

- 70 canisters (1000 Kg) charged
- Charging time 30 60 minutes

Technology Benefits and Value

▶Non-flammable

Quick recharging

No pressure

Long shelf-life

Multiple fuel sources

Minimal Infrastructure

Economica Transportable Quiet Zero Carbon Distributable

Safe

Technology Comparison

20

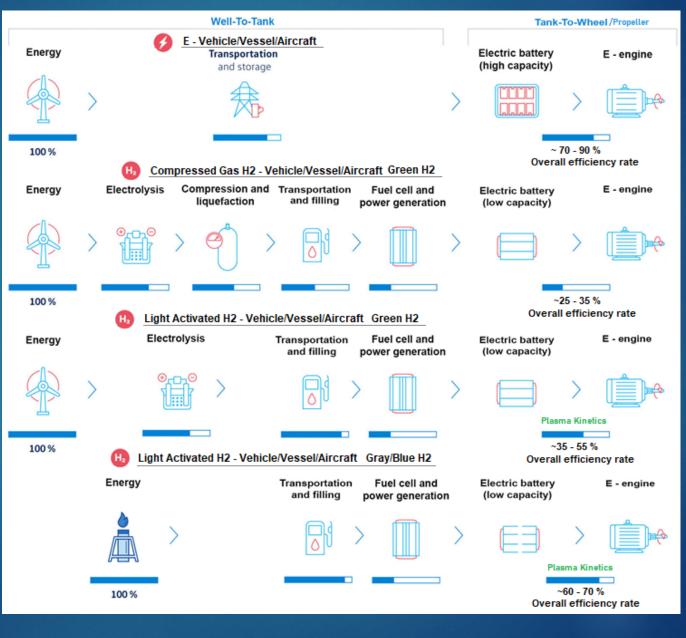
LAH Energy Density \approx 350 bar compressed H₂ without pressure

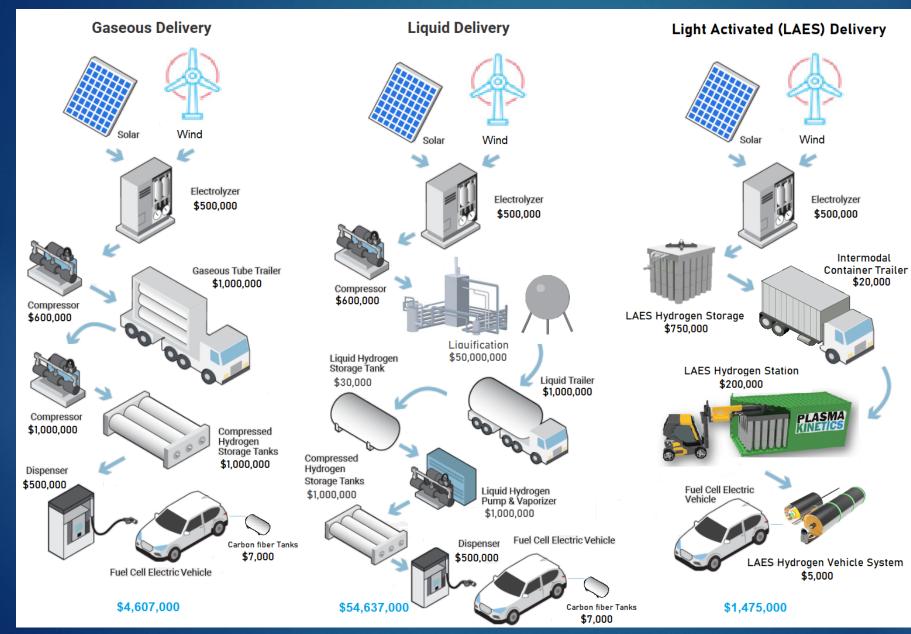
≈ 350 Bar Compressed Hydrogen

Technical – A comparison in trucking

Light Activated hydrogen truck

- Vehicle cost 180.000 €
- Not Compressed
- Fuel cost 0,15 €/kWh (save 20.000 €/year)
- CO₂ 24k kg/year (save 40.000 kg/year)
- No refueling Infrastructure^{*} (save 2,2M €/station)
- Non-flammable
- Same canisters for regional/local delivery
- Same canisters for use in trucks


Compressed gas hydrogen truck

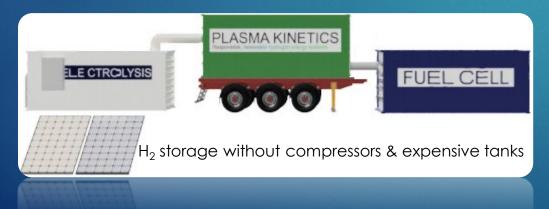

- Vehicle cost 160.000 €
- Compressed to 350 Bar
- Fuel cost 0,29 €/kWh
- CO_2 68k kg/year
- Refueling infrastructure 2,3M €/station
- Flammable
- Pipeline or custom truck for local delivery
- Carbon fiber tanks required for use in trucks

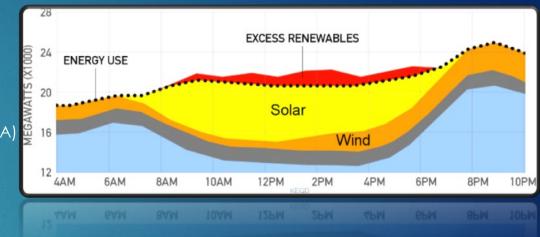
Technical – A Comparison of Energy Efficiency

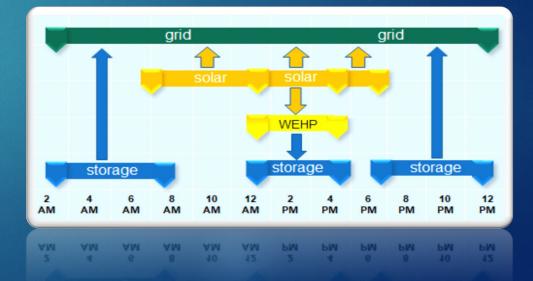
Plasma Kinetics Light Activated H₂ storage approximates battery efficiency.

Technical – A Comparison of Infrastructure Cost

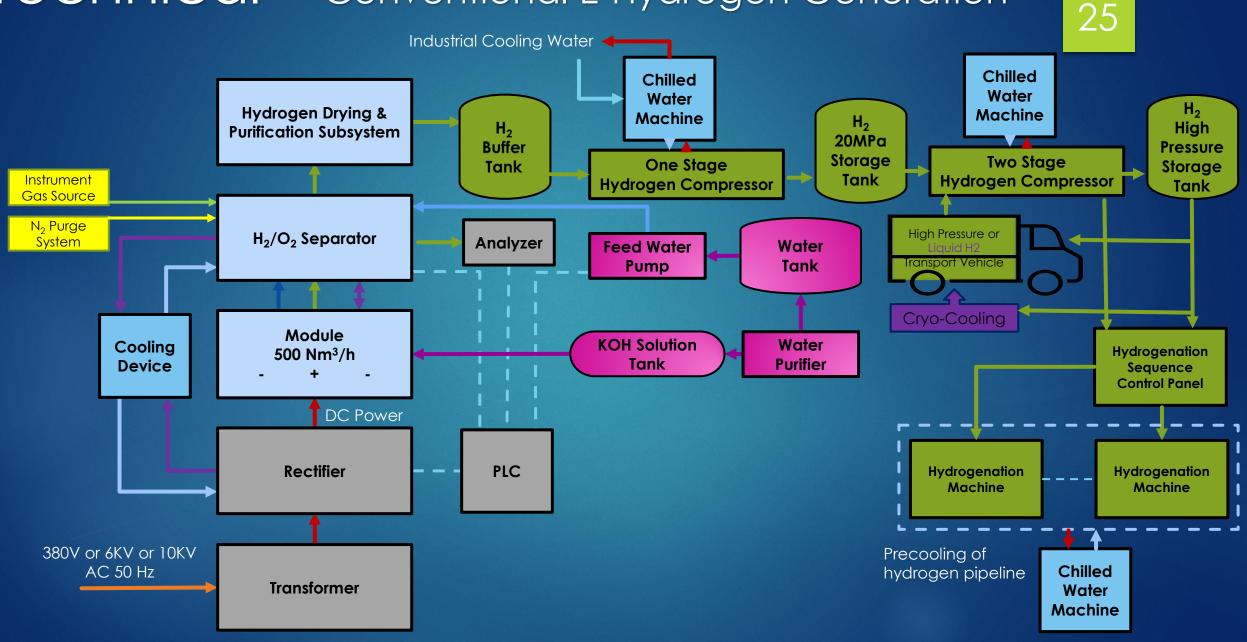
23

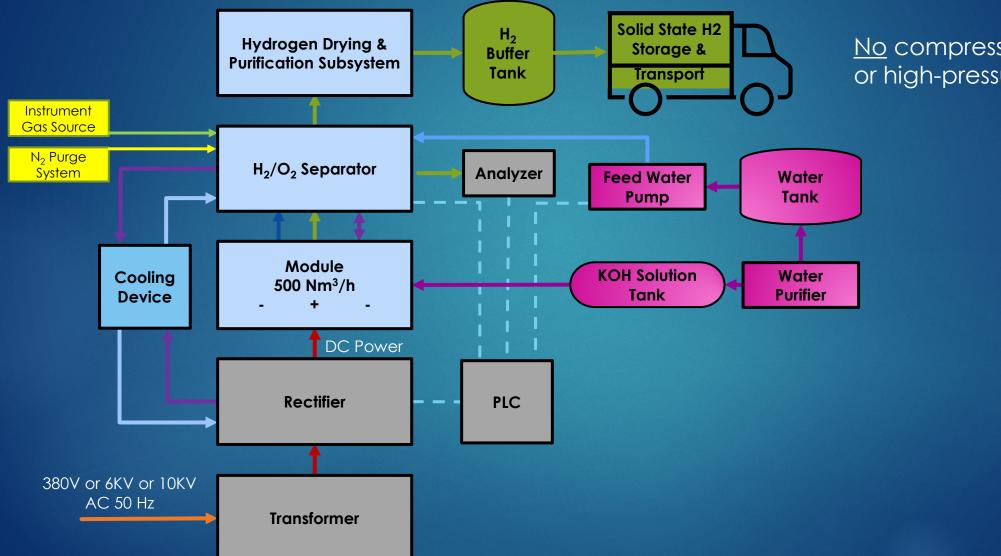

Compressed hydrogen infrastructure is 3x more expensive. Liquid hydrogen is 35x more expensive.


Conventional fueling stations are 10x more expensive than Plasma Kinetics stations.

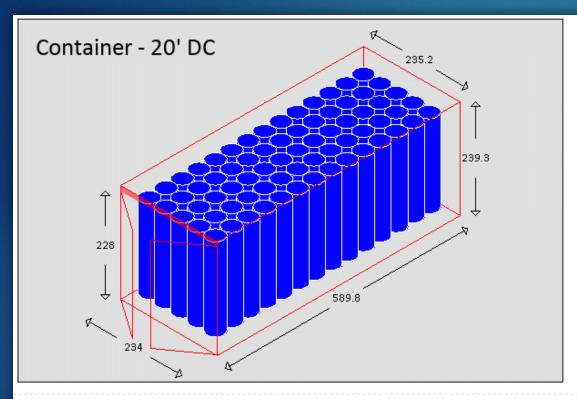

Problem Wind/Solar Overproduction

- ▶ Wind and Solar Farms need a way to provide energy 24/7.
 - 502 federally funded and 416 Utility-Scale Solar Projects in the U.S.
 - 404 GWh of Solar/Wind Energy produced in 2020 with a 20% oversupply during daylight hours.
 US Energy Information Administration (EIA)
 - PacifiCorp reports \$2 Billion annually would be saved with over generation management.


Solution LAH Storage



Technical – Conventional E-Hydrogen Generation



Technical – Solid-state E-Hydrogen Generation

No compression, cooling or high-pressure storage.

Technical - Solid-state Hydrogen Canisters/Container

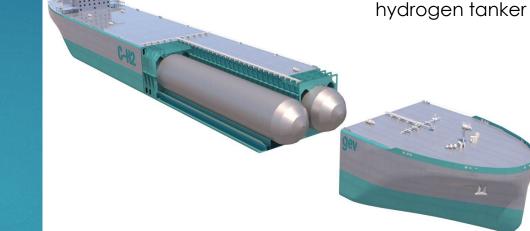
Full loading list

Equipment : Container - 20' DC	Equipment	:	Container	-	20'	DC
--------------------------------	-----------	---	-----------	---	-----	----

Cargo name	Pieces loading	Pieces total
H2 Canisters	70	70

27

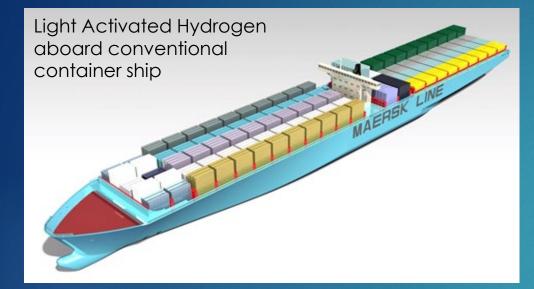
	Used	Free	Maximum
Weight (payload) in KG	28000	200	28200
Cubic Meter	22.4	10.796	33.196
Floor lenght centimeter	560	29.8	589.8
Floor sqaure meter	11.2	2.672	13.872
Pieces	70		


(1215 kg stored, minimum 850 kg usable)

			(7005 containers per ship)				
Group	Equipment name	Name	PCS	Weight total	Lenght	Width	Height
1	Container - 20' DC	H2 Canisters	70	28000	40	40	200

Light Activated Hydrogen aboard conventional container ship

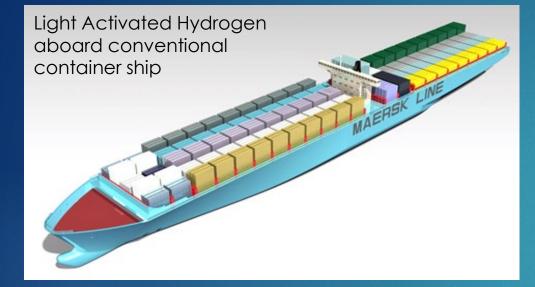
- Not Compressed
- 1 to 9.999 partial 1-ton shipments
- Partial deliveries at multiple ports
- Existing infrastructure to load/unload
- No port storage tanks required
- Non-flammable
- Same container for regional/local delivery
- $3,5k \text{ Kg CO}_2 \text{ per ton of H}_2 (50\% \text{ smr without compression})$
- Investment according H_2 production



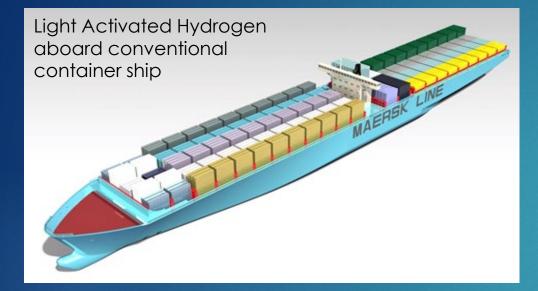
- 2,000 Tons of Hydrogen
- Compressed* to 250 Bar
- No partial shipments
- Single destination
- Custom Infrastructure Compress/decompress to load/unload

28

Compressed gas


- Port storage tanks required
- Flammable
- Pipeline or custom truck for local delivery
- 6,1k Kg CO₂ per ton of H_2 (50% smr & compression)
- 250M € Investment

- 10,000 Tons of Hydrogen
- Not Compressed
- 1 to 9.999 partial 1-ton shipments
- Partial deliveries at multiple ports
- Existing infrastructure to load/unload
- No port storage tanks required
- Non-flammable
- Same container for regional/local delivery
- 3,5k Kg CO₂ per ton of H_2 (50% smr without compression)
- Investment according H_2 production


- 90 Tons of Hydrogen in 1250 Cm of volume
- Liquefied* to -253° C/1bar
- No partial shipments
- Single destination
- Custom Infrastructure cooling/heating to load/unload
- Port Liquefied Hydrogen Receiving Terminal
- Flammable
- Pipeline or custom truck for local delivery
- 6,1k Kg CO₂ per ton of H₂(50% smr & compression)
- Costly Investment for infrastructures

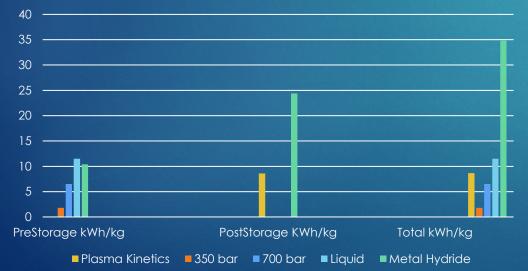
- 10,000 Tons of Hydrogen
- Not Compressed
- 1 to 9.999 partial 1-ton shipments
- Partial deliveries at multiple ports
- Existing infrastructure to load/unload
- No port storage tanks required
- Non-flammable
- Same container for regional/local delivery
- $3,5k \text{ Kg CO}_2 \text{ per ton of H}_2 (50\% \text{ smr without compression})$
- Investment according H₂ production

- 580 Tons of Hydrogen in 3500 Tons. of Methanol
- Not Compressed
- Yes partial shipments
- Partial deliveries at multiple ports
- Existing infrastructure to load/unload
- Port storage tanks required
- Highly Flammable Toxic
- Pipeline or custom truck for local delivery
- 6,0k Kg CO₂ per ton of H₂ (50% smr)
- Costly Investment for infrastructures

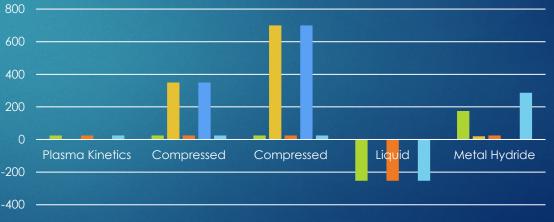
- 10,000 Tons of Hydrogen
- Not Compressed
- 1 to 9.999 partial 1-ton shipments
- Partial deliveries at multiple ports
- Existing infrastructure to load/unload
- No port storage tanks required
- Non-flammable
- Same container for regional/local delivery
- 3,5k Kg CO₂ per ton of H₂ (50% smr without compression)
- Investment according H₂ production

- 9,360 Tons of Hydrogen for 60.000 Tons of Ammonia
- Compressed to 11 bar or cooling -33 °C
- No partial shipments
- Single destination
- Custom Infrastructure Compress/decompress to load/unload
- Port storage tanks required
- Flammable -Toxic
- Pipeline or custom truck for local delivery
- 5,1k Kg CO₂ per ton of H₂ (50% smr & compression)
- Costly Investment for infrastructures

Technical - Solid-state Hydrogen Storage Comparison

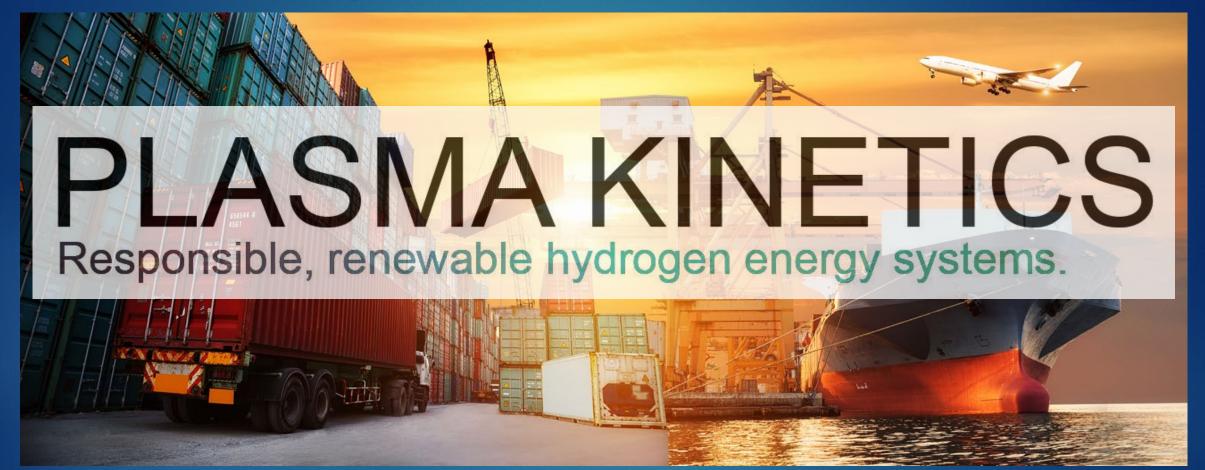

32

Light Activated has lower energy requirement than Liquid hydrogen and the lowest "up-front" energy requirement.


Light Activated is at ambient temperature and atmospheric pressure at all times.

Storage/Feature	Plasma Kinetics	Compressed	Liquid	Metal Hydride
Temperature K _d	25°C	25°C	-252.87°C	175+°C
Pressure K _d	1 bar	350-700 bar	1 bar	20 bar
Energy K _d	0.05 kWh/kg	1.8-6.5 kWh/kg	11.5 kWh/kg	10.4 kWh/kg
Temp/Press stored	25°C/1 bar	25°C/350-700 bar	–252.87°C/1bar	25°C/1 bar
Temperature α	25°C	25°C	-252.87°C	287+°C
Energy α	8.6 kWh/kg	0 kWh/kg	0 kWh/kg	24.4 kWh/kg
Energy Total	8.7 kWh/kg	1.8-6.5 kWh/kg	11.5 kWh/kg	34.8 kWh/kg
Storage Rate	1 kg/min	1 kg/min	1 kg/min	0.1 kg/min
Flammability	Non-Flammable	Flammable	Flammable	Flammable
Explosive in air	Non-Explosive	Explosive	Explosive	Non-Explosive
Stored Molecule	MgHX Hybrid	H ₂ Covalent	H ₂ Covalent	MgH_2 Covalent

Storage Energy Comparison


Hydrogen Store Temp/Pressure Requirment

■Temp Kd (°C) ■ Press Kd bar ■Temp Stored (°C) ■ Press Stored bar ■Temp a (°C)

Thank you!

20343 N. Hayden Rd 105-152 Scottsdale, AZ 85255 USA+1 480-258-1100info@plasmakinetics.com

Thank you!

INFO@PLASMAKINETICS.COM