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Abstract5

The random cash flows of asset-backed securities (ABS) depend critically on the6

time-to-event distribution of the individual, securitized assets. Estimating this distri-7

bution has historically been challenged by limited data. Recent regulatory changes8

reversed this, however, and asset-level ABS data is now publicly available to investors9

for the first time. The idiosyncrasies of this ABS data present new difficulties in es-10

timating the loan-level lifetime distribution due to its discrete-time structure, finite11

support, and exposure to left-truncation. We propose a parametric framework for es-12

timating the loan-level lifetime distribution while leaving the left-truncation time dis-13

tribution unspecified. Through theorems developed to identify the stationary points14

of the likelihood, we significantly simplify a complex multiparameter constrained op-15

timization problem. These stationary points, shown to be the roots of an estimating16

equation, enable asymptotic normality and large-sample inference to follow. Assuming17

a geometric distribution combined with an actuarial policy limit, we derive closed-form18

maximum likelihood estimates. These theoretical results are further generalized to ac-19

commodate right-censoring and validated through numerical and simulation studies.20

We then estimate the loan-level lifetime distributions for two Ally Auto Receivables21

Trust ABS bonds. The efficient and accurate estimates we find for these bonds offer22

valuable insights to structured finance investors.23

Keywords: Asset-level disclosures, Incomplete data, Reg AB II, Risk management,24

Survival analysis25

1 Introduction26

If we treat financial engineering as a subclass of engineering more broadly, it is not un-27

reasonable to argue that securitization is a marvel that would rival any bridge, railway, or28
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expressway. Consider the financial dilemma of an automobile manufacturer. The manufac-29

turer has the main objective of selling cars. A hurdle to most potential consumers, however,30

is the car’s prohibitive cost. Thus, most consumers will require financing in the form of an31

auto loan, and auto financiers or lenders (e.g., Ally Bank) step in to provide it. Eventually,32

after writing many auto loans, the lender will run into a duration cash flow mismatch on33

their balance sheet. The lender desires cash immediately to write more loans, but the ma-34

jority of its assets are previously written, long-dated (e.g., 72-month) auto loans. Investors,35

conversely, have cash to invest and seek to earn returns over a longer horizon. Insert the36

asset-backed security (ABS) to make this connection, just as a bridge, railway, or expressway37

connects allied geographic regions with a shared economic interest.38

Legally, the lender will collect paying consumer auto loans into a separate entity or39

trust (e.g., AART, 2017). This trust removes the direct financial interest of the lender from40

the performance of the individual auto loans, and it simultaneously removes any financial41

dependence of prospective investors on the lender’s financial health. Both legal separations42

benefit the auto financier; the former creates a tradeable asset that can be marketed to43

investors, and the latter achieves a lower financing cost than a traditional corporate bond.44

For investors, this collection of loans into an ABS trust (henceforth, ABS), is now capable45

of generating a large, long duration monthly cash flow that may be bought and sold on the46

open market as an investment security (hence the name, securitization).47

It is informative to visualize the investor level cash flows of an ABS. Each ABS will48

contain n consumer auto loans of various ages, xi, 1 ≤ i ≤ n. Each loan at age xi, Li(xi),49

1 ≤ i ≤ n, will then produce a monthly cash flow, either a loan payment, a prepayment, or50

a zero in the event of default or scheduled termination. For any month j the securitization51

is active, 1 ≤ j ≤ s, a column-wise sum of these loan-level cash flows, CFi(xi+j), 1 ≤ i ≤ n,52

1 ≤ j ≤ s, supports the cash flow that is ultimately returned to investors. This total investor53

cash flow,
∑

iCFi(xi+1) feeds a payment waterfall, denoted by fw. The waterfall allows the54

ABS to be marketed to investors with differing risk appetites via its tranches (AART, 2017).55
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Loan (Age) Month 1 Month 2 . . . Month s

L1(x1) CF1(x1+1) CF1(x1+2) . . . CF1(x1+s)

L2(x2) CF2(x2+1) CF2(x2+2) . . . CF2(x2+s)
...

...
...

...
...

Ln(xn) CFn(xn+1) CFn(xn+2) . . . CFn(xn+s)

ABS CF fw

( n∑
i=1

CFi(xi+1)

)
fw

( n∑
i=1

CFi(xi+2)

)
. . . fw

( n∑
i=1

CFi(xi+s)

)

Table 1: Visualizing ABS Investor Cash Flows. The monthly investor level cash flow, ABS

CF, is generated by a sum of the loan-level cash flows, denoted CFi(xi+j) for consumer loan i, at

initial age xi, L(xi), 1 ≤ i ≤ n, for month j, 1 ≤ j ≤ s. The column-wise sum total loan-level

cash flow,
∑

iCFi(xi+j) at month j is then fed into a payment waterfall, denoted fw. Given this,

investors often desire to model the time-to-termination random variable of the individual loans.

This monthly process repeats until the ABS is wound down, which we assume is s total56

months. This ABS investor cash flow generation process is summarized in Table 1.57

Because the time-to-termination of each individual loan within an ABS is a random58

variable, the monthly investor ABS cash flow is a random variable. Hence, estimating the59

loan-level time-to-termination distribution is of significant interest to ABS investors (e.g.,60

Lautier et al., 2023b; Agarwal et al., 2024). Critical to this task is access to loan-level data,61

which has historically been limited. This lack of transparency in ABS was deemed unaccept-62

able after investors failed to anticipate higher than expected defaults for residential subprime63

mortgages packaged into ABS, triggering the 2007-2009 financial crisis (Mishkin, 2011). In64

response, regulators implemented several measures to improve transparency in financial mar-65

kets. These include the Securities and Exchange Commission’s (SEC) significant revisions66

to Regulation AB and new rules governing ABS disclosures (Securities and Exchange Com-67

mission, 2014). Notably, ABS issuers must now provide detailed loan-level data, including68

payment performance, on a monthly basis via the Electronic Data Gathering, Analysis, and69

Retrieval (EDGAR) system (Securities and Exchange Commission, 2016).70

This new, unprecedented public data access can inform the vital time-to-termination71

distribution estimation underpinning ABS cash flow modeling. Using this data is not with-72
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out its complexity, however. One major challenge is incomplete data, particularly in the73

form of left-truncation (Lautier et al., 2023a; Katcher et al., 2024). Beyond left-truncation,74

ABS loan data, like most financial loan data, also present challenges related to its discrete-75

time structure. While left-truncation in continuous time has been extensively studied (e.g.,76

Woodroofe, 1985; Tsai et al., 1987; Wang, 1989; Huang and Wang, 1995), the combination of77

left-truncation, discrete-time, and a known, finite support for the lifetime random variable78

remains relatively unexplored (Lautier et al., 2023a). Because this combination is neces-79

sary to accurately estimate and model the time-to-termination random variable for the ABS80

setting (see Section 2), it is important to contribute to this nascent line of work.81

Recent approaches have leveraged the finite, known support of the loan lifetime random82

variable to estimate each recoverable probability point mass in the distribution as a pa-83

rameter (Lautier et al., 2023a). This allows direct proofs that the classical nonparametric84

estimators of Woodroofe (1985) and Huang and Wang (1995) are simultaneously parametric85

maximum likelihood estimates (MLE) in this setting (Lautier et al., 2023a, 2024). It also86

yields completely specified asymptotic multivariate normal distributions with a diagonal co-87

variance structure for the vector of hazard rate estimators (Lautier et al., 2022, 2023a,b).88

A further benefit of this line of work is the assumption of a sample of fixed size n from a89

distribution formed after the impact of left-truncation, which more closely reflects the data90

generation process of loan-level data within an ABS pool (e.g., Lautier et al., 2023a). In91

contrast, classical treatments (e.g., Woodroofe, 1985) assumes a bivariate sample of size N ,92

from which a left truncated random sample of size n ≤ N is drawn. This is akin to investors93

unrealistically having access to all loans, including those not in the ABS. Additionally, Lau-94

tier et al. (2023a) impose no assumptions about the shape of the left-truncation random95

variable, making it less restrictive than methods that require a uniformity assumption (e.g.,96

length-biased sampling Asgharian et al., 2002; De Uña-Álvarez, 2004).97

Despite the aforementioned advances obtained by treating each probability point mass98

of the lifetime distribution as a parameter (Lautier et al., 2022, 2023a,b, 2024), alternatively99
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using a traditional parametric distribution with fewer parameters would offer distinctive ad-100

vantages. First, parametric distributions provide a natural smoothing, whereas the approach101

of Lautier et al. (2023a) can yield zero estimates at some months in the recoverable space.102

Second, parametric forms allow for the incorporation of economic variables, facilitating an103

analysis of their impact on loan survival times. Finally, given the need for rapid decision-104

making in investment contexts, a parametric approach enables quick and concise estimates105

via a single parameter and its interval estimate.106

We thus present a novel parametric framework for analyzing left-truncated, discrete time-107

to-event data, with a particular focus on ABS data. We simplify a complex multidimensional108

constrained optimization problem into a single-parameter optimization (Theorem 3.1), sig-109

nificantly reducing computational complexity. This result is generalized to a vector of param-110

eters (Corollary 3.1.1) and provides asymptotically consistent M -estimators (e.g., van der111

Vaart, 1998), ensuring robust inference for lifetime distribution parameters. We further112

derive closed-form maximum likelihood estimates (MLE) for a policy limit geometric distri-113

bution (Klugman et al., 2012, §8.4, pg. 125). All results also accommodate right-censoring114

(Section 4). The proposed methods are validated numerically through simulation studies and115

applied to loan-level data from the ABS bonds AART (2017) and AART (2019). While the116

focus is ABS, the framework is also applicable where incomplete, discrete time-to-event data117

is prevalent, such as healthcare, finance, engineering, telecommunication, and insurance.118

The paper proceeds as follows. Section 2 establishes preliminaries within the context of119

the ABS application. Section 3 states the results under left-truncation. It is the theoretical120

foundation of this work and ABS setting. Section 4 then generalizes all of the results of121

Section 3 to the incomplete data case of both left-truncation and right-censoring. Section 5122

includes a numerical verification of all results and a set of robustness simulation studies.123

Section 6 is a complete application of our methods to estimating the time-to-termination124

loan-level random variable for the consumer automobile ABS bonds AART (2017) and AART125

(2019), including how such estimates may be utilized by ABS investors. The paper concludes126
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in Section 7. The Supplemental Material provides complete proofs of all major results and127

references to support likelihood construction, implementation, and simulation. For reference,128

all data and replication code is publicly available at [...(anonymized)].129

2 Asset-Backed Security Data130

We now introduce notation and assumptions within the context of estimating the parameters131

of the loan-level time-to-termination random variable via ABS data. We denote this time-to-132

event random variable by X. Because the lifetime of interest is a financial instrument with133

monthly payments, most commonly a loan, it is a discrete random variable over N. Further,134

the amortization schedule is known at contract signing, so X is known to have a finite upper135

bound, denoted by the nonrandom ω ∈ N. For example, for a 72-month auto loan, ω = 72.136

Left-truncation manifests in the data generating process of ABS loan lifetimes through137

the lengthy legal machinations of its formation. It can take several years for this process to138

complete (known colloquially as a warehousing period) because it takes time for ABS pools139

to amass the tens of thousands of loans they commonly contain (e.g., AART, 2017). It is140

thus possible loans will terminate during the warehousing period and never be observed by141

ABS investors. Hence, loan-level time-to-event data present in an ABS is conditional on142

survival beyond a second time-to-event random variable, denoted Y . The random variable143

Y represents the random number of months from loan origination to the first month an ABS144

trust begins paying investors. In other words, we observe X if and only if X ≥ Y . That is,145

Y is a left-truncation random variable for the loan lifetime random variable, X.146

We now formalize the support of X and Y . As with X, Y is a discrete random variable147

with a known, finite support. Loans that will eventually be included in the ABS will be148

originated for an observable total of nonrandom m ∈ N months (Lautier et al., 2023b).149

Once the trust closes to new loans, there will be a second observable period of nonrandom150

∆ ∈ N ∪ {0} months that the ABS is marketed to investors. Formally, then, the left-151
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truncation random variable, Y , is finite, discrete with support v ∈ V ≡ {∆+1, . . . ,∆+m}.152

Because we observe X if and only if X ≥ Y , X is a finite, discrete random variable with153

support u ∈ U ≡ {∆+ 1, . . . , ω} (it is assumed ω ≥ ∆+m). As a minor technical point, X154

may not be completely recoverable (Woodroofe, 1985; Lautier et al., 2023a) (i.e., if ∆ ≥ 1).155

We further assume X and Y are independent, which is vital to the subsequent analysis156

and thus warrants discussion. The length of the warehousing period of ABS (i.e., Y ) is157

generally dictated by the financing needs of the lender and prevailing market rates. In other158

words, a lender relies on ABS to exchange long-dated assets for capital now to write more159

loans. This need and its current cost will supersede any changes to the loan lifetime random160

variable, X. Furthermore, it is the legal purpose of ABS to separate a financier’s vested161

interest in individual loan performance (i.e., X) from current market operations. Hence, we162

find the assumed independence of X and Y justifiable within an application to ABS data.163

For greater discussion, see Lautier et al. (2023b). More broadly, the independence betweenX164

and Y is sometimes supplemented by assuming Y is a uniform random variable (i.e., length-165

biased sampling) (e.g., Asgharian et al., 2002; De Uña-Álvarez, 2004). Loan originations are166

often cyclical (e.g., auto markets (Lautier et al., 2023a)) and not uniform throughout the167

year, however, and so the flexibility of Y we allow for herein is further motivated by the ABS168

application. This left-truncation setting is our theoretical foundation (see Section 3).169

Beyond left-truncation, estimating the parameters of X from ABS data in practice will170

likely also require accounting for random right-censoring. ABS investors interested in mod-171

eling cash flows from an active ABS bond, for example, will need to construct estimates for172

X from many observations known to still be making ongoing monthly payments with yet un-173

known termination times. This is the incomplete data setting of right-censoring, and it will174

complicate the left-truncation setting further (Lautier et al., 2023b). To formalize, denote175

ε ∈ N, m+∆ ≤ ε ≤ m+ω to be the present time of the data generation process of an active176

ABS. If ε < m+ω, then random right-censoring is present in the data (Lautier et al., 2023b).177

Specifically, the exact termination time is observed if and only if X ≤ Y + ε− (m+∆+ 1).178
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In other words, if we define the random variable C = Y + ε − (m + ∆ + 1) ≡ Y + τ , then179

the random right-censoring time is a linear shift of Y . This is convenient because C is a180

linear function of Y and C ≥ Y almost surely (Lautier et al., 2023b), and so C is trivially181

independent of X. The right-censoring and left-truncation results reside in Section 4.182

The final important preliminary point is that we assume throughout that X is dependent183

on the parameter, p ∈ P , where P is a convex interval of R. (The parameter p ∈ P need not184

be a scalar, though we assume so at present for ease of exposition.) Therefore, we focus all185

remaining effort on accurately estimating p from ABS data (i.e., subject to left-truncation,186

discrete-time, a known, finite support, and potentially right-censoring). We desire to estimate187

p because it will completely specify X, and it is from X that the random ABS cash flows188

may be modeled (recall Table 1 or see Lautier et al. (2023b)). Furthermore, efficient and189

accurate estimation of p will help ABS investors gain rapid insights into the performance of190

the individual loans. These insights will help with investment allocation decisions and risk191

assessment (see Section 6). Our methods begin with left-truncation in Section 3.192

3 Left-Truncation193

We consider first the left-truncation ABS setting under the notation introduced in Section 2.194

Denote the probability mass function (pmf) of X by f(u | p), u ∈ U , p ∈ P and denote195

the pmf of Y by g(v), v ∈ V . The distribution Y is itself a parametric distribution, where196

each point of the probability point mass function, g(v), v ∈ V , may be represented by a197

parameter, denoted gv, v ∈ V , 0 ≤ gv ≤ 1, under the constraint
∑

V gv = 1. For convenience198

of notation, therefore, we will henceforth drop the g(v) representation and use only gv, v ∈ V .199

By the assumed independence of X and Y , we obtain the conditional bivariate pmf,200

h∗(u, v | p) = Pr(X = u, Y = v | Y ≤ X, p) =
f(u | p)gv

α
, p ∈ P , (u, v) ∈ A, (1)
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where201

α ≡ Pr(Y ≤ X) =
ω∑

u=∆+1

f(u | p)
(min(u,∆+m)∑

v=∆+1

gv

)
=

∆+m∑
v=∆+1

gv

( ω∑
u=v

f(u | p)
)
, (2)

and A = {U × V : v ≤ u}. The distribution h∗ is a parametric distribution with complete202

parameter vector Θ = (p, g)⊤, where p ∈ P , g = (g∆+1, . . . , g∆+m)
⊤ ⊂ G, and G is an203

m-dimensional hypercube over the unit interval, I = (0, 1).204

Given an independent and identically distributed (i.i.d.) sample of pairs of left-truncated205

observations, Sn = {(Xi, Yi)}1≤i≤n, it is of interest to estimate the parameters of h∗. From206

(1) and (2), the likelihood is207

L(Θ | Sn) =
∆+m∏
v=∆+1

ω∏
u=v

[
f(u | p)gv

α

]∑n
i=1 1(Xi,Yi)=(u,v)

. (3)

If we denote the convex subset,208

C =

{
P × G :

∑
v∈V

gv = 1

}
⊂ P × G,

then we seek209

sup
p,g∈C

L(Θ | Sn). (4)

An approach to solve (4) without the assistance of computational programming is not imme-210

diate. Further, as the parameter space grows in dimension, performing the multidimensional211

constrained optimization numerically can become computationally demanding, complex in212

its implementation, and even potentially unfeasible (see, for example, the field of large-scale213

linearly constrained optimization problems, (e.g., Murtagh and Saunders, 1978)). We now214

show (4) may be reduced to a single-parameter optimization problem.215

Theorem 3.1 (Stationary points of L over C). Let Sn be an i.i.d. sample of left-truncated216
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observations from the distribution h∗(u, v | p) defined in (1) such that217

ĥ•v :=
ω∑
u=v

(
1

n

n∑
i=1

1(Xi,Yi)=(u,v)

)
> 0, and ĥu• :=

min(u,∆+m)∑
v=∆+1

(
1

n

n∑
i=1

1(Xi,Yi)=(u,v)

)
> 0.

Further assume ∂f(u | p)/∂p exists and is finite for all p ∈ P, u ∈ U . Then the stationary218

points of L(Θ | Sn) are219

ĝv =
ĥ•v

S(v | p̂)

[ ∆+m∑
k=∆+1

ĥ•k

S(k | p̂)

]−1

, v ∈ V , (5)

where S(·) denotes the survival function,220

S(x | p) := Pr(X ≥ x | p) =
ω∑
u=x

f(u | p), (6)

and p̂ is any p ∈ P̂ ⊂ P, where221

P̂ =

{ ∆+m∑
v=∆+1

(
ĥ•v∑ω

u=v f(u | p)

)( ω∑
u=v

∂

∂p
f(u | p)

)
=

∆+m∑
v=∆+1

ω∑
u=v

ĥuv
f(u | p)

∂

∂p
f(u | p)

}
, (7)

and222

ĥuv =
1

n

n∑
i=1

1(Xi,Yi)=(u,v).

Further, p̂ ∈ C and ĝv ∈ C for all v ∈ V.223

Proof. See the Supplemental Material, Section A.1.224

Remark. The conditions ĥ•v > 0 (i.e., each empirical “row sum” of A > 0) and ĥu• > 0225

(i.e., each empirical “column sum” of A > 0) in Theorem 3.1 are necessary to avoid vacuous226

identifiability concerns for the boundaries of A.227

The solution space (7) is a general form of an estimator for the parameter p ∈ P under228

the setting of Theorem 3.1 not yet derived to our knowledge. Conveniently, it, along with the229

closed-form solutions (5), reduce the multidimensional problem of (4) to a single dimension230
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problem. Aside from reducing the problem’s computational complexity, it can also reduce231

computational demands, especially as the dimension of g grows. A large parametric space for232

g is common when the lifetime of interest is consumer automobile monthly loan payments233

from ABS data. For example, a subset of data from the ABS bond AART (2017) that234

we consider in Section 6 generates V = {4, . . . , 24}, which requires us to estimate 21 total235

parameters (including p). Without the dimension reduction of Theorem 3.1, solving (4) for236

this data set would not be a trivial computational task.237

It may be desirable to allow f to depend on a finite, r-dimensional parameter vector p ≡238

(p1, . . . , pr)
⊤ ⊂ P , where r < (ω−∆) andP is an r-dimensional convex set of Rr. This allows239

for greater flexibility in modeling the lifetime distribution. In this setting, an equivalent yet240

more general form of the estimator (7) in Theorem 3.1 may also be found, and we now provide241

discussion for completeness. Before doing so, we establish the following preliminaries. Denote242

the pmf of X by f(u | p), u ∈ A. The equivalent notation for the conditional bivariate pmf in243

(1) then becomes h∗(u, v | p), (u, v) ∈ A. Let S ′
n = {(Xi, Yi)}1≤i≤n be an i.i.d. sample of left-244

truncated observations from the distribution h∗(u, v | p). The multidimensional, constrained245

optimization problem is then to find supL(g,p | S ′
n) such that (p, g) ∈ C, where246

C =

{
P × G :

∑
v∈V

gv = 1

}
⊂ P × G, (8)

and247

L(g,p | S ′
n) =

∆+m∏
v=∆+1

ω∏
u=v

[
f(u | p)gv

α

]∑n
i=1 1(Xi,Yi)=(u,v)

. (9)

We have dropped the parametric notation, Θ, of (3) in the lead up to (9) to emphasize the248

replacement of p with the more general p in the parametric space. For completeness, α in249

(9) takes the same form as (2) but with f(· | p) replacing f(· | p). The formal result is stated250

in Corollary 3.1.1. For reference, Lautier et al. (2023a) study the limiting case, where each251

probability mass, f(u), is itself represented by a parameter, fu, ∆ + 1 ≤ u ≤ ω.252

Corollary 3.1.1 (Stationary points of L over C). Let S ′
n be an i.i.d. sample of left-truncated253
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observations from the distribution h∗(u, v | p) subject to the same identifiability conditions254

of Theorem 3.1. Further assume ∂f(u | p)/∂pj exists and is finite for all j = 1, . . . , r. Then255

the stationary points of L(g,p | S ′
n) are256

ĝv =
ĥ•v

S(v | p̂)

[ ∆+m∑
k=∆+1

ĥ•k

S(k | p̂)

]−1

, v ∈ V , (10)

where p̂ is any p ∈ P̂ ⊂ P, with257

P̂ = {p ∈ P : ξ1(j) = ξ2(j), for all j = 1, . . . , r}, (11)

258

ξ1(j) =
∆+m∑
v=∆+1

(
ĥ•v∑ω

u=v f(u | p)

)( ω∑
u=v

∂

∂pj
f(u | p)

)
,

and259

ξ2(j) =
∆+m∑
v=∆+1

ω∑
u=v

ĥuv
f(u | p)

∂

∂pj
f(u | p).

Further, p̂ ∈ C and ĝv ∈ C for all v ∈ V.260

Proof. See the Supplemental Material, Section A.2.261

Beyond the point estimation results of Theorem 3.1 and Corollary 3.1.1 that simplify262

the multidimensional constrained optimization problem created by the maximum likelihood263

process in our financial setting, it is of interest to examine the asymptotic properties of264

(7) to assess estimation precision. (Recall, it is the lifetime distribution X that is of most265

practical importance to ABS investors.) To this end, a further advantage of (7) is that it266

takes the form of an asymptotically consistent M -estimator (van der Vaart, 1998, §5.3, pg.267

51). This observation, which we prove in Theorem 3.2, allows us to derive the exact form of268

its asymptotically normal or large sample distribution.269

Theorem 3.2. Let p̂n ∈ P satisfy (7) from Theorem 3.1 and denote p0 as the true parameter270
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value. Define271

Ψn(p,Sn) =
∆+m∑
v=∆+1

(
ĥ•v∑ω

u=v f(u | p)

)( ω∑
u=v

∂

∂p
f(u | p)

)
−

∆+m∑
v=∆+1

ω∑
u=v

ĥuv
f(u | p)

∂

∂p
f(u | p).

Then Ψn(p,Sn) ≡ Ψn(p) is an asymptotically consistent M-estimator of Eψ(Xi, Yi, p) for all272

p ∈ P (van der Vaart, 1998, §5.3, pg. 51), where273

ψ(Xi, Yi, p) =
∆+m∑
v=∆+1

( ∑ω
u=vWi∑ω

u=v f(u | p)

)( ω∑
u=v

∂

∂p
f(u | p)

)
−

∆+m∑
v=∆+1

ω∑
u=v

Wi

f(u | p)
∂

∂p
f(u | p),

andWi(u, v) = 1((Xi, Yi) = (u, v)) for 1 ≤ i ≤ n. Further, Ψn(p̂n) = 0. If we also assume (i)274

p̂n
P−→ p0, (ii) E[ψ(Xi, Yi, p0)]

2 <∞, (iii) E[∂ψ(Xi, Yi, p0)/∂p] exists, and (iv) ∂2Ψn(p̃)/∂p
2

275

is OEψ(1), where p̃ is a point between p̂n and p0, then,276

√
n(p̂n − p0)

L−→ N

(
0,

E[ψ(Xi, Yi, p0)
2]

(E[∂ψ(Xi, Yi, p0)/∂p])2

)
,

where277

∂

∂p
ψ(Xi,Yi, p0) =

∆+m∑
v=∆+1

( ω∑
u=v

Wi

)[
(
∑ω

u=v f
′′(u))(

∑ω
u=v f(u))− (

∑ω
u=v f

′(u))2

(
∑ω

u=v f(u))
2

]

−
∆+m∑
v=∆+1

ω∑
u=v

Wi

[
f ′′(u)f(u)− f ′(u)2

f(u)2

]
,

and f ′ and f ′′ denote ∂f/∂p and ∂2f/∂p2, respectively.278

Proof. See the Supplemental Material, Section A.3.279

In practical settings, the true parameter, p ∈ P , will not be known. Thus, techniques280

to estimate the asymptotic variance we derive in Theorem 3.2 are necessary. The results of281

Corollary 3.2.1 provide one such approach.282
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Corollary 3.2.1. Assume the conditions of Theorem 3.2 and define283

U = E
∂

∂p
ψ(Xi, Yi, p0), Un =

∂

∂p
Ψn(p̂n).

Similarly define284

V = Var[ψ(Xi, Yi, p0)], Vn =
1

n

n∑
i=1

ψ(Xi, Yi, p̂n)
2.

If Un
P−→ U and Vn

P−→ V , then285

[Vn/U
2
n]

−1/2
√
n(p̂n − p0)

L−→ N(0, 1). (12)

Additionally, if the second Bartlett identity (Ferguson, 1996, pg. 120) is also satisfied, then286

U = V and287

[Vn]
1/2

√
n(p̂n − p0)

L−→ N(0, 1).

288

Proof. See the Supplemental Material, Section A.4.289

Remark. The conditions (i) through (iv) in Theorem 3.2 may be relaxed. See van der290

Vaart (1998, Theorems 5.21 and 5.23 pg. 51-53) for details. Further, these results may be291

extended to higher dimensions of parameters, such as those assumed in Corollary 3.1.1. See292

the discussion van der Vaart (1998, Equation (5.20) pg. 51-52) for details.293

The approaches thus far have not considered specific choices of the lifetime distribution,294

f . One motivation of examining a specific f is to determine if we can increase the claim295

in Theorem 3.1 from identifying stationary points of the constrained optimization of (4) to296

finding the MLEs of p ∈ P and g ∈ G. In doing so, it is beneficial to derive an alternative297

form of (7), which we do in Theorem 3.3.298

Theorem 3.3 (Equivalence of P̂). Assume the conditions of Theorem 3.1. Then p ∈ P̂ if299

14



and only if300

∂

∂p

∏∆+m
v=∆+1 S(v | p)ĥ•v∏ω
u=∆+1 f(u | p)ĥu•

= 0. (13)

301

Proof. See the Supplemental Material, Section A.5.302

A close study of (13) suggests candidates for f to yield a direct solution and thus an303

MLE. See, for example, Theorem 3.4, which yields an f with a closed-form MLE of Θ.304

Theorem 3.4 (MLE ofΘ, PL geometric). Define the policy limit (PL) geometric distribution305

with parameter, 0 < p < 1, as306

fT (u | p) =


p(1− p)u−(∆+1) ∆+ 1 ≤ u ≤ ω − 1,

(1− p)u−(∆+1) u = ω.

(14)

Then, for the conditional bivariate probability mass function, h∗, defined in (1) under the307

sampling conditions of Theorem 3.1, the MLE of the parameter p is308

p̂MLE =
b

b− a
, (15)

where309

a =
∆+m∑
v=∆+1

{v − (∆ + 1)}ĥ•v −
ω∑

u=∆+1

{u− (∆ + 1)}ĥu•, (16)

and310

b =
ω−1∑

u=∆+1

ĥu•. (17)

Further, the MLE of g is311

{ĝv,MLE}v∈V = ĥ•v

(
1− b

a

)v−(∆+1)[ ∆+m∑
k=∆+1

ĥ•k

(
1− b

a

)k−(∆+1)]−1

. (18)

312
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Proof. See the Supplemental Material, Section A.6.313

The density function fT defined in Theorem 3.4 is motivated by actuarial applications314

of statistical analysis to insurance policy limits. Following Klugman et al. (2012, §8.4, pg.315

125), a policy limit of ζ entitles an insured to the full repayment of losses for any amount316

below ζ with a maximum repayment of ζ for any loss greater than or equal to ζ. Hence, if L1317

denotes the loss random variable before the limit and L2 denotes the loss random variable318

after the limit, the cdf of losses to the insurer becomes319

FL2(ℓ) =


FL1(ℓ), ℓ < ζ,

1, ℓ ≥ ζ.

This setting motivates (14), and it has a natural application to the loan-level ABS analysis320

that motivates our study. Our reasoning stems from the observation that any probability321

for u ≥ ω is loaded onto the final point, ω. Because many loans will stop making payments322

at the termination time dictated by the amortization schedule, such a weighting can be323

reasonable within an application to financial loan analysis. We demonstrate this in Section 6324

for the AART (2017) and AART (2019) ABS bonds. Before concluding the section, we note325

that the Supplemental Material, Section A.7 contains a restatement of Theorem 3.4 with an326

alternative parameterization via a discretized, PL exponential distribution (i.e., p > 0). An327

alternative P space may have utility in generalized linear model (GLM) regression analysis328

build from the model of (1). For a further discussion, see Section 7.329

4 Right-Censoring330

We now generalize the theoretical results of Section 3 to also allow for random right-censoring.331

As with Section 3, we continue with the notation introduced in Section 2. Because of right-332

censoring, the observed data in this setting takes the triple Sτ,n = {(Yi,min(Xi, Ci), Di)}1≤i≤n,333
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where Di = 1 if Xi ≤ Ci and 0 otherwise, for 1 ≤ i ≤ n. For convenience of notation, we334

define Zi = min(Xi, Ci), for 1 ≤ i ≤ n, and so Sτ,n ≡ {(Yi, Zi, Di)}1≤i≤n. If there is no335

right-censoring present in the data, Di = 1, for all 1 ≤ i ≤ n, and Sτ,n reduces to the left-336

truncation sample of Section 3, Sn. The subscript of τ will be used liberally in the present337

section to emphasize right-censoring is assumed present in the data.338

Consider now the likelihood under the additional incomplete data setting of right-censoring.339

Assume first Di = 0, which implies an observation is censored; that is, Xi > Ci, for some340

1 ≤ i ≤ n. The contribution to the likelihood is the probability341

Pr(Yi = v, Zi = u,Di = 0) = Pr(Yi = v,min(Xi, Ci) = u,Xi > Ci)

= Pr(Yi = v,min(Xi, Yi + τ) = u,Xi > Yi + τ)

= Pr(Yi = v, Yi + τ = u,Xi > Yi + τ)

= Pr(Yi = v, v + τ = u,Xi > v + τ)

= Pr(Yi = v,Xi > u)1(v + τ = u)

= Pr(Y = v,X ≥ u+ 1 | X ≥ Y, p)1(v + τ = u)

= h̄∗(u, v | p)1(v + τ = u)

= h̄∗(u, v | p),

where342

h̄∗(u, v | p) = Pr(Y = v,X ≥ u+ 1 | X ≥ Y, p) =
S(u+ 1 | p)gv

α
,

for p ∈ P , (u, v) ∈ A. We may drop the indicator 1(v + τ = u) because Di = 0 if and only343

if v + τ = u (for any i, 1 ≤ i ≤ n, Di = 0 =⇒ Xi > Ci =⇒ Zi = Ci = Yi + τ). By344

the same reasoning, the contribution to the likelihood for Di = 1, for some 1 ≤ i ≤ n, is345

(1). (The Supplemental Material, Section B provides an illustrative example that h∗ and h̄∗346

together form a valid density for all possible outcomes of a single sample, (Yi, Zi, Di), for347
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any, i, 1 ≤ i ≤ n.) Thus, the likelihood for Sτ,n becomes348

Lτ (Θ | Sτ,n) =
∏

{Sτ,n:Di=1}

h∗(Zi, Yi | p)
∏

{Sτ,n:Di=0}

h̄∗(Zi, Yi | p)

=
∏

{Sτ,n:Di=1}

g(Yi)f(Zi | p)
α

∏
{Sτ,n:Di=0}

g(Yi)S(Zi + 1 | p)
α

= α−n
m+∆∏
v=∆+1

g
nγ̂n(v)
v

n∏
i=1

f(Zi | p)DiS(Zi + 1 | p)1−Di , (19)

where349

γ̂n(v) =
1

n

n∑
i=1

1Yi=v.

If Di = 1 for all i, 1 ≤ i ≤ n, then Lτ (Θ | Sτ,n) reduces to L(Θ | Sn) of Section 3. As with350

Theorem 3.1, we seek351

sup
p,g∈C

Lτ (Θ | Sτ,n). (20)

Remark. It is assumed in (19) and all following statments that terms involving f(· | p) only352

appear when Di = 1 and, conversely, terms involving S(· | p) only appear when Di = 0. This353

avoids any complications when Di = 1 and S(· | p) = 0. It is understood this convention354

may be coded easily, and we assume the form of (19) for ease of exposition.355

Theorem 4.1 (Stationary points of Lτ over C). Let Sτ,n be an i.i.d. sample of left-truncated356

observations from the distribution h∗(u, v | p) defined in (1) under the additional incomplete357

data setting of right-censoring. Assume the identifiability and differentiability conditions of358

Theorem 3.1. Then the stationary points of Lτ (Θ | Sτ,n) are359

ĝτ,v =
γ̂n(v)

S(v | p̂τ )

[ ∆+m∑
k=∆+1

γ̂n(k)

S(k | p̂τ )

]−1

, v ∈ V ,

where S(·) denotes the survival function defined in (6), and p̂τ is any p ∈ P̂τ ⊂ P where360

P̂τ =
{
p ∈ P :

∆+m∑
v=∆+1

(
γ̂n(v)∑ω

u=v f(u | p)

)( ω∑
u=v

∂

∂p
f(u | p)

)
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=
1

n

n∑
i=1

(
Di

f(Zi | p)
∂

∂p
f(Zi | p) +

1−Di

S(Zi + 1 | p)
∂

∂p
S(Zi + 1 | p)

)}
. (21)

Further, p̂τ ∈ C and ĝτ,v ∈ C, for all v ∈ V.361

Proof. See the Supplemental Material, Section A.8.362

The solution space (23) is a general form of an estimator for the parameter p ∈ P363

under the left-truncation and right-censoring incomplete data setting of Theorem 4.1 not yet364

derived to our knowledge. As with Theorem 3.1, Theorem 4.1 reduces a potentially complex365

and computationally demanding multidimensional constrained optimization problem, (20),366

into a single parameter optimization problem, (21). These comments echo those following367

Theorem 3.1, and we omit further discussion to avoid unnecessary repetition.368

As in Section 3, it may be desirable to allow f to depend on a finite, r-dimensional369

parameter vector, p, as defined just before (8). We now prepare to state the equivalent370

of Corollary 3.1.1 under the additional data constraint of right-censoring. The equivalent371

notation for the conditional bivariate pmf of a right-censored observation becomes h̄∗(u, v |372

p). The multidimensional, constrained optimization problem is then to find supLτ (g,p |373

Sτ,n) such that (p, g) ∈ C, where C is defined in (8), and374

Lτ (g,p | Sτ,n) = α−n
m+∆∏
v=∆+1

g
nγ̂n(v)
v

n∏
i=1

(
f(Zi | p)DiS(Zi + 1 | p)1−Di

)
.

As with the discussion prior to Corollary 3.1.1, we have dropped the parametric notation,375

Θ, of Lτ to emphasize the replacement of p with the more general p in the parametric space.376

The formal result is stated in Corollary 4.1.1. For reference, Lautier et al. (2023b) study the377

limiting case, where each probability mass, f(u), is itself represented by a parameter, fu,378

∆+ 1 ≤ u ≤ min(ω, ε− 1).379

Corollary 4.1.1 (Stationary points of Lτ over C). Let Sτ,n be an i.i.d. sample of left-380

truncated observations from the distribution h∗(u, v | p) under the additional incomplete381
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data setting of right-censoring. Assume the identifiability and differentiability conditions of382

Theorem 3.1. Then the stationary points of Lτ (g,p | Sτ,n) are383

ĝτ,v =
γ̂n(v)

S(v | p̂τ )

[ ∆+m∑
k=∆+1

γ̂n(k)

S(k | p̂τ )

]−1

, v ∈ V , (22)

where p̂τ is any pτ ∈ P̂τ ⊂ P, where384

P̂τ = {pτ ∈ P : φ1(j) = φ2(j), for all j = 1, . . . , r′}, (23)

385

φ1(j) =
∆+m∑
v=∆+1

(
γ̂n(v)∑ω

u=v f(u | p)

)( ω∑
u=v

∂

∂pj
f(u | p)

)
,

and386

φ2(j) =
1

n

n∑
i=1

(
Di

f(Zi | p)
∂

∂pj
f(Zi | p) +

1−Di

S(Zi + 1 | p)
∂

∂pj
S(Zi + 1 | p)

)}
.

Further, p̂τ ∈ C and ĝτ,v ∈ C for all v ∈ V.387

Proof. See the Supplemental Material, Section A.9.388

As in Section 3, it is of interest to examine the asymptotic properties of (21) to assess389

estimation precision. As with (7), the estimator (21) takes the form of an asymptotically390

consistent M -estimator (van der Vaart, 1998, §5.3, pg. 51). We thus prove the equivalent391

of Theorem 3.2 in Theorem 4.2, from which the exact form of the asymptotically normal392

distribution of the estimator, (21), follows.393

Theorem 4.2. Let p̂τ,n ∈ P satisfy (21) from Theorem 4.1 and denote p0 as the true394

parameter value. Define395

Ψτ,n(p,Sτ,n) =
∆+m∑
v=∆+1

(
γ̂n(v)∑ω

u=v f(u | p)

)( ω∑
u=v

∂

∂p
f(u | p)

)

− 1

n

n∑
i=1

(
Di

f(Zi | p)
∂

∂p
f(Zi | p) +

1−Di

S(Zi + 1 | p)
∂

∂p
S(Zi + 1 | p)

)
.
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Then Ψτ,n(p,Sτ,n) ≡ Ψτ,n(p) is an asymptotically consistent M-estimator of Eψτ (Yi, Zi, Di, p)396

for all p ∈ P (van der Vaart, 1998, §5.3, pg. 51), where397

ψτ (Yi, Zi, Di, p) =
∆+m∑

v∗=∆+1

(
1(Yi = v∗)∑ω
u=v∗

f(u | p)

)( ω∑
u=v∗

∂

∂p
f(u | p)

)
−

(
Di

f(Zi | p)
∂

∂p
f(Zi | p) +

1−Di

S(Zi + 1 | p)
∂

∂p
S(Zi + 1 | p)

)
,

for 1 ≤ i ≤ n. Further, Ψτ,n(p̂τ,n) = 0. If we also assume (i) p̂τ,n
P−→ p0,398

(ii) E[ψτ (Yi, Zi, Di, p0)]
2 <∞, (iii) E[∂ψτ (Yi, Zi, Di, p0)/∂p] exists, and (iv) ∂2Ψτ,n(p̃τ )/∂p

2
399

is OEψτ (1), where p̃τ is a point between p̂τ,n and p0, then400

√
n(p̂τ,n − p0)

L−→ N

(
0,

E[ψτ (Yi, Zi, Di, p0)
2]

(E[∂ψτ (Yi, Zi, Di, p0)/∂p])2

)
,

where401

∂

∂p
ψτ (Yi, Zi, Di, p0) =

∆+m∑
v∗=∆+1

1(Yi = v∗)

[
(
∑ω

u=v∗
f ′′(u))(

∑ω
u=v∗

f(u))− (
∑ω

u=v∗
f ′(u))2

(
∑ω

u=v∗
f(u))2

]
−

(
Di

[
f ′′(Zi)f(Zi)− f ′(Zi)

2

f(Zi)2

]
+ (1−Di)

[
S ′′(Zi + 1)S(Zi + 1)− S ′(Zi + 1)2

S(Zi + 1)2

])
,

and f ′, f ′′, S ′, and S ′′ denote ∂f/∂p, ∂2f/∂p2, ∂S/∂p, and ∂2S/∂p2, respectively.402

Proof. See the Supplemental Material, Section A.10.403

In practical settings, the true parameter, p ∈ P , will not be known. Hence, we state the404

equivalent of Corollary 3.2.1 in the additional incomplete data setting of right-censoring in405

Corollary 4.2.1 for completeness.406

Corollary 4.2.1. Assume the conditions of Theorem 4.2 and define407

Uτ = E
∂

∂p
ψτ (Yi, Zi, Di, p0), Uτ,n =

∂

∂p
Ψτ,n(p̂τ,n).
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Similarly define408

Vτ = Var[ψτ (Yi, Zi, Di, p0)], Vτ,n =
1

n

n∑
i=1

ψτ (Yi, Zi, Di, p̂τ,n)
2.

If Uτ,n
P−→ Uτ and Vτ,n

P−→ Vτ , then409

[Vτ,n/U
2
τ,n]

−1/2
√
n(p̂τ,n − p0)

L−→ N(0, 1). (24)

Additionally, if the second Bartlett identity (Ferguson, 1996, pg. 120) is also satisfied, then410

Uτ = Vτ and411

[Vτ,n]
1/2

√
n(p̂τ,n − p0)

L−→ N(0, 1).

412

Proof. See the Supplemental Material, Section A.11.413

Remark. The conditions (i) through (iv) in Theorem 4.2 may be relaxed. See van der414

Vaart (1998, Theorems 5.21 and 5.23 pg. 51-53) for details. Further, these results may be415

extended to higher dimensions of parameters, such as those assumed in Corollary 4.1.1. See416

the discussion van der Vaart (1998, Equation (5.20) pg. 51-52) for details.417

We close this section with the equivalent of Theorem 3.4 under the additional data418

constraints of right-censoring. The formal statement comprises Corollary 4.2.2.419

Corollary 4.2.2 (MLE of g, p, PL geometric, right-censoring). Recall the PL geometric420

distribution with parameter, 0 < p < 1, defined in (14). Then, for the conditional bivariate421

probability mass function, h∗, defined in (1) under the sampling conditions of Theorem 4.1,422

the MLE of the parameter p is423

p̂τ,MLE =
bτ

bτ − aτ
,
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where424

aτ =
∆+m∑
v=∆+1

{v − (∆ + 1)}γ̂n(v)−
1

n

n∑
i=1

(
{Zi − (∆ + 1)}Di + {Zi + 1− (∆ + 1)}(1−Di)

)
,

and425

bτ =
1

n

n∑
i=1

1(Zi ̸= ω)Di.

Further, the MLE of g is426

{ĝτ,v,MLE}v∈V = γ̂n(v)

(
1− bτ

aτ

)v−(∆+1)[ ∆+m∑
k=∆+1

γ̂n(k)

(
1− bτ

aτ

)k−(∆+1)]−1

.

427

Proof. See the Supplemental Material, Section A.12.428

5 Simulation Studies429

We first provide numerical verification of Theorems 3.1, 3.2, 3.4, 4.1, 4.2, and Corollary 4.2.2.430

We assume m = 3, ∆ = 0, and ω = 4. This results in a 4 × 3 trapezoid, A. For the431

lifetime random variable, we consider two parametric distributions. The first assumes X432

takes the form of (14) with p = 0.3. This results in the pmf of X as Pr(X = 1) = 0.3,433

Pr(X = 2) = 0.21, Pr(X = 3) = 0.147, and Pr(X = 4) = 0.343. We then assume the pmf434

of Y is g1 ≡ Pr(Y = 1) = 0.5, g2 ≡ Pr(Y = 2) = 0.3, and g3 ≡ Pr(Y = 3) = 0.2. This435

results in α = 0.808. Observe that Y is non-uniform, which demonstrates our results may436

be applied outside the domain of length-biased sampling. The second assumes X takes the437

form of a shifted binomial distribution with the number of successes equal to ω−(∆+1) = 3438

and a probability of success equal to 0 < θ = 0.75 < 1. This results in the pmf of X439

as Pr(X = 1) = 0.016, Pr(X = 2) = 0.141, Pr(X = 3) = 0.422, and Pr(X = 4) = 0.422.440

Because g is unchanged, we obtain α = 0.964. For reference, a simulation tutorial to generate441
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a random sample from h∗ may be found in the Supplemental Material, Section D.442

To perform the numeric validation for Theorem 3.1 and Theorem 3.4, we simulate a sin-443

gle sample size of n = 1,000 under the setting of Section 3 (i.e., Sn). We then estimate the444

parameters in three ways. First, we solve (4) with a direct, constrained numeric optimiza-445

tion using constroOptim via R Core Team (2023). Next, we perform a single parameter446

optimization through Theorem 3.1 using optimize via R Core Team (2023) in combination447

with the closed-form solutions for (5). Finally, we report the parameter estimates with all448

closed-form solutions using Theorem 3.4. The results are summarized in the top-half of Ta-449

ble 2. All three approaches yield nearly identical solutions, all of which are quite close to450

the true parameter values. For completeness, we also estimate computational performance451

statistics for all three parameter estimation approaches with the microbenchmark package452

(Mersmann, 2023). It is immediate that both Theorems 3.1 and 3.4 provide substantial im-453

provements in computational demands. We then repeat this procedure under the sampling454

assumptions of Section 4 (i.e., Sτ,n) with ε = 6 to verify Theorem 4.1 and Corollary 4.2.2.455

The comparison is again quite close. The full results may be found in Table 2.456

We next validate Theorems 3.2. First, we calculate the true asymptotically normal457

distribution assuming a sample size of n = 1,000. Next, we perform 1,000 replicates of458

simulating a sample size of n = 1,000 and estimating p̂n with Theorem 3.4 (for the shifted-459

binomial distribution, Theorem 3.1). The true asymptotic density and the empirical density460

of the 1,000 replicates of
√
n(θ̂n − θ0) and

√
n(p̂n − p0) may be found in Figure 1. The461

true density (solid line) and empirical density (dashed line) closely agree. This process is462

repeated under the sampling assumptions of left-truncation and right-censoring to validate463

Theorem 4.2. Once again, the true density (solid line) and empirical density (dashed line)464

closely agree. These results may also be found in Figure 1. A reference of the necessary465

derivative calculations may be found in the Supplemental Material, Section C.466

Our second simulation study is a traditional robustness analysis of the methods we pro-467

pose in Sections 3 and 4 to sample size and level of right-censoring. We also increase the468
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Left-Trunc. (§3) Left-Trunc. & Ri.-Cens. (§4)

PL Geometric PL Geometric

Param. True constrOptim Thm 3.1 Thm 3.4 constrOptim Thm 4.1 Cor 4.2.2

p 0.30 0.3070043 0.3069670 0.3069670 0.3033170 0.3033175 0.3033175
g(1) 0.50 0.4917720 0.4913635 0.4913635 0.5184552 0.5188642 0.5188642
g(2) 0.30 0.3039001 0.3036941 0.3036941 0.2818413 0.2820547 0.2820547
g(3) 0.20 0.2050589 0.2049424 0.2049424 0.1989716 0.1990811 0.1990811

Speed (µS) 562,996 6,797 861 9,027,715 169,510 12,706

Shifted-Binomial Shifted-Binomial

Param. True constrOptim Thm 3.1 constrOptim Thm 4.1

θ 0.75 0.7462976 0.7462779 0.7445825 0.7446186
g(1) 0.50 0.4870210 0.4867887 0.5251005 0.5246253
g(2) 0.30 0.2949194 0.2947756 0.2733774 0.2731187
g(3) 0.20 0.2185810 0.2184357 0.2024117 0.2022560

Speed (µS) 543,432 8,633 5,100,241 233,909

Table 2: Numeric Validation and Performance Summary. Numerical verification of Theo-

rems 3.1, 3.4, and 4.1, and Corollary 4.2.2. Trapezoid parameters are m = 3, ∆ = 0, and ω = 4

(with ε = 6 for right-censoring). Single sample of size n = 1,000. Performance calculations per

the microbenchmark package (Mersmann, 2023) with 100 evaluations (mean speed reported in

microseconds (µS)). The computer was a Surface Pro 9 with a 12th Gen Intel(R) Core(TM)

i5-1235U 2.50 GHz processor, 8.00GB installed RAM, 10 cores, and 12 logical processors.

size of the trapezoid A to better reflect what may be encountered in an application to469

ABS. Hence, we assume m = 20, ∆ = 0, and ω = 24. The lifetime distribution, X, in470

this setting follows a PL geometric distribution, (14), with parameter p = 0.05. The left-471

truncation random variable is a weighted-mixture of shifted binomial distributions with 9472

trials and success probability of 0.35, denoted B. That is, Pr(Y = v) = 0.4 × 1(1 ≤ v ≤473

10)B(v−1)+0.6×1(11 ≤ v ≤ 20)B(v−11). Because an application to ABS data is primarily474

focused on the lifetime distribution of the loans, X, we focus on the parameter p.475

We consider sample sizes n ∈ {50, 100, 250, 500}. We may control for right-censoring by476

varying the current time, m + ∆ + 1 ≤ ε ≤ m + ω. There is more right-censoring present477

in the data for values of ε closer to m + ∆ + 1. We consider ε ∈ {26, 32, 38} and a fourth478

setting of no right-censoring present in the data. For each combination of sample size and479

right-censoring, we simulate a random sample from h∗. We then estimate p using either480
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Figure 1: Asymptotic Normality Verification. Numeric verification of Theorem 3.2 and 4.2.

Trapezoid parameters are m = 3, ∆ = 0, and ω = 4 (with ε = 6 for right-censoring). Results for

1,000 replicates each with a sample size of n = 1,000. Lifetime random variable and left-truncation

random variable parameters identical to Table 2.

Corollary 4.2.2 or Theorem 3.4, as appropriate. This process is repeated for 1,000 replicates.481

We then calculate the empirical mean and standard deviation of the 1,000 estimates of p. We482

compare the empirical mean with the true parameter value, p = 0.05, and we compare the483

empirical standard deviation with the theoretical value we calculate using Theorems 3.2 or484

4.2, as appropriate. Finally, we evaluate Corollaries 3.2.1 and 4.2.1 by performing a coverage485

probability study of the 95% asymptotic confidence intervals. The coverage probabilities486

represent the percentage of 1,000 replicates such that,487

p̂n − Z0.975

√
1/Vn
n

≤ p0 ≤ p̂n + Z0.975

√
1/Vn
n

, (25)

where Z0.975 represents the 97.5th percentile of a standard normal random variable. The488
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ε = 26 ε = 32

n p0 eMean eSD Thm 4.2 CP eMean eSD Thm 4.2 CP

50 0.05 0.0499 0.0096 0.0097 0.942 0.0503 0.0097 0.0097 0.951
100 0.05 0.0503 0.0069 0.0069 0.946 0.0502 0.0069 0.0069 0.949
250 0.05 0.0502 0.0044 0.0043 0.943 0.0499 0.0043 0.0043 0.947
500 0.05 0.0501 0.0032 0.0031 0.950 0.0499 0.0030 0.0031 0.962

ε = 38 No Censoring

n p0 eMean eSD Thm 4.2 CP eMean eSD Thm 3.2 CP

50 0.05 0.0510 0.0100 0.0097 0.933 0.0504 0.0094 0.0095 0.954
100 0.05 0.0502 0.0072 0.0069 0.931 0.0504 0.0066 0.0067 0.963
250 0.05 0.0502 0.0043 0.0043 0.956 0.0499 0.0042 0.0043 0.952
500 0.05 0.0500 0.0031 0.0031 0.944 0.0501 0.0031 0.0030 0.952

Table 3: Robustness Simulation Study. A robustness analysis of the methods proposed in

Sections 3 and 4 for the right-truncated geometric distribution by sample size (n) and level of right-

censoring (ε). Trapezoid parameters are m = 20, ∆ = 0, and ω = 24. We report the empirical mean

(eMean), empirical standard deviation (eSD), theoretical standard deviation (Thm 3.2, Thm 4.2),

and coverage probability (CP), i.e., (25), for a 95% asymptotic confidence interval estimated using

Corollaries 3.2.1 and 4.2.1. The left-truncation distribution, Y , follows a weighted binomial mixture.

complete results may be found in Table 3. The robustness of the methods we propose are489

quite strong to small samples and the level of right-censoring, which is an attractive property490

for an application to ABS data (and more generally).491

6 Estimating Loan-Level Performance492

We now assume the role of an ABS investment analyst to employ the statistical methods493

of Sections 3 and 4 to estimate the loan-level lifetime distribution parameters from data494

contained in the ABS bonds Ally Auto Receivables Trust 2017-3 (AART, 2017) and Ally495

Auto Receivables Trust 2019-3 (AART, 2019). Per Section 1, this data was obtained via the496

SEC’s EDGAR system (Securities and Exchange Commission, 2014, 2016).497

Consider first the AART-2017 ABS bond, which contains 67,797 individual consumer498

auto loans with origination dates ranging from February 2011 to April 2017. The AART-499
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2017 ABS bond was issued in May of 2017 and was active for 43 months. The mean (median)500

credit score of these loans is 725 (719), which corresponds to a super-prime credit risk tier501

(Consumer Financial Protection Bureau, 2019). We first demonstrate the plausibility of the502

PL geometric distribution as defined in (14) to describe this ABS loan-level lifetime data. In503

this context, the random variable X describes the time-until-loan-payments stop, either due504

to prepayment or default (a second statistical model may be used to simultaneously model505

the cause (e.g., Lautier et al., 2022) but is outside the scope of this analysis). Because the506

loan terms in AART-2017 range from 12 to 78 months, and each loan term must be treated507

separately, we focus on a subset of n = 151 loans with a loan term of 25 months.508

For these 25-month loans, we have m = 21, ∆ = 3, and ω = 26. There are thus 21509

parameters to be estimated, which would make obtaining a solution to (4) or (20) numerically510

quite difficult without the methods we propose. We will use the full 43 months of performance511

data, which sets ε = 67 > m+ω. Hence, there is no right-censoring present, which allows us512

to use methods from Section 3. As a minor data adjustment, we treat any observations with513

a loan termination time of 27, 28, or 29 months as a loan that terminated at full-term, 26514

months. Such small extensions may occur due to delays in accounting or financial reporting,515

and they generally have a minimal impact on estimated profitability.516

We apply Theorem 3.4, Theorem 3.2, and Corollary 3.2.1 to estimate p̂17-25MLE = 0.0313517

with a 95% asymptotic confidence interval of (0.0226, 0.0399). But is (14) with a parame-518

ter of p̂17-25MLE = 0.0313 appropriate to model this data? We investigate by comparing it to519

Lautier et al. (2023b), which makes no structural assumptions about the shape of the loan-520

level lifetime distribution. In other words, we estimate the hazard rate plus 95% asymptotic521

confidence intervals for each loan age via Lautier et al. (2023b). Because (14) assumes a522

constant hazard rate, we will first assess if p̂17-25MLE = 0.0313 ± 0.0086 falls between the 95%523

asymptotic confidence intervals of Lautier et al. (2023b). A visualization of this comparison524

may be found in the top left panel of Figure 2. The point estimates of the hazard rate via525

Lautier et al. (2023b) are noted by the solid blue line, and the blue ribbon represents 95%526
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Figure 2: PL Geometric Distribution, Empirical Validation. A comparison of fitted hazard

rates using the flexible Lautier et al. (2023b) (solid blue line and ribbon) against the policy limit

geometric distribution proposed in (14) (dashed red line and ribbon) by bond AART (2017, 2019)

and original loan term (25, 50 months). The consistent overlap of the asymptotic 95% confidence

intervals for each model indicates the plausibility of (14) to model loan lifetime ABS data.

asymptotic confidence intervals for each hazard rate per Lautier et al. (2023b). The hori-527

zontal red dashed line plus red ribbon represents p̂17-25MLE = 0.0313± 0.0086, as estimated with528

the methods of Section 3. Because the 95% asymptotic confidence intervals for each method529

consistently overlap, it is evidence that the PL geometric distribution of (14) with a param-530

eter of p̂17-25MLE = 0.0313± 0.0086 is reasonable to model the loan-level lifetime distribution of531

these 151 25-month consumer automobile loans from AART-2017.532

With the viability of (14) established for this data, we now suppose we are an ABS533

investment analyst assessing the loan-level payment performance of the AART bonds over534

time. Such analysis helps identify any potential trends that may inform trading decisions. For535

example, an elevated parameter, p, may indicate higher defaults or earlier prepayments, both536
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of which may negatively impact the profitability of the AART-2019 ABS bond in comparison537

to AART-2017 (see Table 1). As such, we consider the AART-2019 bond and compare it to538

AART-2017. The AART-2019 bond consists of 67,198 individual consumer auto loans with539

origination dates ranging from October 2012 to July 2019. The AART-2019 bond was issued540

in August of 2019 and was actively paying for 46 months. The mean (median) credit score541

of these loans is 722 (718), which corresponds to a super-prime credit risk tier (Consumer542

Financial Protection Bureau, 2019). The AART-2019 bond has consumer auto loans with543

loan terms ranging from 13 to 79 months. Hence, the AART-2019 consumer loan pool544

compares quite closely to AART-2017, which would indicate to investors that both bonds545

will perform comparably. Let us now determine if this is indeed the case.546

As with AART-2017, we consider the subset of 25-month loans, which results in n2019 =547

178. For these 25-month loans, we have m2019 = 19, ∆2019 = 2, and ω2019 = 26. This548

results in 19 parameters to be estimated. We will use the full 46 months of performance549

data, which again sets ε2019 = 67 > m2019 + ∆2019. Thus, no right-censoring is present in550

the 2019 data for the 25-month loans. As with AART-2017, we set any consumer loans with551

termination times beyond month 26 to ω2019 = 26. We next apply Theorem 3.4, Theorem 3.2,552

and Corollary 3.2.1 to estimate p̂19-25MLE = 0.0432 with a 95% asymptotic confidence interval of553

(0.0339, 0.0526). Because the 95% asymptotic confidence intervals of p̂19-25MLE overlap with those554

of p̂17-25MLE , we cannot claim that the loan-level lifetime distribution has materially changed.555

This may be surprising because the AART-2017 bond stopped paying in November 2020,556

shortly after the start of the Coronavirus pandemic. The Coronavirus was a significant557

economic event that had a clear negative impact on the performance of consumer auto558

loans (Lautier et al., 2022). The latter issuance, AART-2019, conversely, started paying in559

August 2019 and therefore exposed the individual consumer loans to the Coronavirus for a560

longer portion of the observation window. The economic interpretation of this result is that561

both AART bonds we analyze are generally super-prime credits. Such strong credits had562

a minimal default impact from COVID-19 (Lautier et al., 2022). Pleasingly, the methods563
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herein support this conclusion despite closed-form solutions of a single parameter estimate.564

Such quick estimates offer investors a single number that is easy to interpret. This ease of565

use may aid buy and sell decisions for consumer auto ABS holdings. A visual comparison566

may be found in the top row of Figure 2. For completeness, we note that (14) may be less567

applicable to lower credit quality borrowers, a problem we at present leave open.568

We also consider loans with original termination schedules of 50-months from AART569

(2017, 2019). We choose to also model the loan-level lifetime distribution for 50-month loans570

for two reasons. First, it will result in data that is subject right-censoring in addition to571

left-truncation, which requires the methods of Section 4. Second, to ultimately build to572

the ABS cash flow, it will be necessary to fit each original loan term found in the ABS573

(see Table 1). Hence, we desire to fit a model to longer term loans to discuss potential574

modeling considerations to achieve a complete application. To begin, we find an improved575

fit when limiting the individual loan data to super-prime credits (i.e., an interest rate below576

5% (Lautier et al., 2022)). As with 25-month loans, (14) may be less applicable to lower577

credit quality borrowers, a problem we at present leave open. We thus obtain sample sizes578

of 692 and 495 super-prime loans with original terms of 50 months. We also apply a minor579

data adjustment in that any loan with a termination time beyond 48 months was given580

a termination time of 48 months. This is likely an artifact of financial reporting in that581

consumer auto loans are commonly written in increments of 6 and 12 months (i.e., 24-, 36-,582

48-, 60-, 72-months). The visual analysis may be found in the bottom row of Figure 2.583

Upon inspection, we see the PL geometric distribution potentially overfits in earlier584

loan ages and underfits in later loan ages for these 50 month loans (second row, Figure 2).585

This suggests that an increasing linear hazard rate suitable for discrete data may be more586

appropriate. One example of a discrete parametric distribution capable of modeling an587

increasing hazard rate is the discrete Weibull of Nakagawa and Osaki (1975). It is a two588

parameter distribution, and so Corollaries 3.1.1 and 4.1.1 may be applied. Furthermore,589

given the theoretical plausibility of (14), a policy limit version of the discrete Weibull (i.e.,590
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Klugman et al., 2012, §8.4, pg. 125) may better model the longer term loan-level lifetime591

distribution of ABS data. As such, we suggest this as an area of further research in Section 7.592

7 Discussion593

The cash flows of an ABS are a random variable, which stems from the randomness of the594

time-to-termination of the individual loans within an ABS pool (i.e., Table 1). Hence, prop-595

erly modeling ABS cash flows begins by estimating the loan-level time-to-termination lifetime596

distribution. Historically, this estimation was obfuscated by a lack of loan-level data. In the597

aftermath of the 2007-2009 financial crisis, the SEC adopted significant revisions to Regu-598

lation AB, which governs the offering, disclosure, and required reporting of ABS (Securities599

and Exchange Commission, 2014). One significant component of these regulatory changes600

is that public issuers of ABS are now required to make pertinent loan-level and payment601

performance data freely available on a monthly basis (Securities and Exchange Commission,602

2016). It is this new glut of financial data, its immediate widespread application to estimat-603

ing the loan-level lifetime distribution (and thus broadly ABS investment management), and604

its resulting statistical curiosity that attracts our study.605

The data generating process of loan-level data within an ABS is known to be subject to606

the major incomplete data challenge of left-truncation (Section 2). Though many classical607

models exist to model continuous left-truncated data (e.g., Woodroofe, 1985; Tsai et al.,608

1987; Wang, 1989), the ABS setting also requires assuming discrete-time over a known, fi-609

nite support. This combination has begun to attract study (Lautier et al., 2022, 2023a,b,610

2024), but the problem of assuming a more traditional parametric form for the lifetime ran-611

dom variable in this ABS setting remains open. Successfully addressing this problem offers612

three advantages for estimating the loan-level time-to-event distribution. First, paramet-613

ric distributions provides a natural smoothing in comparison to current approaches (e.g.,614

Figure 2). Second, parametric forms open the door to allowing for the incorporation of615
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economic variables, which is desirable to assess their impact on loan payment performance.616

Third and finally, the fast pace of active investment management for ABS requires rapid617

decision-making, which benefits from a focus on a single or few key parameters (Section 6).618

Our results are as follows. Under random left-truncation (Section 3), we first reduce a619

complex multidimensional constrained optimization problem into a single parameter opti-620

mization problem (Theorem 3.1). It is a general statement for a lifetime random variable621

X that depends on a single parameter. We then generalize this to a vector parameter for622

X (Corollary 3.1.1). Next, we show the solution set for the parameter estimate in Theo-623

rem 3.1 is an estimating equation (Theorem 3.2). This produces an asymptotically normal624

distribution of the estimator. For practical settings, we then provide large sample estimates625

for the variance structure (Corollary 3.2.1). We next assume a PL geometric distribution626

(Klugman et al., 2012, §8.4, pg. 125), which is justifiable to model ABS data (Figure 2). In627

this setting, we derive a closed-form MLE of the parameter (Theorem 3.4). In Section 4, we628

derive all of the results of Section 3 but generalized for the incomplete data setting of ran-629

dom left-truncation and right-censoring. This requires first deriving an updated likelihood630

equation. As with Lautier et al. (2023a), the form of the left-truncation random variable631

remains flexible throughout. Complete proofs are in the Supplemental Material, Section A.632

The theoretical results of Sections 3 and 4 are then made practical (Section 5). All633

results are first verified numerically to support the theoretical proofs and to illustrate the634

performance efficiency gains (Table 2). We next verify Theorems 3.2 and 4.2 with simulation635

(i.e., Figure 1), and we provide a coverage probability robustness analysis to sample size and636

amount of censoring. In Section 6, we apply our methods to data from the ABS bonds637

AART (2017) and AART (2019). We provide evidence that the PL geometric distribution638

can plausibly model the lifetimes of loan-level ABS data (Figure 2). The application then uses639

our methods to draw rapid inference on the stability of loan-level performance over issuance640

years. Drawing inference quickly, aided by the closed-form MLE solutions we derive, may641

be valuable to ABS investors often required to make expeditious buy-sell decisions.642
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We close by suggesting avenues of further research. First, prepayments are an important643

component of the analysis of loans, and the present model requires treating all loan termi-644

nation causes (i.e., default and prepayment) as equivalent. This is viable in that an ABS645

investor can use our approach to model the time-until-loan-payments stop, and then overlay646

a second model for the cause. Nonetheless, it is of interest to explore if an extension to a647

competing risks framework (e.g., Lautier et al., 2024) is possible. Second, the bottom row648

of Figure 2 evinces that a policy limit version of the discrete Weibull (Nakagawa and Osaki,649

1975), constructed like (14), may better capture the apparent linearly increasing hazard rate650

we observe for longer term loans. Similarly, it is of interest to examine the PL geometric651

distribution with an application to lower credit quality borrowers. Third, it is desirable to652

connect the lifetime random variable to economic variables. One natural next step is to at-653

tempt to link the parameter of X to a set of covariates in the form of a GLM. We believe our654

efforts have moved closer towards this goal. Fourth, we suggest to revisit the pricing model655

of Lautier et al. (2023b) with the PL geometric distribution of (14). It is possible attractive656

closed-form solutions would materialize upon close study. Finally, we postulate our methods657

will be applicable to other fields where incomplete, discrete time-to-event data frequently658

occur, such as healthcare, finance, engineering, telecommunication, and insurance.659
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