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Supplemental Material

Loan-Level ABS Estimation: Supplemental Material

The following is intended as an online companion supplement to the manuscript, Estimating
the time-to-event distribution for loan-level data within an asset-backed security. Please at-
tribute any citations to the original manuscript. This companion includes proofs of all major
results, a numeric illustration of the likelihood function under right-censoring, a reference of

derivative calculations for implementation, and simulation instructions.

A  Proofs

Please see Sections 3 and 4 for complete statements.

A.1 Proof of Theorem 3.1

Proof. Without loss of generality, let A = 0. It is equivalent to find the stationary points
of the loglikelihood, log £(® | S,,). To handle the linear restrictions imposed by C, we will
proceed with the technique of Lagrange multipliers (e.g., Ravishanker and Dey, 2002, §2.9,

pg. 69). Hence, the Lagrangian function is

log L(g,p, 7| Sn) = —loga+ZZﬁuv{logf(u | p) + log g, } —|—7r<1 — ng).

v=1 u=v v=1

We now show 7 = 0. Observe first from (2),

oo d
891)—;][(10]]9), vEY,
and ()
aa w 8 min(w,m m w a
a—p—;a—pﬂum( > gu):;gv(ga—pﬂum).



16

17

18

19

20

21

22

23

24

A.1 Proof of Theorem 3.1 Supplemental Material

For convenience of notation, define ¢ :=log L(g,p, 7 | S,). Therefore, for v € V,

ol 1 0@
- -7 E E ol _
0 « dg, 89v w08y T

v=1 u=v

——égf(u\pHg—':—w-

Observe,

ol 1 d .
gv( ):0:> _Engf(u|p)+h-v_7Tgv:O-

That is,
- o 1 — “ m "
Z%(@) =0 = —aZgy(Zf(u\p)) —l—Zh.v—Wng =0.
v=1 v v=1 u=v v=1 v=1

Because ), hey = 1, g, > 0 by assumption, and (2), we must have 7 = 0. Thus, any
stationary point of the unconstrained optimization of (3) will also be a stationary point of
the constrained optimization of (3) with solutions restricted to the convex subset, C. This

proves the final sentence of Theorem 3.1. Proceeding,

o,
I"Zf wlp)+ 7 =0 = o =g Ty 5

é’gu

Further,

ol 1 0«
a_p__aa_p 8pzzhuvlogf u|p)

v=1 u=v

1 hu O
(X0 )+ X e )

Hence, by (S.1),

ot
ap Gv

- [i(Zf )(Za )]*iiﬂ%maﬁpﬂ“'p)

v=1 v=1 u=v
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A.2  Proof of Corollary 3.1.1 Supplemental Material

2 (o) (B ) - R it

v=1 u=v

Thus,
o1 m i
gpgq,ZO(:};(Z“f )(Zap “‘p) ;;mp (u]p)

This proves (7). Finally, recall the constraint ) g, = 1. Hence, returning to (S.1), we must

have

1= 9. Zzwf >:‘“:[is<g7p>}_l'

veY vey

Therefore, for any p € Pand all v €V,

L a(ﬁ)ib.v _ Ry T iL.k !
P Fwlp) - S |p>[28<k|p>} |

This recovers (5) and completes the proof. O

A.2 Proof of Corollary 3.1.1

Proof. Without loss of generality, assume A = 0. The proof closely follows the proof of
Theorem 3.1, and so we omit repetitive details. Recall the form of the likelihood in (9) to

define the equivalent Lagrangian function

log L(g,p | S;) = —10ga+zzhw{10gf (u]p) +10ggv}+7r(1 -~ ng)

v=1 u=v
Because
Oa -
99 :Z:f(u|p)7 vey,
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A.3  Proof of Theorem 3.2 Supplemental Material

foryj=1,...,r, and

Olog L(g,p| S))
78 wap +——7T

for all v € V, it follows that 7 = 0. Further,

~

Ry
=0 < g, a

R T fulp)

dlogL(g,p|S))
g,

Thus, from (S.2) and

w

dlog L S') n hyy, O
: gf' zgv(z u|p) SN St ful )

v=1 u=v

it follows that

dlog L(g,p|S,)
8pj

=—-6()) +&0U) =0 = &) =&>U),Vi=1,...,m

9v

The set of simultaneous solutions, p, recovers the estimator (11). The proof is complete by

replacing p in (S.2) and using the constraint ), g, = 1 to recover (10). O

A.3 Proof of Theorem 3.2

Proof. Observe

E[wxi,n,p)]::i {(;%)(zap n) - Z a1
-3 (S (S e )ZfEuVT;aQ I

v=A+1

But E[W;(u,v)] = hy(u,v) and so for any v € {A+1,..., A+ m},

(%)(28}? ) Zf |p3p (u ] p)

4
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A.4 Proof of Corollary 3.2.1 Supplemental Material

- (B (g in) - X g s
)2

Go D gy J (U ﬁ fU\pgv
(wa Ua > Z alp) op? 1P
O ey
—a;apﬂ ;
= 0.

Hence, E[¢(X;,Y;, p)] = 0. Further,

n

Walp) =~ S (X0, Vi p),

n“
=1

and so ¥, (p) LN E[4(X;,Y;, p)] by the Law of Large Numbers (Lehmann and Casella, 1998,
Theorem 8.2, pg. 54-55). That U, (p,) = 0 is immediate by the conditions of (7). The
remainder follows the standard Taylor series analysis (e.g., van der Vaart, 1998, §5.3, pg.
51-52), with 0/0p(v) following by the quotient rule (Rudin, 1976, Theorem 5.3, pg. 104). O

A.4 Proof of Corollary 3.2.1

Proof. The result (12) follows from Theorem 3.2 and Slutsky’s Theorem (Lehmann and
Casella, 1998, Theorem 8.10, pg. 58). The latter result is a classical result of maximum
likelihood theory (e.g., van der Vaart, 1998, §5.5). O

A.5 Proof of Theorem 3.3

Proof. From the definition of the survival function in (6), the left-hand side of (7) becomes

A+m

DZZAH(W)(Z f“'p)ii(#)ap(zf i)
-y Coradl

v=A+1




A.5 Proof of Theorem 3.3 Supplemental Material

A+m
= > ha lnS (v | p)
v=A+1
A+m
= Z heIn S(v | p).
'v A+1
ss Similarly, on the right-hand side of (7),
A+m  w 9 w
> Z o O (wlp)=—2- > hulnf(ulp).
v=A+1 u=v f ap u=A+1

s Thus, (7) may equivalently be stated as

A+m w
{pEP Z hoInS(v | p) = Z ﬁu.lnf(u|p)},

U A+1 u:A+1

58 OI
P A+m w
3_( Z he,InS(v | p) — Z hulnf(u]p)>:0 (S.3)
PN, Zah u=A+1
s But,
A+m . w . A+m w .
Z hoInS(v|p) — Z hyIn f(u | p) = Z InS(v \p Z In f(u | p)
v=A+1 u=A+1 v=A-+1 u=A+1

:m<nfzm8w|m?>'
[l S| )P

oo Therefore, (S.3) may equivalently be written as

A+m hrew
0 (Imste o) o
Op \Ili—ays flulp)te

e Because f(u | p) > 0 for all w € U, p € P by assumption (and, by extension, S(u | p) > 0

e forallueU, peP), (S.4)is true if and only if,

0 LR S| p)™
OPTTioaen £l | )

=0.

6
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A.6  Proof of Theorem 3.4 Supplemental Material

This recovers (13) and completes the proof. O

A.6 Proof of Theorem 3.4

Proof. Without loss of generality, let A = 0. Given (14), the survival function becomes

Sr(u|p)=10-p*?t well,.. .  wh

Hence, (13) reduces to

oIl flu|p)e O P P

DI, S pt 9 (1—p) <1—p>“{ a b].
1-p p

Because 0 < p < 1,

(1—p)a{a b}zo(:) a

P’ l—p p

which is unique. Trivially, p € C. To find g, observe

siuln = (%)

for u € U. Hence, replace Sy(u | p) in (5). That g is unique follows from the uniqueness of

p. Further, by Theorem 3.1, g € C.

To see that p, g are together the global maximum of £, it is sufficient to examine the
behavior of ¢(g,p | S,) = ¢(g,p, 7 | S,) for the boundaries of C (recall the convexity of C).
When p =0, fr(u | p) =0 for all uw € {1,...,w — 1}. Thus, for any u € {1,...,w — 1},
log fr(u | p) } —oo and ¢(g,p | S,) cannot obtain a maximum. When p =1, fr(u | p) =0
for all uw € {1,...,w}. Thus, log fr(u | p) } —oo for all u € {1,...,w}, and ¢(g,p | S,)
similarly cannot obtain a maximum. For the boundaries of C in terms of G, the constraint

>, 9v = 1 requires at least one g, = 0 for any g, = 1 (or there is a g, = 0 directly). Hence,
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A.7 Statement & Proof of Corollary A.7.1 Supplemental Material

logg, | —oo and a maximum cannot be obtained. Therefore, p, g are the MLE for the

parameters p, g of the conditional bivariate probability mass function, h,, defined in (1). O

A.7 Statement & Proof of Corollary A.7.1

This section provides a restatement of Theorem 3.4 under an alternative parameterization.
Aside from completeness, one advantage of Corollary A.7.1 is the difference in parameter
space for p. Under the PL geometric distribution in (14), p € (0, 1), whereas p > 0 for (S.5)
in the discretized, PL exponential distribution. Such differences may have utility in any

generalized linear model (GLM) regression analysis build from the model of (1).

Corollary A.7.1 (MLE of g, p, discretized, PL exponential). Define the discretized, policy

limit exponential distribution with parameter, p > 0, as

exp(—{“_(AH)})P—exp(—%)} Atl<u<w-—1,

p

eXp(_{u—(A+1)}) e

p

fr(u|p) = (S.5)

Then, for the conditional bivariate probability mass function, h,, defined in (1), under the

sampling conditions of Theorem 3.1, the MLFE of the parameter p is

PMLE = —{ln <aib)}_l, (S.6)

where a and b follow (16) and (17) of Theorem 3.4, respectively. Further, Sp(- | p) is

equivalent for (S.5) with (S.6) to (14) with (15). Therefore, the MLE of g is equivalent to

(18) in Theorem 3.4.

Proof. Given the similarity to the proof of Theorem 3.4, we proceed with repetitive details

omitted. Without loss of generality, let A = 0. Given (S.5), the survival function then
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A.8 Proof of Theorem 4.1 Supplemental Material

becomes the continuous equivalent,

smmbwﬁitﬁ)

p

for w € {1,...,w}. Hence, (13) simplifies. To see this, let q(z | p) = q(z) = exp(—z/p) for

z€{l,...,w} to write

9T S ) gl =g} bog()
OpTIe_, fu | p)he p? ( " ) '

Because p > 0,

That is,

=[n(G)]

which is unique. Trivially, p € C. To find g, replace Sr(u | p) in (5). That g is unique
follows from the uniqueness of p. Further, by Theorem 3.1, g € C.

To see that p, g are together the global maximum of £, it is sufficient to examine the
behavior of {(g,p | S,) = 4(g,p, 7 | Sn) for the boundaries of C. The analysis proceeds as in
the final steps of the proof of Theorem 3.4. Therefore, p, g are the MLE for the parameters

p, g of the conditional bivariate probability mass function, h,, defined in (1). H

A.8 Proof of Theorem 4.1

Proof. The proof is similar to the proof of Theorem 3.1, and so we proceed with less detail.

Without loss of generality, let A = 0. For convenience of notation, define ¢, :=log L,(g,p |



A.8 Proof of Theorem 4.1 Supplemental Material

s S:p). The Lagrangian function (e.g., Ravishanker and Dey, 2002, §2.9, pg. 69) becomes

KT = - 10gO[ + Z ’3/,1(1)) loggv
v=1

b S ADog F(Zi 1)+ (1= D) ogS(Zi+ 1 )} +7(1- 3o ).

v=1

110 Because

oty . .
= a( DSl Fawg

111 we have

ng<%) =0 << 7=0,
0y

v=1
2 as y, Jn(v) = 1. Thus, any stationary point of the unconstrained optimization of £, will
us  also be a stationary point of the constrained optimization of £, with solutions restricted to

s the convex subset, C. This proves the final sentence of Theorem 4.1. Further, for all v € V,

ol
99,

. o a/’Ayn(?J)
fr—O — gv——zgzvf(um). (S.7)

115 Thus, via (87),

0= 2 (S )

v=1

1< D, @ 1D, 8
:5;<m8_pf(z"|p>+ma—p5(2i+lyp)),

ol
Op

us Finally, because we require ), g, = 1, we have, for any p, € P.and v €V,

117 D

10
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A.9 Proof of Corollary 4.1.1 Supplemental Material

A.9 Proof of Corollary 4.1.1

Proof. Without loss of generality, assume A = 0. The proof closely follows the proof of
Corollary 3.1.1 and Theorem 4.1, and so we omit repetitive details. Recall the form of

L.(g,p | S:n) to define the equivalent Lagrangian function

log‘CT(g?p | ST,n) - _loga + ZZ’%L(U) loggv

v=1 u=v

1 n
+ o 2ADiog (7| )+ (1= D) og S(Zi+ 11 p)}

+ 7 (1 — ng)
v=1

Because
dlog L.(g,p | Srn) 1O A (v
O2[T) S pulpy+ Y
for all v € V, it follows that 7, = 0. Further,
dlog L-(g,p | Srn) )
’ =0 «<— Oy = <o - S.8
o . S (P (58)

Thus, from (S.8) and

dlogL,(g,p|S-n) 1 (0a
op; Q

o \dp;
1 < D. o 1_D. 5

T T [P+ o5 S(Zi+ 1 :
”;(f(zilp)apjf( P) S(Z; + 1| p) Ip; ( |p>>

it follows that

dlog L:(g,p | Srn)
8pj

/

=—p1(J) +¢2(J) =0 <= 01(j) =2(j),Vi=1,....,7"

gu

The set of simultaneous solutions, p,, recovers the estimator (23). The proof is complete by

replacing p; in (S.8) and using the constraint ) ,, g, = 1 to recover (22). O

11



A.10 Proof of Theorem 4.2 Supplemental Material

s A.10 Proof of Theorem 4.2

1o Proof. Recall D = 0 if an observation is right-censored and D = 1 otherwise (see Section 4

o as needed). It is first instructive to show by (2) and (6),

ZZZ{lD d)h,(u,v) + (1 = 1(D = d))h.(u,v)}
—29”22 (D=d)f(u|p)+(1—1(D=d)S(u+1]p))

2 al ¥ st X swin)
v=A+1 U=V:U=V+T u=v:u<v+T1
m+A v+T
-y gv[swwl 9+ 3 f(ul )]
v=A+1 u=v
m+A
v=A+1 u=v
= 17
1 is a valid probability density. Hence,
E[wT(}/M Z?n D27p>] = E[gl(ym ZZ7 D27p>] - E[§2(}/Z7 ZZ) Dlap)]7 (89)
1:2 where
A+m
1(Y; = v,)
}/;;ZiaDia = w
& =3 (z o )(Z Sl )
133 and
D; 0 1—D; 0
Vi ZoDup) = s o D)+ gz gy St !

132 We consider each expectation of (S.9) in turn for any i, 1 < ¢ < n. Observe,

E[gl(y;a Zza Dl7p)]

12
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A.10 Proof of Theorem 4.2 Supplemental Material

m+A  w 1

= 3 S S (@ = Do) + (1 - 1(d = 1) (u,0) Y (v, 1, d, p)
v=A+1 u=v d=0
m-+A w

R I e ]
- 3 M fuin))

u=v:u<v+T1

:vril%{égiff,((5||§)):|{5(v+7+1>+:+§f(u|p)}
S (% Zrwln).
et uzvap

Similarly,

E[&(Y;,Zi,Di,p)]
= > > > {1(d = Dhu(u,v) + (1 = 1(d = 1))k (u,0) } (v, u,d, p)

_ S(u+1|p)g, S'(u+1]p) L f(u|p)gs f'(u ] p)
‘Z{ 2 « Swrtlp T 2 T a f(U\p)}

v=A+1 U=v:u=v+7 u=v:u<v+T1

- mif %{S'(U+T+1) +§5f’(u |p)}

v=A+1 U=
a5

-3 2 prln)
v=A+1 a u=v ap

Thereforea E[fl(K; Zia DwP)] = E[&Q(K) Zia Dl7p)] and E[¢T(K7 Zi7 DZ7p)] =0 for all 1 < i <
n. Further,

1 n
Ven(p) =~ - (Y0, Zi, Di,p),
=1

and so U, ,(p) P, U, (Y;, Zi, D;,p) by the Law of Large Numbers (Lehmann and Casella,
1998, Theorem 8.2, pg. 54-55). That ¥, ,(p,) = 0 is immediate by the conditions of (21).
The remainder follows the standard Taylor series analysis (e.g., van der Vaart, 1998, §5.3,

pg. 51-52), with 9/0p(1),) following by the quotient rule (Rudin, 1976, Theorem 5.3, pg.

13
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A.11 Proof of Corollary 4.2.1 Supplemental Material

104). 0

A.11 Proof of Corollary 4.2.1

Proof. The result (24) follows from Theorem 4.2 and Slutsky’s Theorem (Lehmann and
Casella, 1998, Theorem 8.10, pg. 58). The latter result is a classical result of maximum
likelihood theory (e.g., van der Vaart, 1998, §5.5). ]

A.12 Proof of Corollary 4.2.2

Proof of Corollary 4.2.2. The novelty of this proof in comparison to the proof of Theorem 3.4
is to first derive the equivalent statement of Theorem 3.3 under the additional incomplete

data setting of right-censoring. We now do this formally.

Lemma 1 (Equivalence of 757) Assume the conditions of Theorem 4.1. Then p € P, if and

only if
oI, 12 | DS (2t 1] p oo '
Proof of Lemma 1. Observe first
A+m A+m
Yo = Z U|P) ( > %(v)lns(vlp)>-
vAH(ZMfMp)( op op\
Similarly,

1 D; 8 1—-D; 0
52( 7| (Zi|P)+m 5(Z+1|P)>
0
ap\n

Z{Dlan|p) (L= D)WS(Z+1] D} )

14
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A.12  Proof of Corollary 4.2.2 Supplemental Material

Hence, the conditions on p in the set P, are equivalent to all p € P such that

A+m
3( S Gu(0)nS(v | p)

ap v=A+1
1 n
— L 2 ADWf(Zi | p)+ (1= D) S(Z+1] p)}> = 0. (S.11)
i=1
But,
Stm A+m
Z An(v)InS(v | p) = 1In < H S(v | p)%(v))
v=A+1 v—At1
and

%Z{Dilnf(Zi |p)+ (1 —D;)InS(Z; +1|p)}

=In (ﬁf(zi | p)P/"S(Z; 4+ 1| p)(l_Di)/n)

i=1

Therefore, the conditions on p in (S.11) are equivalent to

(S.12)

0 ( [T28 (v [ p) > i

—1
op  \II, f(Z: | p)P/nS(Z; + 1| p)0-—D/n

But f(- | p),S(-| p) > 0 for all p € P,. Thus, (S.12) is true true if and only if (S.10) is true,

completing the proof. O

To complete the proof of Corollary 4.2.2; recall (14) and observe

A+m
H S(v | )i = (1 — p)2v = (AF ()
v=A-+1

n

Hf(Zz ‘ p)Di/n — p(zz'l(zi#w)Di)/n(l _ p)(Zi(Zi—(AH))Di)/n

i=1

Y

and
n

H S(Z;+1| p)(l_Di)/" =(1— p)(Zi(Zi+1_(A+1))(1_Di))/n.

=1

15
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Thus, we obtain the simplified form of (S.10) in Lemma 1.

9 272, S(o [ ) _oa-p~
Op [Ty f(Zi | p)P/mS(Zi + 1| p)i=Pd/m = dp  phr
The remainder of the proof follows the proof of Theorem 3.4. O]

B Likelihood with Censoring

In this section, we numerically illustrate how the presence of right-censored data that gen-
erates h, and h, impacts the likelihood, £, of Section 4. Suppose g(1) = 0.5, g(2) = 0.30,
and ¢(3) = 0.20. Hence, A = 0 and m = 3. Further suppose X follows (14) with p = 0.6
and w = 4. That is, Pr(X = 1) = 0.6, Pr(X = 2) = 0.24, Pr(X = 3) = 0.096, and
Pr(X =4) = 0.064. Finally, set ¢ = 6, and so right-censoring is present in the data because
e < w+m (Lautier et al., 2023). The complete probability density function for all possible
samples of (Y;, Z;, D;) may be found in Table B1.

We can see that not all possible combinations of (Y;, Z;, D;) are observable when & = 6.
For example, (Y; = 2,Z; = 2,D; = 0) is not a possible observation because the censoring
time, V;+e—(m+A+1)=Y;+ 7, would be Y;+7=4>2= 7. Hence, D, = 1(X; < C})
cannot be equal to 0. Of the 18 possible combinations of (Y;, Z;, D;), we present all 10
possible observations in Table B1. It may be verified that the sum of the h, and h, columns
in Table B1 taken together is unity. This is a numeric validation that the likelihood under
right-censoring, L., is formed through a valid probability density function. A more formal

demonstration may be found in Section A.10, in the lead up to (S.9).

16
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Y, Zi Dy g(Yy) f(Z) S(Zi+1) h'(ZYi) h(Z,Y:)
1 3 0 050 0.09 0.064 0.0491 —

2 4 0 030 0.064 0.000 0.0000 —

1 1 1 050 0.600 0.064 — 0.4601
1 2 1 050 0.240 0.064 — 0.1840
1 3 1 050 0.09 0.064 — 0.0736
2 2 1 0.30 0.240 0.000 — 0.1104
2 3 1 030 0.09 0.000 — 0.0442
2 4 1 030 0.064 0.000 — 0.0294
3 3 1 0.20 0.09 0.000 — 0.0294
3 4 1 020 0.064 0.000 — 0.0196

Table B1: Complete Density Right-Censoring. The complete density function for all possible
sampling triples (Y;, Z;, D;) under right-censoring and the density assumptions of Section B with
€ = 6. The probability mass function h, is only valid when Y; + 7 = Z;. The probability mass
function h, is only valid when Z; <'Y; + 7. This implies not all triples of (Y;, Z;, D;) are possible
observations. It may be verified that the sum of the h, and h, columns together is unity.

C Implementation Reference

Recall the PL geometric distribution with parameter, 0 < p < 1, defined in Theorem 3.4,

p(1—p)= @A) Atr1<u<w-—1,
fr(ulp) =

(1 —p)=B+D gy =w.

Then,
0 _ oy Llu#w) u—(A+1)
S drtulp) = frtu | ) (F2 220y,
0? B u—(A+1) fu—A=-2 2x1(u#w)
Sratntul p) = frlu )| “E (M uze),
a%sm p) = (A+1—u)(1—p)2,
and

2

88—]92ST(U Ip)=(u—A—=2)(u—A—-1)(1- p)“’A’?’.

17
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For a shifted binomial distribution over the support {A+1, ..., w} with probability of success

0 < 6 < 1, we have the probability density function

f(M%z(Z’iEiii)))eu<A+1>(1—9)M, ue{A+1,... w}
Thus,
0 B u—(A+1) w-—u
Sl )= sl (“=GEN e,
and
o2
ey
B (u—A—=1)(u—A—-2) u—(A+l)w—-—u (w—u)lw—u—1)
_f(um( Z T 1-e T (-ep )

D Simulation Procedure Outline

To simulate left-truncated data from the distribution A, defined in (1), the following proce-

dure may be employed.

1. Select values for A, m, and w and create a pairwise mapping for all possible pairs

(u,v) € A, where A+ 1 <v<A+m A+1<u<w,and u <.

2. Select a distribution and parameters for the lifetime distribution, X, f(- | p) and the

left-truncation distribution, Y, g.

3. Using the choices in the previous step, calculate (1) over all pairs (u,v) € A. This will

require calculating the probability a.

4. Starting with the pair (A 4+ 1, A + 1) and ending with the pair (w, A + m), create a
one-to-one lower bound mapping from 0 by cumulative sums t0 3~ 4 Ay P (U, ).

Call this lower bound | H,(u,v)] for (u,v) € A.

18



205

206

207

208

210

211

212

213

214

215

216

217

218

219

220

REFERENCES

Supplemental Material

w v |H(uv)] [H(uv)]
1 1 0.0000000 0.1856436
2 1 0.1856436 0.3155941
2 2 0.3155941 0.3935644
3 1 0.3935644 0.4845297
3 2 0.4845297 0.5391089
3 3 0.5391089 0.5754950
4 1 0.5754950 0.7877475
4 2 0.7877475 0.9150990
4 3 0.9150990 1.0000000

Table D1: Illustrative Simulation Mapping. The above table illustrates how to simulate
left-truncated data from the bivariate distribution, h, defined in (1) for f following (14) with
p=0.30 and g = (0.5,0.3,0.2) ". For example, a random uniform number from the interval (0, 1)
of 0.4000497 would result in the simulated pair (3,1).

5. Starting with the pair (A + 1, A + 1) and ending with the pair (w, A + m), create a
one-to-one upper bound mapping from h,(A+1, A+ 1) by cumulative sums to 1. Call
this upper bound [H,(u,v)] for (u,v) € A.

6. Simulate a continuous uniform random number in the interval (0,1), say p. The sim-
ulated pair (u,v) € A is the pair such that | H.(u,v)| < p < [H.(u,v)]. Repeat as

needed for the desired sample size.
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