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Asset-Backed Securities

Figure: A recent estimate of total issuance of asset-backed securities
(ABS) in the U.S. securities market is a stunning $297,763.3 million
(SIFMA, 2022).
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Visualizing ABS cash-flows

Suppose an ABS of n loans is active for s months:

Loan (Age) Month 1 Month 2 . . . Month s

L1(x1) CF1(x1+1) CF1(x1+2) . . . CF1(x1+s)

L2(x2) CF2(x2+1) CF2(x2+2) . . . CF2(x2+s)
...

...
...

...
...

Ln(xn) CFn(xn+1) CFn(xn+2) . . . CFn(xn+s)

ABS CF
n∑

j=1

CFj(xj+1)

n∑
j=1

CFj(xj+2) . . .

n∑
j=1

CFj(xj+s)

The ABS cash-flows are random variables that are heavily
influenced by the time-to-termination probability distribution.

J.P. Lautier p̂ MLE 5 / 29



Application specific data challenges

1 T m m+∆ m+∆+ 1 ε m+ ω

Y

C

Figure: Asset-level lifetime data sampled from ABS will be subject to:
left-truncation, right-censoring, and discrete-time over a known, finite
support (i.e., a 72-month consumer auto loan). The triplet of
left-truncation, discrete-time, and a known, finite support has received
limited study (Lautier et al., 2023a).
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Conditional bivariate sample space, A

∆+ 1 ∆+ 2 ∆+m ω

∆+ 1

∆+ 2

∆+m

y = x

x
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Figure: The conditional bivariate distribution between the left-truncation
random variable, Y , and the lifetime random variable, X , is
h∗(u, v) = Pr(X = u,Y = v | Y ≤ X ), for (u, v) ∈ A. ABS loan-level
data is sampled from h∗, and we seek to recover X .
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A semi-parametric question

▶ Previous results treat h∗ as a “parametric-non-parametric”
distribution (Lautier et al., 2023a,b, 2024, E&S, IME, SPL).

▶ That is, the parameters of Y are g(v), ∆ + 1 ≤ v ≤ ∆+m,
and the parameters of X are f (u), ∆ + 1 ≤ u ≤ ω. Hence, by
X ⊥ Y ,

h∗(u, v) =
f (u)g(v)

α
, (u, v) ∈ A,

where α = Pr(Y ≤ X ).

▶ For economic modeling, it is desirable that X depends on
economic variables. Hence, we consider the “semi-parametric”

h∗(u, v | p) = f (u | p)g(v)
α

, (u, v) ∈ A, p ∈ P.
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Left-truncation: Estimating p

Given an i.i.d. sample of pairs of left-truncated observations,
Sn = {(Xi ,Yi )1≤i≤n}, it is of interest to estimate the parameters
of h∗. From h∗, the likelihood is

L(g , p | Sn) =
∆+m∏

v=∆+1

ω∏
u=v

[
f (u | p)gv

α

]∑n
i=1 1(Xi ,Yi )=(u,v)

,

where g = (g(∆ + 1), . . . , g(∆ +m))⊤ ⊂ G and G is an
m-dimensional hypercube over the unit interval, I = (0, 1). If we
denote the convex subset,

C =

{
P × G :

∑
v∈V

g(v) = 1

}
⊂ P × G,

then we seek
sup
p,g∈C

L(g , p | Sn).
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Theorem 1: Stationary points of L over C
Let Sn be an i.i.d. sample of left-truncated observations from the distribution h∗.
Then the stationary points of L(g , p | Sn) are

ĝv =
ĥ•v

S(v | p̂)

[ ∆+m∑
k=∆+1

ĥ•k

S(k | p̂)

]−1

, v ∈ V,

where S(·) denotes the survival function,

S(x | p) := Pr(X ≥ x | p) =
ω∑

u=x

f (u | p),

and p̂ is any p ∈ P̂ ⊂ P, where

P̂ =

{ ∆+m∑
v=∆+1

(
ĥ•v∑ω

u=v f (u | p)

)( ω∑
u=v

∂

∂p
f (u | p)

)
=

∆+m∑
v=∆+1

ω∑
u=v

ĥuv

f (u | p)
∂

∂p
f (u | p)

}
,

and

ĥuv =
1

n

n∑
i=1

1(Xi ,Yi )=(u,v).

Further, p̂ ∈ C and ĝv ∈ C for all v ∈ V.
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Theorem 1 comments

▶ To our knowledge, p̂ in Theorem 1 represents a new estimator.

▶ No restrictions on the distribution of Y (e.g., length-bias
sampling requires Y to be uniform).

▶ Computational savings: the forms of P̂ and ĝ reduce a
multi-dimensional constrained optimization problem into a
single-parametric optimization problem.

▶ General form of f (· | p) allows flexibility in choice of f .
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Corollary 1.1: Stationary points of L over C
Let S′

n be an i.i.d. sample of left-truncated observations from the distribution
h∗(u, v | p) subject to the same identifiability conditions of Theorem 1. Then the
stationary points of L(g , p | S′

n) are

ĝv =
ĥ•v

S(v | p̂)

[ ∆+m∑
k=∆+1

ĥ•k

S(k | p̂)

]−1

, v ∈ V,

where p̂ is any p ∈ P̂ ⊂ P, with

P̂ = {p ∈ P : ξ1(j) = ξ2(j), for all j = 1, . . . , r},

ξ1(j) =
∆+m∑

v=∆+1

(
ĥ•v∑ω

u=v f (u | p)

)( ω∑
u=v

∂

∂pj
f (u | p)

)
,

and

ξ2(j) =
∆+m∑

v=∆+1

ω∑
u=v

ĥuv

f (u | p)
∂

∂pj
f (u | p).

Further, p̂ ∈ C and ĝv ∈ C for all v ∈ V.
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Theorem 2: Equivalence of P̂
Assume the conditions of Theorem 1. Then p ∈ P̂,

P̂ =

{ ∆+m∑
v=∆+1

(
ĥ•v∑ω

u=v f (u | p)

)( ω∑
u=v

∂

∂p
f (u | p)

)
=

∆+m∑
v=∆+1

ω∑
u=v

ĥuv

f (u | p)
∂

∂p
f (u | p)

}
,

if and only if

∂

∂p

∏∆+m
v=∆+1 S(v | p)ĥ•v∏ω
u=∆+1 f (u | p)ĥu•

= 0,

where

ĥ•v :=
ω∑

u=v

(
1

n

n∑
i=1

1(Xi ,Yi )=(u,v)

)
,

and

ĥu• :=

min(u,∆+m)∑
v=∆+1

(
1

n

n∑
i=1

1(Xi ,Yi )=(u,v)

)
.
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Theorem 3: MLE of g , p, RT geometric
Define the right-truncated geometric distribution with parameter, 0 < p < 1, as

fT (u | p) =

{
p(1 − p)u−(∆+1) ∆ + 1 ≤ u ≤ ω − 1,

(1 − p)u−(∆+1) u = ω.

Then, for the conditional bivariate probability mass function, h∗, under the sampling conditions of Theorem 1, the
MLE of the parameter p is

p̂MLE =
b

b − a
,

where

a =
∆+m∑

v=∆+1

{v − (∆ + 1)}ĥ•v −
ω∑

u=∆+1

{u − (∆ + 1)}ĥu•,

and

b =

ω−1∑
u=∆+1

ĥu•.

Further, the MLE of g is

{ĝv,MLE}v∈V = ĥ•v

(
1 −

b

a

)v−(∆+1)[ ∆+m∑
k=∆+1

ĥ•k

(
1 −

b

a

)k−(∆+1)]−1
.
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Right-censoring: Estimating p

From Lautier et al. (2023b), define the right-censoring random variable,
C = Y + ε− (m +∆+ 1) ≡ Y + τ (note: C ⊥ X ) The observed data takes
the triple Sτ,n ≡ {Yi ,Zi ,Di}1≤i≤n, where Zi = min(Xi ,Ci ) and Di = 1 if
Xi ≤ Ci and 0 otherwise. Thus, the likelihood for Sτ,n becomes

Lτ (g , p | Sτ,n) =
∏

{Sτ,n :Di=1}

g(Yi )f (Zi | p)
α

∏
{Sτ,n :Di=0}

g(Yi )S(Zi + 1 | p)
α

= α−n
m+∆∏

v=∆+1

g(v)nγ̂n(v)
n∏

i=1

f (Zi | p)DiS(Zi + 1 | p)1−Di ,

where

γ̂n(v) =
1

n

n∑
i=1

1(Yi = v).

As with Theorem 1, we seek

sup
p,g∈C

Lτ (g , p | Sτ,n).
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Theorem 4: Stationary points of Lτ over C
Let Sτ,n be an i.i.d. sample of left-truncated observations from the distribution h∗
under the additional incomplete data setting of right-censoring. Assume the
identifiability conditions of Theorem 1. Then the stationary points of Lτ (g , p | Sτ,n)
are

ĝτ (v) =
γ̂n(v)

S(v | p̂τ )

[ ∆+m∑
k=∆+1

γ̂n(k)

S(k | p̂τ )

]−1

, v ∈ V,

where S(·) denotes the survival function defined in Theorem 1, and p̂τ is any
p ∈ P̂τ ⊂ P where

P̂τ =

{
p ∈ P :

∆+m∑
v=∆+1

(
γ̂n(v)∑ω

u=v f (u | p)

)( ω∑
u=v

∂

∂p
f (u | p)

)

=
1

n

n∑
i=1

(
Di

f (Zi | p)
∂

∂p
f (Zi | p) +

1− Di

S(Zi + 1 | p)
∂

∂p
S(Zi + 1 | p)

)}
.

Further, p̂τ ∈ C and ĝτ (v) ∈ C, for all v ∈ V.
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Theorem 4 comments

▶ To our knowledge, p̂τ in Theorem 4 represents a new
estimator.

▶ The ability to handle right-censoring greatly expands potential
applications.

▶ No restrictions on the distribution of Y (e.g., length-bias
sampling requires Y to be uniform).

▶ Computational savings: the forms of P̂τ and ĝτ reduce a
multi-dimensional constrained optimization problem into a
single-parametric optimization problem.

▶ General form of f (· | p) allows flexibility in choice of f .

▶ The equivalent to Corollary 1.1 may be shown (i.e., pτ ) but is
omitted from this talk for brevity.
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Corollary 4.1: MLE of g , pτ , RT geometric, right-censoring

Recall the right-truncated geometric distribution with parameter, 0 < p < 1, defined
in Theorem 3. Then, for the conditional bivariate probability mass function, h∗, under
the sampling conditions of Theorem 4, the MLE of the parameter p is

p̂τ,MLE =
bτ

bτ − aτ
,

where

aτ =
∆+m∑

v=∆+1

{v−(∆+1)}γ̂n(v)−
1

n

n∑
i=1

(
{Zi −(∆+1)}Di +{Zi +1−(∆+1)}(1−Di )

)
,

and

bτ =
1

n

n∑
i=1

1(Zi ̸= ω)Di .

Further, the MLE of g is

{ĝτ,MLE(v)}v∈V = γ̂n(v)

(
1−

bτ

aτ

)v−(∆+1)[ ∆+m∑
k=∆+1

γ̂n(k)

(
1−

bτ

aτ

)k−(∆+1)]−1

.
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Two Illustrations

Let m = 3, ∆ = 0, and ω = 4. Hence, the bivariate distribution h∗
is a 4× 3 trapezoid with nine possible combinations (see next
slide). For the left-truncation random variable, Y , we assume
g(1) = 0.5, g(2) = 0.3, and g(3) = 0.2. We consider:

(1) Theorem 1: Set ε = 7 = ω +m (no right-censoring) and
X ∼ Binom(ω − 1 ∈ Z, 0 < θ = 0.3 < 1). That is,

f (u | θ) =
(

3

u − 1

)
θu−1(1− θ)3−(u−1), 1 ≤ u ≤ 4.

(2) Corollary 4.1 Set ε = 6 =⇒ τ = ε− (m +∆+ 1) = 2
(right-censoring is present) and X ∼ fT (p = 0.6).

J.P. Lautier p̂ MLE 21 / 29



Simulation study sample space

1 2 3 4

1

2

3

y = x

x

y

Figure: Visualization of the simulation study sample space.
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Results summary

Parameter Actual constrOptim Speed (Ns) Theorem 1 Speed (Ns)
θ 0.30 0.3165660 1554.602 0.3165729 3.539

g(1) 0.50 0.5114408 0.5114206
g(2) 0.30 0.2934628 0.2934616
g(3) 0.20 0.1951772 0.1951178

Parameter Actual constrOptim Speed (Ms) Corollary 4.1 Speed (Ms)
p 0.60 0.5992329 1331.172 0.5991903 6.596

g(1) 0.50 0.4652415 0.4655774
g(2) 0.30 0.2972558 0.2975195
g(3) 0.20 0.2367859 0.2369030

Table: Numeric Validation and Performance Summary. Sample sizes
n = 982 (top) and n = 983 (bottom). Direct multidimensional
optimization (constroOptim via R Core Team (2023)). The
performance calculations were measured with the microbenchmark
package (Mersmann, 2023) (reported times approximate).
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Ally Auto Receivables Trust 2017-3

▶ We consider a subset of n = 151 25-month consumer auto
loans from the Ally Auto Receivables Trust 2017-3 securitized
bond (Ally, 2017).

▶ The time-to-event of interest is the
time-until-monthly-payments stop (either default or
prepayment).

▶ Loans with observed termination times beyond 26 months
(i.e., 27, 28, and 29 months) were treated as full-term 26
month loans. Such an adjustment has minimal practical
significance.

▶ For this data, ∆ = 3, m = 21, ω = 26, and
ε = 67 =⇒ τ = 42 (and thus no right-censoring).

▶ There are thus 21 parameters to estimate, which limits the
effectiveness of computational approaches.
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Model fitting results
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Figure: A comparison of the “non-parametric-parametric” approach of
Lautier et al. (2023b) with 95% confidence intervals (blue line + ribbon)
of the hazard rate to p̂MLE = 0.0309 using Corollary 4.1. A chi-square
goodness of fit test results in a p-value of 0.3271.
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Conclusion

▶ We propose a new estimator for discrete lifetime data with a
known, finite support under incomplete data (left-truncation
& right-censoring).

▶ It does not require any assumptions about the left-truncation
random variable (i.e., length-biased sampling) and offers
computational savings.

▶ For a right-truncated geometric distribution, appropriate for
consumer loan analysis, we derive the MLE for the parameter,
p. All results verified numerically.

▶ We illustrate our results with the Ally Auto Receivables Trust
2017-3 securitized bond.

▶ Next, we return to the original question: can we link p to a
set of economic variables?
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Thank you!

Jackson P. Lautier, PhD, FSA, CERA, MAAA
e: jlautier@bentley.edu

w: www.jacksonlautier.com
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