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Abstract5

Risk-based pricing within consumer lending is ubiquitous. It considers both prevailing6

interest rates and the credit profile of a borrower to determine the cost of borrowing.7

All else equal, higher default risks pay higher borrowing costs. This cost is the annual8

percentage rate (APR), and it is set at the loan’s origination. A borrower’s credit profile9

is dynamic, however, and the risk of default gradually declines for current loans. In10

this article, we derive a novel large-sample statistical hypothesis test suitable for loans11

sampled from asset-backed securities to populate a credit risk transition matrix between12

consumer credit risk groups. We find that current loans in all risk groups eventually13

converge to the top credit tier before scheduled termination, a phenomenon we call14

credit risk convergence. We then use these convergence estimates for two empirical15

economic studies. We first estimate that lender conditional risk-adjusted expected16

profits significantly increase as high-risk, high-APR borrowers stay active and paying.17

We then estimate current borrowers are entitled to $1,153-$2,327 in potential credit-18

based savings from their improving risk profiles. Because we study consumer auto19

loans, a large-scale and essential economic good, we opine on the social implications of20

these results and suggest areas of further study.21
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Credit Risk Convergence

1 Introduction24

The consumer auto lending market in the United States operates on a massive scale: con-25

sumer auto asset-backed securities (ABS) issuance tops $200 billion (Securities Industry26

and Financial Markets Association, 2023) and consumer automobile debt generally exceeds27

$1,400 billion (Federal Reserve, 2023). The vast majority of these loans are assigned a price28

under the standard practice of risk-based pricing (e.g., Edelberg, 2006; Phillips, 2013). Risk-29

based pricing considers both prevailing interest rates and the risk of default. All else equal,30

borrowers perceived to be a higher risk of default will be charged a higher borrowing cost31

to compensate the lender. This higher borrowing cost, which is effectively a higher annual32

percentage rate (APR), is set at the time the loan is originated. A borrower’s instantaneous33

credit risk is dynamic, however, and it generally declines the longer a borrower stays ac-34

tive and paying. In this article, we utilise novel statistical methods to carefully study the35

staleness of a consumer’s APR against the dynamism of a consumer’s default risk.36

The statistical methods we derive and employ allow us to utilise large pools of consumer37

automobile loans sampled from ABS (e.g., Securities and Exchange Commission, 2014).38

Specifically, such data is subject to incompleteness in the form of left-truncation and right-39

censoring, and the nature of financial loans requires a competing risks model to differentiate40

between defaults and prepayments. Similar statistical approaches have appeared in the study41

of auto loans (e.g., Heitfield and Sabarwal, 2004; Agarwal et al., 2007, 2008), but they do42

not operate under the assumption of discrete time. The discrete time assumption is more43

appropriate than continuous time for monthly auto loan data, and we assume it at the onset44

in deriving our asymptotic results. Furthermore, in studying the default risk hazard rate,45

we provide estimates for default risk in a current month conditional on survival. This is46

precisely a dynamic view of borrower credit risk. In organizing the data by credit risk band,47

we arrive at a formal statistical hypothesis test to determine the exact month a current48

borrower migrates into a superior credit risk band. We refer to this point as the moment of49

credit risk convergence between risk bands. Such a hypothesis test has not yet appeared to50

our knowledge, and it allows for us to obtain financial estimates of the theoretical cost to51

current borrowers that continue to pay an APR that does not dynamically adjust to their52

improving conditional risk profile.53

With the necessary statistical methods in hand, we turn our attention to a formal empir-54

ical analysis. This is the central objective of our efforts. We find evidence that conditional55

credit risk converges between disparate risk bands of 72-73 month auto loans after just 1256

months. Even for risk bands with large differences in their initial credit risk assessment,57

convergence in conditional credit risk occurs well before scheduled termination (e.g., sub-58
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1 INTRODUCTION Credit Risk Convergence

prime loans behave like super-prime credits after 48 months of payments). For complete risk59

band transition matrix details, see Section 3 and Table 1. All results withstand a series of60

robustness checks, the details of which may be found in the Supplemental Material. No-61

tably, because collateralised loans on used autos have rapidly depreciating collateral values62

(Storchmann, 2004), these results cannot be explained by traditional loan-to-value (LTV)63

default behaviour expectations (e.g., Deng et al., 1996). The entirety of the methodological64

treatment and subsequent data analysis to estimate the point two different risk bands con-65

verge in a go-forward assessment of credit risk, i.e., the credit risk convergence analysis, may66

be found in Sections 2 and 3, respectively.67

Because the APR of consumer automobile loans has a wide range (approximately 0-30%),68

there are significant financial implications to our empirical credit risk convergence estimates.69

We thus subsequently present a two-part empirical study of the financial details. The first70

part studies a lender’s expected profitability with an actuarial analysis. That is, we use71

our hazard rate estimates to solve for an expected risk-adjusted rate of lender profitability72

conditional on loan survival. We find that lender profits are back-loaded, which is consistent73

with the insurance-like pricing for pools of risky loans. In other words, the high-risk, high-74

APR borrowers that don’t default gradually become more profitable to the lender. These75

greater profits help compensate the lender for the high-risk, high-APR borrowers that do76

default. Socially, this arrangement may be viewed as a wealth transfer from high-risk, low-77

income borrowers to other high-risk, low-income borrowers. This runs counter to wealth78

redistribution schemes like progressive taxation, in which those with higher incomes make79

larger financial contributions to shared goods than those with lower incomes.80

In the second part of our empirical financial study, we shift our focus to the consumer.81

We estimate the potential savings available to consumers, assuming the average borrower82

in one risk band refinanced at the average rate in a superior risk band, once eligible based83

on our credit risk convergence point estimates (ceteris paribus). We find that the riskiest84

borrowers (deep subprime, subprime) can potentially save between $11-63 dollars in monthly85

payments or $193-1,616 in total by refinancing. Our estimates suggest deep subprime and86

prime borrowers should refinance after about 42 and 50 months, respectively, when they87

become prime borrowers. We find evidence that these borrowers generally wait too long88

to refinance. In a surprise, we find that less risky loans (near-prime, prime) leave even89

more money on the table, with total savings ranging from $160-2,327 (or $13-56 in monthly90

payments). Our estimates suggest that near-prime and prime borrowers should refinance91

quickly, after about only one year, but they also generally wait too long. Hence, in a result92

counter to expectations about borrower sophistication, it is the near-prime and prime loans93
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Credit Risk Convergence

that behave less efficiently.1 For more details, see Section 4.94

We proffer the results of this article offer both potential intellectual and social benefits.95

Let us first discuss the former, by which we contextualise our research results. To begin,96

the observation that default risk for collateralised loans declines as a borrower continues97

to make payments is generally known. Within finance, it is the concept of loan seasoning,98

which is well-documented for residential mortgages (e.g., Adelino et al., 2019) (see also the99

Supplemental Material for an introduction). Our study differs from this in meaningful ways,100

however. First, we address loans secured by used automobiles, which is a type of collateral101

known to rapidly depreciate in value (Storchmann, 2004). Hence, the loan seasoning we102

document runs counter to traditional loan-to-value (LTV) default behaviour expectations103

(e.g., Campbell and Cocco, 2015). Second, it is not demonstrating that default risk declines104

that is our main interest. Rather, we desire to indicate the precise moment a borrower’s105

default risk changes, and it is our novel statistical methods that allow us to do so. Third,106

our estimated savings to consumers are attributable to a potential credit-based refinance,107

which differs from the traditional interest rate-based refinance analysis (e.g., Keys et al.,108

2016; Agarwal et al., 2017; Andersen et al., 2020). Finally, we of course study automobiles,109

which is not the focus of many related mortgage studies (e.g., Deng et al., 2000; Calhoun110

and Deng, 2002; Ambrose and Sanders, 2003; Jones and Sirmans, 2019).111

What of the potential social benefits of our work? More broadly within consumer auto-112

mobile research, there is evidence that consumers are subject to various forms of troubling113

economic behaviour. For example, racial discrimination has been found in studies that114

span decades (e.g., Ayres and Siegelman, 1995; Edelberg, 2007; Butler et al., 2022). For115

an overview of the used car industry and the challenges presented to poor consumers in116

purchasing and keeping transportation, see Karger (2003). Adams et al. (2009) look at the117

effect of borrower liquidity on short-term purchase behaviour within the subprime auto mar-118

ket. Namely, they observe sharp increases in demand during tax rebate season and high119

sensitivity to minimum down payment requirements. Grunewald et al. (2020) find that ar-120

rangements between auto dealers and lenders lead to incentives that increase loan prices.121

They also find consumers are less responsive to finance charges than vehicle charges and122

that consumers benefit when dealers do not have discretion to price loans. While consumer123

auto loans and subprime borrowers have attracted the attention of previous researchers, we124

again do not find consideration of the borrower risk profile over the lifespan of the loan jux-125

taposed against a stale APR. Within this backdrop, therefore, our results find an additional126

challenge to consumers with auto loans in that such borrowers struggle to recoup additional127

1One benefit of greater affluence is the mental freedom that accompanies an ability to overpay with
limited consequences. We thank Susan Woodward for this observation.
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potential savings available from a credit-based refinance.128

These results suggest potential socio-economic interpretations. For example, market fric-129

tions may exist that prevent both borrowers and lenders alike from reducing these suspected130

consumer auto refinance market inefficiencies. In hopes of encouraging related research, we131

will conclude with a proposal that lenders may consider offering new loan products that132

reward borrowers for good performance or potential regulatory interventions. Indeed, with133

significant technological advancements in real-time motorist driving data (e.g., Peiris et al.,134

2024) and health data (e.g., Sim, 2019), it is likely real-time default risk data is available135

such that a single point-in-time, stale APR may soon become antiquated risk pricing for136

consumer loans. Because high-risk, high-APR borrowers are traditionally low income and137

struggle financially, a consumer lending market that more dynamically prices borrowers as138

their risk profile changes can lead to meaningful financial savings. From a merit point-of-139

view, these earned savings to borrowers may be thought of as a reward for good performance.140

Indeed, after the failures of the global financial crisis, President Barack Obama remarked141

during the signing of the Dodd-Frank Wall Street Reform and Consumer Protection Act142

that, “We all win when consumers are protected against abuse. And we all win when folks143

are rewarded based on how well they perform”(Obama, 2010). Hence, attempting to reward144

borrowers based on good performance feels aligned in spirit with an ideal of merit-based145

economic gains. It is our hope this study offers new meditations on this fundamental idea.146

The paper proceeds as follows. We first introduce and detail the statistical methods we147

derive in Section 2. Section 3 is then a formal empirical analysis with our statistical meth-148

ods to populate a credit risk convergence matrix between disparate risk bands. Section 4 is149

a further empirical study designed to estimate the financial implications of our credit risk150

convergence point estimates for both lenders and borrowers alike. Section 5 then concludes151

with an overview discussion. The Appendix provides brief additional details on the empir-152

ical results of Section 3. For an introduction to the concept of loan seasoning, proofs of153

major results, complete data details, a thorough robustness analysis, a simulation study,154

and an additional financial approach, see the Supplemental Material. For reference, all data155

and replication code is publicly available at the repository: https://github.com/jackson-156

lautier/credit-risk-convergence/.157

2 Statistical Methods158

This section comprises the methodological novelty of this work: a new financial econometric159

hypothesis testing technique to estimate the exact age two different risk bands converge in160

conditional default risk (i.e., the point of credit risk convergence). We begin with a review of161
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the relevant statistical results. We will introduce the field of survival analysis along with its162

subfield of competing risks within the context of loan default modelling. We then present the163

financial econometric tools we derive in the form of an estimator, its asymptotic properties,164

and the resulting large sample statistical hypothesis test. The formal statements are located165

within this section, and we provide complete proofs in the Supplemental Material.166

From an economic perspective, not all defaults are equivalent. For example, there is167

an obvious profitability difference between a loan that defaults shortly after it is originated168

versus a loan that defaults after a much longer period of time: a loan that makes more169

payments before defaulting will be more profitable, ceteris paribus. Therefore, we seek a170

time-to-event distribution estimate, where the general event of interest is the end of a loan’s171

payments. We require this information to adequately address our research question centred172

around analysing a loan’s conditional probability of default given its survival. We are thus173

in the realm of survival analysis, which is dedicated to estimating a random time-to-event174

distribution. In addition to estimating a time-to-event random variable, we also desire to175

distinguish between the type of event. Again, from an economic perspective, this is natural:176

a loan that is repaid (or prepaid) in a given month is more profitable than a loan that defaults177

in the same month, ceteris paribus. Succinctly, we wish to differentiate between loans ending178

in default and loans ending in prepayment. To do so, we can define the problem in terms of179

a competing risks framework, which is a specialised branch of survival analysis.180

For completeness, our data is sampled from pools of consumer automobile loans found181

in publicly traded ABS (see the Supplemental Material for details). Thus, we must consider182

an estimator appropriately calibrated to work in both discrete-time and with incomplete183

data subject to random left-truncation and random right-censoring. For extended details184

on these incomplete data challenges with ABS applications, see the discrete time work of185

Lautier et al. (2023a) for the case of left-truncation and Lautier et al. (2023b) for the discrete186

time case of both left-truncation and right-censoring. Neither Lautier et al. (2023a) nor187

Lautier et al. (2023b) allow for competing risks, however. To address this need, we elect188

to define competing risks in terms of a multistate process,2 which allows us to make direct189

estimates. Formally, we will be using a multistate process adjusted for left-truncation and190

right-censoring in discrete time but over a known, finite time horizon for two competing191

events. Hence, the major objective of this section is to generalise the discrete time, left-192

truncation and right-censoring work of Lautier et al. (2023b) to the case of two competing193

events: default and repayment.194

We now present the mathematical details of the estimator in the context of an automobile195

loan ABS. We will follow the notation of Lautier et al. (2023b). Define the random time196

2See Andersen et al. (1993, Example III.1.5) or Beyersmann et al. (2009) for an introduction.
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until a loan contract ends by the random variable X. The classical quantity of interest in197

survival analysis is the hazard rate, which in discrete time represents the probability of a198

loan contract terminating in month x, given a loan has survived until at least month x. We199

denote the hazard rate by the traditional, λ, and so formally,200

λ(x) = Pr(X = x | X ≥ x) =
Pr(X = x)

Pr(X ≥ x)
. (1)

Because we desire to model the probability of loan payments terminating given a loan remains201

current, it is clear that (1) is the ideal quantity of interest. Additionally, let F represent the202

cumulative distribution function (cdf) of X. If we can reliably estimate (1), we can recover203

the complete distribution of X by the uniqueness of the cdf because204

1− F (x−) = Pr(X ≥ x) =
∏

xmin≤k<x

{1− λ(k)}, (2)

where xmin is the lower bound of the distribution of X. In (2), we take the the convention205 ∏xmin

k=xmin+1{1− λ(k)} = 1.206

We now account for incomplete data. To address random left-truncation, let Y represent207

the left-truncation random variable, which is a shifted random variable derived from the208

random time a loan is originated and the securitised trust begins making monthly payments.209

That is, we observe X if and only if X ≥ Y . We further assume X and Y are independent,210

an important assumption we now briefly justify within a securitization context. The random211

variable Y represents the time an ABS first starts making payments. Typically, the decision212

to issue a securitization is more related to investment market conditions and the financing213

needs of the parent company than the performance of the underlying assets, in this case214

automobile loans. In other words, the forming and subsequent issuance of an ABS bond has215

little to do with the time-to-event distribution of each individual loan, which is represented216

by X.3 Hence, the assumption that X and Y are independent is generally quite reasonable217

within the context of the securitization process. To account for right-censoring, define the218

censoring random variable as C = Y + τ , where τ is a constant that depends on the last219

month the securitization is active and making monthly payments. Note that independence220

between X and C follows trivially from the assumed independence of X and Y . We thus221

observe the exact loan termination time, x, if x ≤ C | X ≥ Y , and we only know that x > C222

if x > C | X ≥ Y .223

For those familiar with incomplete data from observational studies, we can think of the224

period of time the ABS is active and paying as the observation window. Hence, random225

3Indeed, this is the main economic motivation of the securitization process.
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left-truncation occurs because we only observe loans that survive long enough to enter into226

the trust, and right-censoring occurs because we only observe the exact termination time of227

loans that end prior to end of the securitization. For completeness, we will assume discrete228

time because a borrower’s monthly obligation is considered satisfied, as long as the payment229

is received before the due date. Therefore, we may assume the recoverable distribution of230

X is integer-valued with a minimal time denoted by ∆ + 1 for nonrandom ∆ ∈ {N ∪ 0},231

where N denotes the natural numbers, and a finite maximum end point, which we denote by232

ξ ≥ ∆+ τ , for nonrandom ξ ∈ N. We emphasise the word recoverable, further discussion of233

which may be found in Lautier et al. (2023a) and Lautier et al. (2023b).234

We now generalise Lautier et al. (2023b) to the case of two competing risks as follows.235

First, consider two competing risks as a multistate process, such as in Section 3 of Beyers-236

mann et al. (2009). Formally, let {Zx}∆+1≤x≤ξ be a set of random variables with probability237

distributions that depend on x, ∆ + 1 ≤ x ≤ ξ. More specifically, given a loan terminates238

at time x, we assume the loan must be in one of two states, Zx ∈ {1, 2}:4239

1. This is the event of interest. Loans move into this state if a default occurs. The240

probability of moving into state 1 at time x is the cause-specific hazard rate for state241

1, denoted λ01(x).242

2. This is the competing event. Loans move into this state if a prepayment occurs. The243

probability of moving into state 2 at time x is the cause-specific hazard rate for state244

2, denoted λ02(x).245

The discrete time cause-specific hazard (CSH) rate is then defined as246

λ0i(x) = Pr(X = x, Zx = i | X ≥ x) =
Pr(X = x, Zx = i)

Pr(X ≥ x)
, (3)

for i = 1, 2. Conveniently, therefore, from the law of total probability, we have247

λ(x) =
Pr(X = x)

Pr(X ≥ x)
=

Pr(X = x, Zx = 1)

Pr(X ≥ x)
+

Pr(X = x, Zx = 2)

Pr(X ≥ x)

= λ01(x) + λ02(x).

Within a competing risks framework, λ(x) may be referred to as the all-cause hazard.5248

Given this framework, it is not difficult to account for securitization data subject to249

right-censoring and left-truncation along the lines of Lautier et al. (2023b). Formally, as-250

4It may be of help to see the related Beyersmann et al. (2009, Figure 1).
5The Supplemental Material provides a simulation study, which may be a helpful numerical reference of

our competing risks model.
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sume a trust consists of n > 1 consumer automobile loans. For 1 ≤ j ≤ n, let Yj denote251

the truncation time, Xj denote the loan ending time, and Cj = Yj + τj denote the loan cen-252

soring time. Because of the competing events, we also have the event-type random variable253

ZXj
= i, where we observe ZXj

given Xj for i = 1, 2. The observable data from a trust,254

{Xj, Yj, Cj, ZXj
}1≤j≤n differs from the random variables, {X, Y,C, ZX}. For example, the255

random variables X and (Y,C) are independent, whereas Xj and (Yj, Cj) clearly are not.6 In256

what follows, we will use a subscript of τ where appropriate to remind us that right-censoring257

is present in the data.258

If we assume independence between Y and the random vector (X,ZX) (reasonable given259

the securitzation backdrop and our earlier discussion), then we may derive estimators for (3)260

along the same lines as Lautier et al. (2023b). We demonstrate as follows. Let α = Pr(Y ≤261

X) and for i = 1, 2, define262

f 0i
∗,τ (x) = Pr(Xj = x,Xj ≤ Cj, ZXj

= i) = Pr(X = x,X ≤ C,Zx = i | X ≥ Y )

=
Pr(X = x, Zx = i) Pr(Y ≤ x ≤ C)

α
,

and263

Uτ (x) = Pr(Yj ≤ x ≤ min(Xj, Cj)) =
Pr(Y ≤ x ≤ C) Pr(X ≥ x)

α
.

Thus,264

λ0i
τ (x) =

Pr(X = x, Zx = i)

Pr(X ≥ x)
=

f 0i
∗,τ (x)

Uτ (x)
. (4)

In terms of our observable data, for a given loan j, 1 ≤ j ≤ n, we observe Yj, min(Xj, Cj),265

and 1Xi≤Ci
, where 1Q = 1 if the statement Q is true and 0 otherwise. Further, if we observe266

an event for loan j, we will also observe the information ZXj
= i, i = 1, 2. Therefore, using267

the standard estimators vis-à-vis the observed frequencies268

f̂ 0i
∗,τ,n(x) =

1

n

n∑
j=1

1Xj≤Cj
1ZXj

=i1min(Xj ,Cj)=x,

and269

Ûτ,n(x) =
1

n

n∑
j=1

1Yj≤x≤min(Xj ,Cj),

6Lautier et al. (2023a) expounds on this point thoroughly.
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we obtain the estimate for (4)270

λ̂0i
τ,n(x) =

f̂ 0i
∗,τ,n(x)

Ûτ,n(x)
=

∑n
j=1 1Xj≤Cj

1ZXj
=i1min(Xj ,Cj)=x∑n

j=1 1Yj≤x≤min(Xj ,Cj)

. (5)

Pleasingly, (5) is equivalent to the related classical work of Huang and Wang (1995), despite271

our assumption of discrete-time at the problem’s onset. It may also be shown that (5) is a272

parametric MLE in the case of left-truncated data without censoring (Lautier et al., 2024).273

We are now prepared to introduce our novel financial econometric hypothesis test. For274

a single sample, we refer to (5) as an estimate. If we instead consider a population of all275

possible samples, then we may interpret (5) as an estimator. Under this interpretation,276

(5) is now a random variable, and any single estimate is just one possible realization. As277

such, the random variable estimator version of (5) has a number of attractive asymptotic278

properties. First, the complete vector of estimators over the recoverable space of X, Λ̂0i
τ,n =279

(λ̂0i
τ,n(∆ + 1), . . . , λ̂0i

τ,n(ξ))
⊤, is asymptotically unbiased for the true CSH rates. Further,280

Λ̂0i
τ,n is asymptotically multivariate normal with a completely specifiable diagonal covariance281

structure (i.e., two estimators within Λ̂0i
τ,n are asymptotically independent). The formal282

statement is as follows.283

Theorem 2.1 (Λ̂0i
τ,n Asymptotic Properties). For i ∈ {1, 2}, define Λ̂0i

τ,n = (λ̂0i
τ,n(∆ +284

1), . . . , λ̂0i
τ,n(ξ))

⊤, where285

λ̂0i
τ,n(x) =

f̂ 0i
∗,τ,n(x)

Ûτ,n(x)
=

∑n
j=1 1Xj≤Cj

1ZXj
=i1min(Xj ,Cj)=x∑n

j=1 1Yj≤x≤min(Xj ,Cj)

.

Then,286

(i)

Λ̂0i
τ,n

P−→ Λ0i
τ , as n → ∞;

(ii) √
n(Λ̂0i

τ,n −Λ0i
τ )

L−→ N(0,Σ0i), as n → ∞,

where Λ0i
τ = (λ0i

τ (∆ + 1), . . . , λ0i
τ (ξ))

⊤ with λ0i
τ (x) = f 0i

∗,τ (x)/Uτ (x) and287

Σ0i = diag

(
f 0i
∗,τ (∆ + 1){Uτ (∆ + 1)− f 0i

∗,τ (∆ + 1)}
Uτ (∆ + 1)3

, . . . ,
f 0i
∗,τ (ξ){Uτ (ξ)− f 0i

∗,τ (ξ)}
Uτ (ξ)3

)
.

That is, the cause-specific hazard rate estimators λ̂0i
τ,n(∆ + 1), . . . , λ̂0i

τ,n(ξ) are asymptotically288

unbiased, asymptotically multivariate normal, and asymptotically independent.289
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Proof. See the Supplemental Material.290

Additionally, we may use Theorem 2.1 to produce asymptotic confidence intervals that291

are appropriately bounded within (0, 1). The formal statement is as follows.292

Lemma 1 (λ0i
τ (x) (1−θ)% Confidence Interval). The (1−θ)% asymptotic confidence interval293

bounded within (0, 1) for λ0i
τ (x), x ∈ {∆+ 1, . . . , ξ}, i = 1, 2 is294

exp

(
ln λ̂0i

τ,n(x)±Z(1−θ/2)

√√√√ Ûτ,n(x)− f̂ 0i
∗,τ,n(x)

nÛτ,n(x)f̂ 0i
∗,τ,n(x)

)
, (6)

where Z(1−θ/2) represents the (1− θ/2)th percentile of the standard normal distribution.295

Proof. See the the Supplemental Material.296

Finally, the asymptotic confidence intervals of Lemma 1 and asymptotic independence of297

Theorem 2.1 may be combined to form a straightforward large sample statistical hypothesis298

test. Formally, for two risk bands a, a′, where a ̸= a′ (i.e., a, a′ would represent one of the299

risk bands deep subprime, subprime, near-prime, prime, or super-prime), we may test300

H0 : λ
0i
τ,(a)(x) = λ0i

τ,(a′)(x), v.s. H1 : λ
0i
τ,(a)(x) ̸= λ0i

τ,(a′)(x), (7)

for each age x by determining if the (1−θ)% asymptotic confidence intervals of the estimators301

λ̂0i
τ,n,(a)(x) and λ̂0i

τ,n,(a′)(x) overlap for ∆ + 1 ≤ x ≤ ξ and i = 1, 2. The decision rules302

and interpretations are as follows. Fix x ∈ {∆ + 1, . . . , ξ} and i = 1. If the asymptotic303

confidence intervals of λ̂01
τ,n,(a)(x) and λ̂01

τ,n,(a′)(x) overlap, we fail to reject H0, and we cannot304

claim λ01
τ,(a)(x) ̸= λ01

τ,(a′)(x). That is, conditional default risk given survival to time x has305

potentially converged. On the other hand, if the asymptotic confidence intervals do not306

overlap, we reject H0, and we may claim with (1− θ)% confidence that λ01
τ,(a)(x) ̸= λ01

τ,(a′)(x).307

That is, conditional default risk given survival to time x has not yet converged.308

3 Credit Risk Convergence309

We now demonstrate the utility of the new financial econometric tools we derive in Section 2310

through an empirical study of consumer auto ABS data. Specifically, we provide empirical311

estimates of the credit risk convergence points for the five standard risk bands with data312

sampled from ABS bonds.7 We begin with a brief review of the data, and the section closes313

7For reference, risk bands are commonly associated with credit score. That is, credit scores below 580
are considered deep subprime, credit scores between 580-619 are subprime, 620-659 is near-prime, 660-719 is
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with the estimates. Where appropriate, references to additional detail in the Supplement314

Material (e.g., data details, robustness analysis, and simulation studies) are noted.315

On September 24, 2014, the Securities and Exchange Commission (SEC) adopted sig-316

nificant revisions to Regulation AB and other rules governing the offering, disclosure, and317

reporting for ABS (Securities and Exchange Commission, 2014). One component of these318

large scale revisions, which took effect November 23, 2016, has required public issuers of319

ABS to make freely available pertinent loan-level information and payment performance on320

a monthly basis (Securities and Exchange Commission, 2016). We have utilised the Elec-321

tronic Data Gathering, Analysis, and Retrieval system operated by the SEC to compile322

complete loan-level performance data for the consumer automobile loan ABS bonds Car-323

Max Auto Owner Trust 2017-2 (CarMax, 2017) (CARMX), Ally Auto Receivables Trust324

2017-3 (Ally, 2017) (AART), Santander Drive Auto Receivables Trust 2017-2 (Santander,325

2017b) (SDART), and Drive Auto Receivables Trust 2017-1 (Santander, 2017a) (DRIVE).326

By count, the total number of loans for CARMX, AART, SDART, and DRIVE were 55,000,327

67,797, 80,636, and 72,515, respectively. The bonds were selected because of the credit pro-328

file of the underlying loans, the lack of a direct connection to a specific auto manufacturer,329

and the observation window of each bond’s performance spanning approximately the same330

macroeconomic environment. We elaborate on each point in turn.331

The credit profile of a DRIVE borrower is generally deep subprime to subprime, SDART332

is subprime to near-prime, CARMX is near-prime to prime, and AART is prime to super-333

prime. Thus, the collection of all four bonds taken together span the full credit spectrum334

of individual borrowers. Next, it is common that an auto manufacturer will originate loans335

using its financial subsidiary (e.g., Ford Credit Auto Owner Trust). The bonds selected do336

not have a direct connection to a specific auto manufacturer, however, and so we may allay337

concerns that our convergence point estimates are biased by oversampling loans secured by338

a specific brand of automobile. For completeness, we acknowledge the business objectives339

of CarMax, a used auto sales company, differ from the traditional banks of Santander and340

Ally. We sensitivity test this point in the robustness checks of the Supplemental Material.341

Lastly, the bonds were selected to span approximately the same months to ensure all un-342

derlying loans were subject to the same macroeconomic environment. Specifically, CARMX,343

AART, SDART, and DRIVE began actively paying in March, April, May, and April of344

2017, respectively, and each trust was active for 50, 44, 52, and 52 months, respectively.345

Finally, the loans were selected to fit into a single selection criteria (i.e., loan term, col-346

prime, and credit scores of 720 and above are super-prime (Consumer Financial Protection Bureau, 2019).
We will increase precision by defining risk bands by the market price (i.e., annual percentage rate), but this
terminology and risk association will be consistent throughout the manuscript.
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3 CREDIT RISK CONVERGENCE Credit Risk Convergence

lateral type, underwriting standards, etc.), and they were grouped into the five standard347

risk bands by interest rate per the principles of risk-based pricing (e.g., Edelberg, 2006;348

Phillips, 2013). Specifically, we assign borrower’s with an APR of 0-5% to the super-prime349

risk band, 5-10% to the prime risk band, 10-15% to the near-prime risk band, 15-20% to350

the subprime risk band, and 20%+ to the deep subprime risk band. In total, we analyse351

a final set 58,118 loans selected from these four bonds. For vastly expanded data details,352

see the Supplemental Material. For access to the data and replication code, navigate to353

https://github.com/jackson-lautier/credit-risk-convergence/.354

We now apply the financial econometric tools of Section 2 to this consumer auto loan355

data. Specifically, we both plot estimates of the CSH rates for default by loan age and risk356

band, λ̂01
τ,n, and perform the hypothesis test described by (7) to the filtered loan popula-357

tion. For convenience of exposition, we will initially focus our discussion on two risk bands:358

subprime and prime borrowers. A plot of λ̂τ,n by loan age may be found in Figure 1 for359

the 21,332 subprime loans (solid line) and 6,300 prime loans (dashed line) of the total data360

analysis sample of 58,118. As an initial observation, we can see that the estimated default361

CSH rates for subprime loans are initially higher than the default CSH rates for prime loans.362

This is expected given our expectations about credit risk, risk-based pricing, and the dif-363

ference in APRs between the two risk bands. This pattern does not maintain for the full364

lifetime of the loan, however. As the subprime loans continue to stay current (i.e., given365

survival), the CSH rate declines. This is an alternative visualization of loan seasoning with366

enhanced precision. Interestingly, the CSH rates for prime loans in this sample appear to367

increase slightly, though they remain generally stable even as loan age increases. Due to368

left-truncation and right-censoring, we are unable to fully recover the complete loan term369

for all risk bands. Nonetheless, we have reliable estimates from approximately 5 ≤ X ≤ 60370

for all risk bands, though we report 10 ≤ X ≤ 55 for conservatism. In the instance of no371

observed defaults at a particular loan age within the recoverable window, we interpolate with372

a constant hazard rate.373

This brings us to the major methodological result of this paper, which is the lower374

right corner of Figure 1. In addition to plotting the point estimates, we also provide the375

asymptotic confidence intervals (shaded regions surrounding each line). Eventually, as the376

two lines slowly approach each other, the confidence intervals begin to overlap. The first377

evidence of this is around loan age 42, and it is consistent by approximately loan age 50 for378

these 72-73 month consumer auto loans. With the statistical test outlined in (7), therefore,379

for any age in which we observe overlapping confidence intervals, we cannot claim the true380

CSH rates for default are different between the subprime and prime risk bands within this381

sample. It is this point at which two CSH rates for default between two different risk bands382
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Figure 1: Credit Risk Convergence: Subprime and Prime Loans.
A plot of λ̂01

τ,n (defaults) defined in (5) by loan age for the subprime and prime risk bands within the sample
of 58,188 loans, plus 95% confidence intervals using Lemma 1. We may use the hypothesis test described
in (7) by searching for the minimum age that the confidence intervals overlap. In this case, we see the first

evidence of credit risk convergence by approximately loan age 42 months. The upward spike in λ̂01
τ,n for the

subprime risk band by loan age 40 is related to the economic impact of COVID-19 (for robustness analysis,
see the Supplemental Material).

become statistically indistinguishable that we estimate as the point of credit risk convergence.383

From the perspective of risk-based pricing, we find that measuring default risk conditional384

on survival gleans additional insight in comparison to a binary default analysis, such as that385

performed in the Supplemental Material. For example, 40% of all subprime loans in the386

sample of 58,118 defaulted at some point, versus only 10% of prime loans. Given just387

this analysis, it is not surprising subprime borrowers receive a higher APR than prime388

borrowers. What we show in Figure 1 is that the default rates conditional on survival are389

not constant, however, and it implies that subprime borrowers that do not refinance are390

eventually overpaying based on an updated assessment of their risk profile, all else equal.391

We come back to this point much more extensively in Section 4.2.392

Table 1 (top) provides a transition matrix of the estimated month of credit risk con-393

vergence among the five risk bands considered for the sample of 58,118 filtered loans. For394

conservatism, we define the point of credit risk convergence as the minimum of (1) two395

consecutive months of confidence interval overlap after a loan age of 10 months or (2) the396
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3 CREDIT RISK CONVERGENCE Credit Risk Convergence

Table 1: Credit Risk Convergence: Transition Matrix.
This table reports a summary matrix of the estimated month of credit risk convergence for the sample of
58,118 72-73 month consumer automobile loans. For conservatism, the month of credit risk convergence
is defined as the earlier of (1) the first of two consecutive months after ten months that the asymptotic

confidence intervals for λ̂01
τ,n overlap or (2) once λ̂01

τ,n is consistently zero for both risk bands. Visually, it
is helpful to compare Figure 1 with the subprime-prime cell below. Full comparisons may be made with
Figure 6 in the Appendix.

deep subprime subprime near-prime prime super-prime

deep subprime 10 36 50 50 52
subprime 10 23 42 48
near-prime 10 13 34

prime 10 10
super-prime 10

minimum shared age that the hazard estimates are consistently zero. Based on these results,397

we would say that a deep subprime loan eventually converges in risk to a subprime loan398

after three years, and it converges to a prime risk after 50 months and a super-prime risk399

after 52 months. Similarly, subprime loans converge in risk to prime loans after 42 months,400

and they become super-prime risks after four years. Near-prime loans become prime risks401

quite quickly, just after one year, and then become super-prime risks after 34 months. For402

completeness, we plot the full five-by-five matrix of CSH rate and confidence interval com-403

parisons along the lines of Figure 1 in Figure 6 found in the Appendix. For financially404

inclined readers, it may be of interest to recall consumer auto loans are collateralised with405

rapidly depreciating assets in the form of used cars (see Figure 4). In other words, these406

results cannot be explained by traditional LTV optionality arguments found in mortgages407

(e.g., Campbell and Cocco, 2015).408

We also see a large spike in the default CSH rate for the subprime risk band by approx-409

imately loan age 40. Similarly, it appears the prime risk band also reports a small increase410

in its default CSH rate shortly after the same age. With some approximate date arithmetic411

from the first payment month of the ABS bonds (March-April-May 2017), we find that a412

loan age of 40 months corresponds to approximately Spring 2020 (when adjusted for left-413

truncation). If we recall the economic impact of the Coronavirus, which effectively stopped414

most economic activity in Spring 2020, it is not difficult to understand why so many loans415

defaulted around loan age 40. This also provides informal validation that the data sorting416

and estimation of the default CSH rates has been effective. It is interesting to compare417

the difference in impact to subprime and prime borrowers. That is, the economic shutdown418
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brought on by the Coronavirus pandemic appears to have had a smaller impact on the prime419

risk band than the subprime risk band. In the robustness analysis of the Supplemental420

Material, we provide more discussion. For completeness, we also remark that the robust-421

ness analysis of the Supplemental Material considers collateral type (new versus used) and422

business objectives (used car sales versus captive financing).423

4 Financial Analysis424

We now apply the methods of Section 2 to offer new financial perspectives on consumer425

auto loans. The present section proceeds in two parts. In Section 4.1, we demonstrate how426

the CSH estimates may be used to visualise the back-loading of a lender’s expected profits.427

In Section 4.2, we then focus our analysis on the individual consumer. By presenting a428

counterfactual of a perfectly efficient borrower in terms of credit-based refinancing behaviour,429

we find that borrowers in all non-super-prime risk bands delay prepayment inefficiently, all430

else equal. In a surprise based on expectations of borrower sophistication, we find that431

borrowers in lower risk bands, near-prime and prime, operate less efficiently than borrowers432

in higher risk bands, deep subprime and subprime. Details may be found in Table 2. We433

also evaluate borrower conditional prepayment behaviour using the sibling estimator (5) for434

prepayment. In a visual analysis, we find that borrower’s prepayment decisions appear to435

be driven by economic stimulus payments and unusual used auto markets rather than by436

financial sophistication. Additional details for estimating a recovery upon default assumption437

and broader methodological extensions may be found in the Supplemental Material.438

4.1 Lender Profitability439

A common term to describe the profit of a high-risk, high-interest-rate loan that remains440

current is back-loaded.8 Quite simply, a high-risk, high-interest-rate loan gradually becomes441

more profitable as it continues paying, and it is these increased profits later in the loan’s442

life that offset the losses taken on other similar loans that have defaulted. To provide some443

formality to this idea, we will utilise an actuarial approach to calculate an implied, expected444

risk-adjusted return for each month a loan stays current. Specifically, we will examine a445

rolling monthly expected annualised rate of return assuming an investor purchases a risky446

fixed-income asset at a price of the outstanding balance of the consumer loan at age x for447

risk band a, Ba|x, with a one-month term. This hypothetical risky asset pays either (1) the448

outstanding balance at loan age x+1 for risk band a, Ba|x+1, plus the next month’s payment449

8We thank Jonathan A. Parker for this concise descriptive term.
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Ba|x

Ba|x+1 + Pa

Rx+1

1− λ01
τ,(a)(x)

λ01
τ,(a)(x)

Figure 2: Hypothetical Risky Fixed-Income Asset and Path Probabilities.
The risky asset, Ba|x, pays either (1) the outstanding balance at loan age x+1 for risk band a, Ba|x+1, plus
the next month’s payment due, Pa, with probability 1− λ01

τ,(a)(x) or (2) the recovery amount at time x+ 1

in the event of default, Rx+1, with probability λ01
τ,(a)(x). The subscript a denotes one of the five standard

risk bands: deep subprime, subprime, near-prime, prime, or super-prime. The CSH rates for default are
adjusted for prepayments by the competing risks methodology.

due, Pa, with probability 1− λ01
τ,(a)(x) or (2) the recovery amount at time x+ 1 in the event450

of default, Rx+1, with probability λ01
τ,(a)(x). Because we utilise a competing risks framework,451

the CSH rates are adjusted for prepayment probabilities. The subscript a denotes one of452

the five standard risk bands: deep subprime, subprime, near-prime, prime, and super prime.453

We illustrate this hypothetical asset in Figure 2.454

To calculate the annualised risk-adjusted return by month, we first define the expected455

present value (EPV) of a Ba|x risky one-month loan depicted in Figure 2 as456

EPV1
a|x = λ01

τ,(a)(x)

[
Rx+1

1 + r̃a|x

]
+ (1− λ01

τ,(a)(x))

[
Ba|x+1 + Pa

1 + r̃a|x

]
, (8)

where r̃a|x is some unknown one-month effective rate of interest. To calculate the annualised457

risk-adjusted return, we can interpret the outstanding balance of an age x loan in risk band458

a, Ba|x, as the market-implied price of a risky zero coupon bond following the payment459

pattern of Figure 2. Therefore, we can use (8) to solve for r̃a|x such that EPV1
a|x = Ba|x.460

This rate, r̃a|x, is then the expected monthly effective risk-adjusted return, which can then be461

annualised.9 The calculation in (8) also requires an estimate for the recovery upon default,462

Rx+1, for each age x. A recovery in the event of default was estimated from the sample463

9An implicit assumption in this analysis is that the remaining payments beyond month x + 1 are a
tradable asset with no friction (i.e., the risky asset may be traded at time x+1 for Ba|x+1). We can instead
perform an expected risk-adjusted return calculation over the entire remaining lifetime of the loan (i.e.,
assuming uncertainty for each future payment following the estimates in Section 3). For details, see the
Supplemental Material.
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of 58,118 loans of Section 3 (see the Supplemental Material for details). The probabilities,464

λ01
τ,(a)(x), for each age, x, and risk band, a, may be estimated using the methods of Section 2.465

For ease of interpretation, we consider a single loan of $100 for 72 months with a payment466

and amortization schedule determined by the average APR of each risk band: deep subprime467

(22.65%), subprime (17.97%), near-prime (12.74%), prime (7.82%), and super-prime (3.59%).468

The estimated results may be found in Figure 3. In the initial stages of a loan’s lifetime, the469

deep subprime, subprime, near-prime, and prime risk bands generally group together around470

7.5%. This demonstrates that the risk-adjusted pricing is generally accurate by risk band, as471

the higher APRs help offset the higher default risk. It also reveals that the overall consumer472

auto lending market is quite efficient across risk bands at origination. The super-prime risk-473

band consistently hovers around a 2.5% annualised expected risk-adjusted return, which may474

suggest the lender secures other economic gains from these loans (e.g., reduced risk capital475

requirements). We then see the negative impact of COVID-19 around loan age 40, which476

is consistent with the discussion in Sections 3 and the Supplemental Material. It is notable477

that the impact on the expected risk-adjusted return for the super-prime risk band due to478

COVID-19 is minimal. As the loans mature, however, and credit risk convergence begins,479

we see the expected risk-adjusted returns for the higher APR loans begin to accelerate.480

4.2 Consumer Perspectives481

If a borrower’s default risk conditional on survival declines as a loan stays current, but482

the loan’s original APR is a single point-in-time estimate of risk at origination, then it is483

possible a gradual credit-based economic inefficiency from the perspective of the consumer484

may develop. The purpose of the present section is an attempt to quantify this inefficiency,485

which may be done using the techniques of Section 2. We first estimate the potential savings486

available to consumers by way of a comparison with the counterfactual of a perfectly efficient487

borrower in terms of credit-based refinancing behaviour (ceteris paribus). Next, we perform488

a visual analysis to observe borrower conditional prepayment behaviour over the observation489

period, which may also be done using the techniques of Section 2.490

Before doing so, some contextualization to financial theory is helpful. Specifically, it may491

be tempting to trivialise the results of Table 1 as a simple artefact of collateralised loans.492

This line of thinking supposes that a 72-month auto loan with less than two years remaining493

will almost certainly be “in-the-money”, and so the declining conditional default risk would494

naturally follow. Such reasoning ignores the rapidly depreciating value of the collateral of495

used automobiles, however. As a reference point, Storchmann (2004) estimates an average496

annual depreciation of 31% in Organization for Economic Co-operation and Development497
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Figure 3: Estimated Expected Rolling Risk-Adjusted Return by Age, Issuance.
A plot of the annualised, expected risk-adjusted one-month return, r̃a|x, by loan age, risk band, and issuance
year for the filtered loan sample of Section 3. The calculations utilise (8) and the two-path risky zero
coupon bond formulation from Figure 2. The probabilities of each path stem from (3), and they may
be estimated with (5). The one-month expected annualised risk-adjusted rate of return is roughly equal
to 7.5% for the deep subprime, subprime, near-prime, and prime risk bands until the point of credit risk
convergence (approximately age 40), after which the higher APR risk bands show accelerating returns. The
clear negative impact of COVID-19 is also apparent near loan age 40. The CSH rates for default are adjusted
for prepayments by the competing risks methodology.

(OECD) countries. Further, it is not uncommon to see deep subprime loans with APRs498

north of 20%,10 hindering a borrower’s ability to pay down principal. This is illustrated499

in Figure 4, which presents an estimated LTV by loan age for current loans in our filtered500

sample of 51,118 loans. It is not until loan age 60 that super prime loans finally get under an501

LTV of 100%, and the riskier bands possess LTVs largely north of 150-200% well beyond the502

convergence point estimates of Table 1. Given these estimates, it is of interest that we find503

conditional credit risk behaviour that cannot be explained by the standard in-the-moneyness504

analysis of mortgages (e.g., Deng et al., 1996), a perhaps unique economic feature of consumer505

auto loans. In a robustness check, we halve the 31% depreciation rate of Storchmann (2004)506

to 16% annually, and the deep subprime and subprime risk bands keep LTVs north of 100%507

beyond loan age 52, the latest convergence point in Table 1.508

10See the Supplement Material for data details.
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Figure 4: Outstanding Loan-to-Value by Loan Age, Risk Band.
A standard box plot of the outstanding LTV by loan age and risk band for current loans in the filtered
sample of 51,118 loans from the ABS bonds CARMX, ALLY, SDART, and DRIVE of Section 3. Estimated
LTVs remain well-above 100% past the point of credit risk convergence, which suggests that improved credit
performance is not attributable to borrowers building equity in the collateral.

We estimate such potential credit-based refinance savings in Table 2, all else equal. Mov-509

ing left-to-right along the column headings, we first report a count of the current loans by510

loan age. Next, of the active loans, we present an average outstanding balance, average pay-511

ment, and average APR. The “Pmts (#)” column calculates the remaining payments needed512

to pay-off the average loan balance given the average payment. The next four columns rep-513

resent the potential savings in monthly payment if a borrower refinances at the average APR514

of the superior risk band, after the estimated point of credit risk convergence. If two risk515

bands have not yet converged in credit risk (i.e., Table 1), the numbers are not provided in516

the table. The calculations do not assume any upfront refinancing charge.517

We find that borrowers in all four non-super-prime risk bands, deep subprime, subprime,518

near-prime, and prime, appear to leave money on the table. On a monthly payment basis,519

deep subprime borrowers begin to overpay between $11-63 per month around loan age 36,520

for a total potential savings between $193-1,153. Based on our estimates, deep subprime521

borrowers would benefit the most in terms of total savings by waiting until approximately522

loan age 50, when they converge in risk with prime borrowers. In terms of monthly payment523
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savings, deep subprime borrowers should wait to refinance until they converge in credit risk524

with super-prime borrowers. Encouragingly, we see that most deep subprime borrowers have525

prepaid or refinanced by loan age 60, which suggests some self-correction, albeit slower than526

our calculations would recommend. The situation for subprime borrowers is similar; they527

benefit the most in total savings by refinancing by loan age 42, when they converge in credit528

risk with prime borrowers. Overall, the potential total savings over the life of the loan for529

subprime borrowers ranges between $299-1,616. In terms of monthly payment, subprime530

borrowers benefit the most by waiting until loan age 48, when they converge in credit risk531

to super-prime borrowers. In total, the potential monthly payment savings for subprime532

borrowers ranges between $22-61. As with deep subprime borrowers, it seems most have533

refinanced by loan age 60. While this is slower than our calculations would suggest, it still534

indicates borrowers may be attempting to self-correct. These results would exacerbate any535

consumer refinance inefficiency attributable to changes in interest rates (e.g., Keys et al.,536

2016; Agarwal et al., 2017; Andersen et al., 2020).537

In moving to discuss borrowers in superior risk bands, we find slightly different results.538

As with deep subprime and subprime borrowers, we also find evidence that near-prime and539

prime borrowers operate inefficiently with respect to a credit-based refinance, ceteris paribus.540

We estimate that near-prime borrowers are eligible for a potential monthly payment savings541

of $13-56 with a potential total savings of $160-2,206. The figures for prime borrowers are542

similar; a potential $18-39 in monthly savings with a potential total savings of $261-2,327.543

On the other hand, we find that both near-prime and prime borrowers should refinance as544

soon as possible, after 15 months for near-prime borrowers when they converge in credit risk545

with prime borrowers and after 12 months for prime borrowers when they converge in credit546

risk with super-prime borrowers. We find that both near-prime and prime borrowers do547

not start refinancing in earnest until approximately loan age 60, similar to borrowers in the548

higher risk bands. This suggests that near-prime and prime borrowers manage their loans549

less efficiently than deep subprime and subprime borrowers, a result that is surprising given550

typical expectations about borrower sophistication and credit score.11551

It is of further interest to examine loan prepayment behaviour, which is also possible552

with the techniques of Section 2. Specifically, the CSH rate estimator defined in (5), λ̂02
τ,n,553

is a direct estimator for prepayment behaviour, also conditional on survival. Hence, we554

can report similar figures to Section 3 but instead focus on borrower prepayment behaviour555

conditioning on the set of current loans. From this, we can attempt to explain consumer556

11It may be that the greater affluence of near-prime and prime borrowers allows a non-optimal efficiency
to persist out of the perceived inconvenience of going through a refinancing versus the potential savings. We
thank Susan Woodward for this observation. It also of interest to compare this finding with the profitability
analysis of FHA-insured mortgages in Deng and Gabriel (2006).
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Table 2: Estimated Savings by Risk Band, Loan Age.
Estimated savings assuming the counterfactual of a perfectly efficient borrower who refinances at the average
interest rate of a superior risk band immediately after the point of credit risk convergence in Table 1.
Abbreviations: S = subprime, NP = near-prime, P = prime, and SP = super-prime.

Averages Mo Pmt Savings ($) Total Savings ($)

Age Cnt Bal ($) Pmt ($) APR (%) Pmts (#) S NP P SP S NP P SP

d
ee
p
su
b
p
ri
m
e

12 17,558 14,245 365 22.58 65
15 16,125 13,844 364 22.56 62
18 14,375 13,520 363 22.54 60
24 11,628 12,836 361 22.50 56
30 9,492 11,973 361 22.46 50
36 7,746 10,985 359 22.46 44 16 586
42 6,050 9,833 357 22.46 38 16 490
48 4,899 8,799 358 22.43 33 18 438
50 4,622 8,312 358 22.44 30 12 33 52 267 729 1,153
54 3,568 7,485 360 22.37 26 11 30 47 61 193 531 845 1,093
60 12 6,923 377 22.00 23 21 39 54 63 251 466 643 759

su
b
p
ri
m
e

12 18,261 16,693 395 17.97 64
15 17,021 16,126 394 17.96 61
18 15,487 15,619 393 17.95 59
24 12,997 14,621 389 17.94 54 32 1,557
30 11,021 13,420 388 17.94 48 30 1,275
36 9,309 12,194 386 17.94 42 25 904
42 7,481 10,835 384 17.93 37 29 54 857 1,616
48 6,192 9,506 383 17.92 31 22 44 61 526 1,055 1,473
50 5,901 8,953 383 17.93 29 23 44 60 508 963 1,325
54 4,542 7,975 386 17.94 25 22 40 55 389 723 988
60 22 7,021 414 17.47 20 25 40 50 299 477 596

n
ea
r-
p
ri
m
e

12 5,807 19,111 411 12.79 64
15 5,587 18,245 407 12.76 60 39 2,206
18 5,315 17,617 405 12.74 58 40 2,158
24 4,692 16,204 402 12.72 52 35 1,657
30 4,146 14,694 400 12.71 47 37 1,546
36 3,592 13,187 398 12.71 41 31 56 1,116 2,000
42 3,041 11,446 394 12.67 35 28 49 847 1,481
48 2,622 9,862 394 12.68 29 21 39 494 928
50 2,455 9,283 395 12.69 27 20 37 436 811
54 1,663 8,218 400 12.69 24 29 44 526 798
60 63 6,435 413 11.98 17 13 22 160 269

p
ri
m
e

12 5,173 18,582 358 7.83 64 39 2,327
15 5,283 17,611 354 7.81 60 33 1,880
18 5,315 16,706 350 7.78 57 30 1,627
24 4,971 15,097 346 7.76 52 32 1,535
30 4,538 13,503 345 7.74 46 30 1,245
36 4,096 11,866 344 7.73 39 21 755
42 3,697 10,274 342 7.72 34 23 703
48 3,191 8,615 343 7.71 28 21 513
50 2,963 8,101 345 7.71 26 21 460
54 1,898 7,075 351 7.66 22 18 324
60 92 4,756 328 7.38 16 22 261

behaviour and assess if borrowers are acting on the potential savings reported in Table 2.557

For context, we also overlay two additional economic variables. The first is the seasonally558

adjusted Manheim Used Auto Price Index (Manheim, 2023), which is a common industry559

assessment of the prevailing value of used automobiles. Given the unusual observations in560

the used auto market during the COVID-19 pandemic (Rosenbaum, 2020), it is possible that561
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Figure 5: Consumer Prepayment behaviour, Used Autos, Economic Stimulus.
(top) A plot of the Manheim Used Auto Index (price) (Manheim, 2023) by approximate loan age for the

sample of 58,118 filtered loans of Section 3. (bottom) A plot of λ̂02
τ,n (prepayments) defined in (5) by loan

age for all risk bands within the sample of 58,118 filtered loans of Section 3, plus 95% confidence intervals
using Lemma 1. By the hypothesis test defined in (7), there is very little difference in prepayment behaviour
conditional on survival by risk band. The labels E1, E2, E3, and C indicate the timing of the Economic
Impact Payments and Childcare Tax Credit expansion (U.S. Government Accountability Office, 2022).

higher-than-expected trade-in values motivated consumers to prepay their loans. Addition-562

ally, the United States federal government provided individuals with three direct payments563

known as Economic Impact Payments (EIPs) and expanded the Childcare Tax Credit (CTC)564

during the observation period of our sample (U.S. Government Accountability Office, 2022).565

It is thus possible that borrowers, upon receiving these cash payments, made the decision to566

purchase a different vehicle and thus prepay. The results are presented in Figure 5.567

There appears to be very little difference in prepayment behaviour by risk band through-568

out the life of the loan, which differs significantly from default rates (compare Figure 5 with569

Figures 1 and 6). Further, there does appear to be a meaningful connection between prevail-570

ing used auto prices and borrower prepayment behaviour. That is, as the value of used autos571

rose, borrowers of current loans appear to increase prepayment frequency. Furthermore, the572

timing of economic stimulus payments plotted against prepayment behaviour is also telling.573

The prepayment rates increase shortly after individuals would have received the first direct574

EIP from the U.S. federal government. Because of the potential savings we observe in Ta-575
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ble 2, it is possible that the EIPs may have also provided individuals with further implicit576

economic gains, if they used the EIPs to refinance at a lower, credit-based interest rate.577

The results of Figure 5 in connection with Table 2 taken together suggest that individual578

borrowers may not consider their updated risk profile in deciding to prepay. Instead, the579

borrowers may be more motivated by economic indicators that are more tangible, such as580

direct cash payments or higher trade-in values.581

5 Discussion582

Conventional profitability wisdom of risk-based pricing from the perspective of a lender is583

that the high-returns of high-risk loans that don’t default help offset the losses from the584

high-risk loans that do default. In other words, there is an implied insurance arrangement in585

which the cost of the losses are dispersed among the individual borrowers. Furthermore, it586

can be argued that through its precision, risk-based pricing has been attributed to lowering587

the cost of credit for a majority of borrowers and expanding credit availability to higher risk588

borrowers (Staten, 2015).12 These are positive economic outcomes, and we do not attempt589

to argue against the overall practice of risk-based pricing at loan origination. Within the590

scope of our analysis, two comments are warranted. First, all loans considered herein have591

been sampled from pools of securitised bonds. Hence, the risk of default has already been592

transferred off the lender’s balance sheet after the point of sale. In other words, the lender593

no longer has a direct financial interest in any of the loans we study. Second, we believe it is594

reasonable to put forth a nuanced argument in light of our results and the current practices595

of risk-based pricing. That is, the consumer auto loan market is capable of operating more596

efficiently with respect to a dynamic view of default risk. Because we study consumer auto597

loans with a scale north of $1,400 billion (Federal Reserve, 2023) collateralised against an598

essential economic asset, we find the social implications of a better attuned, dynamic risk-599

based pricing system within consumer auto lending to be potentially meaningful.600

This article puts forth this social argument built upon a three-part story. The first part601

is statistical. Specifically, we estimate the point of credit risk convergence between disparate602

risk bands using a novel financial econometric hypothesis test we derive via large-sample603

asymptotic statistics from the field of survival analysis. The second part is an empirical604

analysis of lender risk-adjusted expected profitability. Given our statistical estimates, we find605

that high-risk, high-APR loans that do not default eventually become quite profitable to the606

lender on an updated, risk-adjusted basis. The third part is an empirical analysis of potential607

savings available to a consumer, assuming the consumer refinanced at the superior credit risk608

12See also Livshits (2015) for a more thorough introduction to risk-based pricing.
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band rate immediately after the point of credit risk convergence. We find borrowers are slow609

to recoup these savings across all risk bands. The average income in each risk band of the610

sample we study is super-prime ($98,162), prime ($65,559), near-prime ($56,746), subprime611

($46,064), and deep subprime ($41,093). Taken together, we conjecture that current risk-612

based pricing practices, in which a borrower receives an APR after a single point-in-time613

risk assessment, creates a social wealth redistribution system in which high-risk, high-APR614

borrowers that don’t default offset losses from high-risk, high-APR borrowers that do default.615

Given the financial difficulties of such borrowers, these insurance-like risk-based pricing pool616

arrangements appear to run counter to more progressive wealth redistribution schemes.617

Given these findings, it begs the question: why does the market for mature consumer618

auto loans appear to operate inefficiently with respect to credit-based refinancing? A natural619

starting point is a lack of borrower sophistication in performing an updated personal risk as-620

sessment as a loan remains current. Generally, the typical consumer has a poor reputation in621

making financial decisions (e.g. Gross and Souleles, 2002; Stango and Zinman, 2011; Lusardi622

and de Bassa Scheresberg, 2013; Campbell, 2016; Heidhues and Kőszegi, 2016; Dobbie et al.,623

2021), and the type of calculations we perform herein assume some advanced expertise, such624

as a working understanding of actuarial mathematics. An inability to self-assess creditwor-625

thiness within financial markets against a current APR seems to plague borrowers within626

all risk bands, as we find the surprising result that it is actually the near-prime and prime627

borrowers that leave the most money on the table by delaying prepayment, ceteris paribus.628

It may not be fair to blame this perceived borrower inefficiency solely on the borrowers,629

however. A borrower’s main tool to assess creditworthiness is their credit score. While630

consumers have obtained better access to credit scores, they may update too slowly within631

the context of a 72-73 month consumer auto loan to motivate a borrower to seek out a632

lower rate. Additionally, such borrowers may face friction in attempting to refinance mature633

auto loans, either through limited options, refinancing fees, or perceived hassle. Indeed,634

encouraging borrowers to self-correct has proven to be less effective in practice (e.g., Keys635

et al., 2016; Agarwal et al., 2017). From this point of view, we see an opportunity for636

outside lenders to target these mature loans from borrowers in higher risk bands. Because a637

borrower that stays current eventually outperforms their initial risk profile and loan APRs638

are constant throughout the life of the loan, there likely exists a lower rate that would both639

lower this borrower’s financing cost and be profitable to a second lender. There are examples640

of speciality finance companies in the student loan space that attempt to refinance borrowers641

into lower interest rates (e.g., SoFi). The size (and potential profitability) of such loans may642

be larger than auto loans, however. In addition, given all students loans are originally643

subject to the same underwriting standards and the wide disparity of ultimate educational644
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outcomes, the level of risk mispricing is likely more egregious and thus easier to exploit than645

for auto loans. On the other hand, lenders themselves may face similar market frictions,646

such as an inability to identify these borrowers or unattractive returns after accounting for647

the full scope of origination costs.13 We are optimistic that continued increases in financial648

technology may lower these possible hurdles for both borrowers and lenders.649

To spur future research, we suggest two potential solutions. The first is that we see650

a market ripe for financial innovation. Specifically, we propose that lenders offer a loan651

structure with a reducing payment based on good performance, an adjustable payment loan.652

It is likely lenders already possess the data needed to provide pricing structures capable of653

adjusting for a borrower’s updated risk profile. This is especially true given real-time data654

advancements in other industries (e.g., Sim, 2019; Peiris et al., 2024). We postulate that a655

lower future payment may act as an incentive for a borrower to remain active and paying,656

which could work to offset potential profit losses from lowering rates to these high-interest657

rate loans that perform well. We caution lenders from making opposite adjustments, however,658

as increasing payments in response to poor performance (i.e., sudden delinquencies) may659

further discourage a likely overwhelmed borrower or lead to adverse selection (though late660

payment penalties are common). Such an approach may be of interest to speciality finance661

companies connected to responsible investing (i.e., environmental, social, and governance662

(ESG), socially responsible investing (SRI), or impact investing).663

Second, there is always the regulatory angle, which has been successful in other consumer664

lending spaces (e.g., Stango and Zinman, 2011; Agarwal et al., 2014). For example, there is665

potentially minimal additional cost to lenders to require ongoing loans to be underwritten666

again after a set period of good performance, say 36 months, especially given the lender667

will already have most of the borrower’s information. Ideally, this update would not count668

as a formal inquiry against the borrower’s credit report. Encouragingly, sending reminder669

notices about refinancing has had some success (e.g., Byrne et al., 2023). Further, given670

Figure 5, an initial cash payment incentive to borrowers may provide sufficient motivation671

to get borrowers to refinance. The overall economic impact of such a program may be672

mixed, given the ambivalent results for the “cash for clunkers” program (Mian and Sufi,673

2012). Alternatively, competing lenders themselves may offer cash to borrowers in exchange674

for refinancing. On the other hand, regulatory intervention to increase the cost of lending675

may lead to these extra costs being pushed back to the borrowers.676

In closing, our theoretical and empirical findings complement each other to establish a677

new framing of lending practices within consumer automobile loans. Specifically, we believe678

borrowers may be better served, especially those that are traditionally low-income and finan-679

13We thank Chellappan Ramasamy for drawing our attention to the nuances of refinancing auto loans.
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cially at-risk. Perhaps most notably, we argue on behalf of the borrowers that stay current.680

In other words, we contend the consumer auto lending market is capable of better serving681

borrowers that have “earned it”. To this end, we close with a restatement of the words of682

former United States President Barack Obama at the signing of the Dodd-Frank Wall Street683

Reform and Consumer Protection Act (Obama, 2010),684

“We all win when folks are rewarded based on how well they perform.”685

Appendix: Section 3 Supplement686

We plot the full five-by-five matrix of CSH rate estimates for default in Figure 6 for the687

sample of 58,118 loans of Section 3. It is a complete extension of the subprime versus prime688

plot in Figure 1. That is, Figure 1 is a zoomed-in view of the subprime-prime cell (row 4,689

column 2) in Figure 6. By comparing the asymptotic confidence intervals within each risk690

band comparison by loan age, we may estimate the point of credit risk convergence. Figure 6691

is a visualization of the point estimates summarised in Table 1.692
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Figure 6: Credit Risk Convergence: All Risk Bands (2017).

A plot of λ̂01
τ,n (defaults) defined in (5) by loan age for all five risk bands within the sample of 58,118 loans

of Section 3, plus 95% confidence intervals using Lemma 1 to compare with Table 1 via (7).
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Credit Risk Convergence: Supplemental Material1

The following is intended as an online companion supplement to the manuscript, On the con-2

vergence of credit risk in current consumer automobile loans. Please attribute any citations3

to the original manuscript. This companion includes a brief introduction to loan seasoning,4

proofs of major results, additional data details, a robustness analysis, a simulation study,5

and an alternative method to estimate lender risk-adjusted return. All data and replication6

code is publicly available at the repository: https://github.com/jackson-lautier/credit-risk-7

convergence/.8

A Loan Seasoning9

In chronicling cumulative loss curves for securitization pools of individual consumer auto-10

mobile loans, there is a familiar pattern every junior credit analyst can sketch from memory:11

an initial rise in the early months of the securitization followed by a sustained flattening in12

the curve once the pool eventually settles into its long-term steady state. In higher risk or13

subprime pools of borrowers, the eventual cumulative loss percentage might be many mul-14

tiples higher than lower risk or prime pools of borrowers, but the overall shape follows the15

familiar natural log-like pattern. Junior credit analysts are trained to look for any sudden16

upward deviations in the historical pattern, or peel back, which may indicate a rapid deterio-17

ration in the performance of the loans. We illustrate three such securitization loss curves in18

Figure A1. It is peculiar that the loss curves all eventually flatten to a similar degree. This19

suggests an eventual equivalence in the instantaneous default rate conditional on survival,20

despite the notable cumulative differences between the loss curves. This is the concept of21

loan seasoning, which is documented for residential mortgages (e.g., Adelino et al., 2019).22

B Proofs: Section 223

Proof of Theorem 2.1. Statement (i) follows from (ii), so it is enough to show (ii). Denote24

v1 ∧ v2 ≡ min(v1, v2) for any v1, v2 ∈ R and let ∆ + 1 ≤ k ≤ ξ. Observe25

λ̂0iτ,n(k)− λ0iτ (k) =
1
n

∑n
j=1 1Xj≤Cj

1ZXj
=i1Xj∧Cj=k

Ûτ,n(k)
−
f 0i
∗,τ (k)

Uτ (k)

=
{
∑n

j=1 1Xj≤Cj
1ZXj

=i1Xj∧Cj=k}Uτ (k)− f 0i
∗,τ (k)Ûτ,n(k)

Ûτ,n(k)Uτ (k)

=

∑n
j=1{1Xj≤Cj

1ZXj
=i1Xj∧Cj=kUτ (k)− f 0i

∗,τ (k)1Yj≤k≤Xj∧Cj
}

nÛτ,n(k)Uτ (k)
.

1
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Figure A1: Classical Consumer Automobile Securitization Loss Curves.
A plot of three securitization loss curves: the cumulative count (%) of defaults against securitization age
(months). The higher two loss curves correspond to riskier (i.e., subprime) pools of loans in terms of
traditional credit metrics, and the lower is a less risky, prime pool. It is a curiosity that all curves eventually
flatten (e.g., after the vertical dashed line at 40 months), despite the large differences in underlying borrower
credit quality and rapid deterioration of collateral value.

Define, for 1 ≤ j ≤ n, H0i
τ,k(j) = 1Xj≤Cj

1ZXj
=i1Xj∧Cj=kUτ (k) − f 0i

∗,τ (k)1Yj≤k≤Xj∧Cj
, and26

Aτ,n = diag([Ûτ,n(∆ + 1)Uτ (∆ + 1)]−1, . . . , [Ûτ,n(ξ)Uτ (ξ)]
−1). Then,27

Λ̂0i
τ,n −Λ0i

τ = Aτ,n
1

n

n∑
j=1


H0i
τ,∆+1(j)
...

H0i
τ,ξ(j)

 ,
or, letting H0i

τ,(j) = (H0i
τ,∆+1(j), . . . , H

0i
τ,ξ(j))

⊤ denote independent and identically distributed28

random vectors, we have compactly29

Λ̂0i
τ,n −Λ0i

τ = Aτ,n
1

n

n∑
j=1

H0i
τ,(j).

2



Supplemental Material

It is noteworthy the components of H0i
τ,(j) are uncorrelated. More specifically,30

Cov[H0i
τ,k(j), H

0i
τ,k′(j)] =

Uτ (k)f 0i
∗,τ (k)[Uτ (k)− f 0i

∗,τ (k)], k = k′

0, k ̸= k′.
(1)

To see this, observe 1Xj≤Cj
1ZXj

=i1Xj∧Cj=k and 1Yj≤k≤Xj∧Cj
are Bernoulli random variables31

with probability parameters f 0i
∗,τ (k) and Uτ (k), respectively. Hence,32

EH0i
τ,k(j) = E1Xj≤Cj

1ZXj
=i1Xj∧Cj=kUτ (k)− f 0i

∗,τ (k)E1Yj≤k≤Xj∧Cj

= f 0i
∗,τ (k)Uτ (k)− f 0i

∗,τ (k)Uτ (k) = 0.

Therefore,33

Cov[H0i
τ,k(j), H

0i
τ,k′(j)] = EH0i

τ,k(j)H
0i
τ,k′(j)

= E{1Xj≤Cj
1ZXj

=i1Xj∧Cj=kUτ (k)− f 0i
∗,τ (k)1Yj≤k≤Xj∧Cj

}

× {1Xj≤Cj
1ZXj

=i1Xj∧Cj=k′Uτ (k
′)− f 0i

∗,τ (k
′)1Yj≤k′≤Xj∧Cj

}

= Uτ (k)Uτ (k
′)E1Xj≤Cj

1ZXj
=i1Xj∧Cj=k1Xj≤Cj

1ZXj
=i1Xj∧Cj=k′

− Uτ (k)f 0i
∗,τ (k

′)E1Xj≤Cj
1ZXj

=i1Xj∧Cj=k1Yj≤k′≤Xj∧Cj

− Uτ (k′)f 0i
∗,τ (k)E1Xj≤Cj

1ZXj
=i1Xj∧Cj=k′1Yj≤k≤Xj∧Cj

+ f 0i
∗,τ (k)f

0i
∗,τ (k

′)E1Yj≤k≤Xj∧Cj
1Yj≤k′≤Xj∧Cj

.

We shall calculate Cov[H0i
τ,k(j), H

0i
τ,k′(j)] by cases, k = k′ and k ̸= k′. Suppose first k = k′ and34

observe35

E1Xj≤Cj
1ZXj

=i1Xj∧Cj=k1Xj≤Cj
1ZXj

=i1Xj∧Cj=k′ = E1Xj≤Cj
1ZXj

=i1Xj∧Cj=k

= f 0i
∗,τ (k),

36

E1Xj≤Cj
1ZXj

=i1Xj∧Cj=k1Yj≤k′≤Xj∧Cj
= E1Xj≤Cj

1ZXj
=i1Xj∧Cj=k′1Yj≤k≤Xj∧Cj

= E1Xj≤Cj
1ZXj

=i1Xj∧Cj=k1Yj≤k≤Xj∧Cj

= E1Xj≤Cj
1ZXj

=i1Xj∧Cj=k

= f 0i
∗,τ (k),
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and E1Yj≤k≤Xj∧Cj
1Yj≤k′≤Xj∧Cj

= E1Yj≤k≤Xj∧Cj
= Uτ (k). Thus,37

Cov[H0i
τ,k(j), H

0i
τ,k′(j)] = Uτ (k)f

0i
∗,τ (k)[Uτ (k)− f 0i

∗,τ (k)].

For the second case, k ̸= k′, we have instead38

E1Xj≤Cj
1ZXj

=i1Xj∧Cj=k1Xj≤Cj
1ZXj

=i1Xj∧Cj=k′ = 0,

39

E1Xj≤Cj
1ZXj

=i1Xj∧Cj=k1Yj≤k′≤Xj∧Cj

=

Pr(Xj ≤ Cj, ZXj
= i,Xj ∧ Cj = k, Yj ≤ k′), k > k′

0, k < k′,

40

E1Xj≤Cj
1ZXj

=i1Xj∧Cj=k′1Yj≤k≤Xj∧Cj

=

0, k > k′

Pr(Xj ≤ Cj, ZXj
= i,Xj ∧ Cj = k′, Yj ≤ k), k < k′,

and E1Yj≤k≤Xj∧Cj
1Yj≤k′≤Xj∧Cj

= Pr(Yj ≤ k ≤ Xj ∧ Cj, Yj ≤ k′ ≤ Xj ∧ Cj). Thus, denoting41

v1 ∨ v2 = max(v1, v2) for any v1, v2 ∈ R, we have42

Cov[H0i
τ,k(j), H

0i
τ,k′(j)] = f 0i

∗,τ (k ∧ k′)×{
− Uτ (k ∨ k′) Pr(Xj ≤ Cj, ZXj

= i,Xj ∧ Cj = k ∨ k′, Yj ≤ k ∧ k′)

+ f 0i
∗,τ (k ∨ k′) Pr(Yj ≤ k ≤ Xj ∧ Cj, Yj ≤ k′ ≤ Xj ∧ Cj)

}
.

However, because of the independence between Y and (X,ZX),43

Uτ (k ∨ k′) = Pr(Yj ≤ k ∨ k′ ≤ Xj ∧ Cj) =
Pr(Y ≤ k ∨ k′ ≤ C) Pr(X ≥ k ∨ k′)

α
,

44

Pr(Xj ≤ Cj, ZXj
= i,Xj ∧ Cj = k ∨ k′, Yj ≤ k ∧ k′)

=
Pr(X = k ∨ k′, ZXj

= i) Pr(Y ≤ k ∧ k′, C ≥ k ∨ k′)
α

,
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45

f 0i
∗,τ (k ∨ k′) =

Pr(X = k ∨ k′, ZXj
= i) Pr(Y ≤ k ∨ k′ ≤ C)

α
,

and46

Pr(Yj ≤ k ≤ Xj ∧ Cj, Yj ≤ k′ ≤ Xj ∧ Cj)

=
Pr(Y ≤ k ∧ k′, C ≥ k ∨ k′) Pr(X ≥ k ∨ k′)

α
.

Therefore,47

Uτ (k ∨ k′) Pr(Xj ≤ Cj, ZXj
= i,Xj ∧ Cj = k ∨ k′, Yj ≤ k ∧ k′)

= f 0i
∗,τ (k ∨ k′) Pr(Yj ≤ k ≤ Xj ∧ Cj, Yj ≤ k′ ≤ Xj ∧ Cj),

and so Cov[H0i
τ,k(j), H

0i
τ,k′(j)] = 0 when k ̸= k′. This confirms (1). Now define48

D0i
τ = diag


Uτ (∆ + 1)f 0i

∗,τ (∆ + 1)[Uτ (∆ + 1)− f 0i
∗,τ (∆ + 1)]

...

Uτ (ξ)f
0i
∗,τ (ξ)[Uτ (ξ)− f 0i

∗,τ (ξ)]


and49

H̄0i
τ,n =

1

n

n∑
j=1

H0i
τ,(j).

By the multivariate Central Limit Theorem (Lehmann and Casella, 1998, Theorem 8.21, pg.50

61), therefore,51

√
n(H̄0i

τ,n − 0)
L−→ N(0,D0i

τ ), as n→∞.

Next, define Vτ = diag(Uτ (∆ + 1)−2, . . . , Uτ (ξ)
−2). By Lautier et al. (2023, Lemma 1),52

Aτ,n
P−→ Vτ , as n→∞. Thus, by the multivariate version of Slutsky’s Theorem (Lehmann53

and Casella, 1998, Theorem 5.1.6, pg. 283),54

√
n(Aτ,nH̄

0i
τ,n)

L−→ N(0,VτD
0i
τ V

⊤
τ ), as n→∞.

Observe VτD
0i
τ V

⊤
τ = Σ0i and Aτ,nH̄

0i
τ,n = Λ̂0i

τ,n −Λ0i
τ to complete the proof.55

Proof of Lemma 1. The classical method dictates first finding a (1− θ)% confidence interval56

on a log-scale and then converting back to a standard-scale to ensure the estimated confidence57

interval for the hazard rate, which is a probability, remains in the interval (0, 1). By an58
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application of the Delta Method (Lehmann and Casella, 1998, Theorem 8.12, pg. 58), we59

have for x ∈ {∆+ 1, . . . , ξ} and i = 1, 2,60

√
n
(
ln λ̂0iτ,n(x)− lnλ0iτ (x)

) L−→ N

(
0,
f 0i
∗,τ (x){Uτ (x)− f 0i

∗,τ (x)}
Uτ (x)3

1

λ0iτ (x)
2

)
.

The result follows from (4), the Continuous Mapping Theorem (Mukhopadhyay, 2000, The-61

orem 5.2.5, pg. 249), the pivotal approach (Mukhopadhyay, 2000, §9.2.2), and converting62

back to the standard scale.63

C Data Details64

We shall first review how the loans were selected and how the risk bands were defined. Next,65

we summarise the selected loans. We then include details on the definition of a default.66

Finally, we provide details on how we estimated the recovery given default.67

C.1 Loan Selection and Defining Risk Bands68

All data derives from the consumer automobile loan ABS bonds CarMax Auto Owner Trust69

2017-2 (CarMax, 2017) (CARMX), Ally Auto Receivables Trust 2017-3 (Ally, 2017) (AART),70

Santander Drive Auto Receivables Trust 2017-2 (Santander, 2017b) (SDART), and Drive71

Auto Receivables Trust 2017-1 (Santander, 2017a) (DRIVE).72

To ensure the underlying loans in our analysis are as comparable as possible, we employ73

a number of filtering mechanisms. First, we remove any loan contracts that include a co-74

borrower. Second, we require each loan to have been underwritten to the level of “stated not75

verified” (obligorIncomeVerificationLevelCode), which is a prescribed description of the76

amount of verification done to a borrower’s stated income level on an initial loan application77

(Securities and Exchange Commission, 2016). Third, we remove all loans originated with any78

form of subvention (i.e., additional financial incentives, such as added trade-in compensation79

or price reductions on the final sale price). We then require all loans to correspond to80

the sale of a used vehicle. This was mainly to keep the loans from CARMX, of which81

used cars predominate. We sensitivity test this requirement in the robustness checks of82

Section D.2. We further drop any loan with a current status of “repossessed” as of the83

first available reporting month of the corresponding ABS. Further, to minimise the chance84

of inadvertently including a loan that has been previously refinanced or modified, we only85

consider loans younger than 18 months as of the first available ABS reporting month. For86

loan term, we only include loans with an original term of 72 or 73 months. Pragmatically,87

6
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the most common loan term in the data was 72/73 months, and so our loan term choice88

allows us to maximise the sample size.89

As a final data integrity check, we remove any loans that did not pay enough total90

principle to pay-off the outstanding balance as of the first month the trust was active and91

paying but had a missing value (NA) for the outstanding balance in the final month the trust92

was active and paying. In other words, the loan outcome was not clear from the data; the93

loan did not pay enough principal to pay off the outstanding balance nor default but stopped94

reporting monthly payment data. In total, this final data integrity check impacts only 2,63095

or 4.3% of the filtered loan population. We are left with 58,118 individual consumer auto96

loan contracts in total, summary details of which may be found in Section C.2.97

Next, we assign each loan into a credit risk category or risk band depending on the98

original interest rate (originalInterestRatePercentage) assigned to the contracted loan.99

The interest rate is the ideal measure of perceived borrower risk within a risk-based pricing100

framework (Edelberg, 2006; Phillips, 2013) because a borrower’s risk profile is a multidi-101

mensional function of factors like credit score, loan amount, down payment percentage (%102

down), vehicle or collateral value, income, payment-to-income (PTI), etc., in addition to103

many of the factors of which we have already filtered. In other words, given we have already104

controlled for prevailing market rates by selecting loans originated within a close temporal105

proximity, the interest rate serves as the market’s best estimate of a loan’s risk profile.106

We now formalise this discussion slightly. Working from Phillips (2013), a borrower’s107

interest rate in risk band a, ra, is108

ra = rc +m+ la,

where rc is the cost of capital, m is the added profit margin, and la is a factor that varies by109

risk band. The components rc and m will be shared by all risk bands, and so there exists110

some functional relationship111

la ≡ f(PTI,% down,Loan Amt,Vehicle Val, . . .).

Rather than attempt to recover this unknown f , therefore, we are in effect treating the112

lender’s credit scoring model as an accurate reflection of the borrower’s risk.1 Specifically,113

we assign borrower’s with an APR of 0-5% to the super-prime risk band, 5-10% to the prime114

risk band, 10-15% to the near-prime risk band, 15-20% to the subprime risk band, and 20%+115

to the deep subprime risk band. In a review of Figure C1 in Section C.2, we can see that116

the risk bands assigned by interest rate compare favourably to the traditional credit score117

1Indeed, these models are often quite sophisticated (Einav et al., 2012).
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borrower risk band definition (Consumer Financial Protection Bureau, 2019).118

C.2 Summary of Selected Loans119

After the data cleaning and filtering of Section C.1, we have payment performance for 58,118120

consumer auto loans that span a wide range of borrower credit quality based on the tradi-121

tional credit score metric. Figure C1 presents a summary of each bond by obligor credit122

score and interest rate as of loan origination. Judging by credit score, we can see that gen-123

erally DRIVE is a deep subprime to subprime pool of borrowers, SDART is a subprime to124

near-prime pool, CARMX is a near-prime to prime pool, and AART is a prime to super-125

prime pool of borrowers (Consumer Financial Protection Bureau, 2019). As expected, in a126

risk-based pricing framework, the density plot of each borrower’s interest rate has an inverse127

relationship to the density plot of each borrower’s credit score: lower credit scores correspond128

to higher interest rates (compare the first two rows of Figure C1). As such, we can see the129

annual percentage rates (APRs) are higher for the DRIVE and SDART bonds, generally130

sitting within a range around 20% and then declining to under 15% for CARMX and finally131

under 10% for AART. The bottom two rows of Figure C1 demonstrate that defining risk132

bands by interest rate corresponds closely to the traditional credit score risk band definitions133

(Consumer Financial Protection Bureau, 2019), as the expected inverse relationship holds.134

The loans are well dispersed geographically among all 50 states and Washington, D.C.,135

with the top five concentrations of Texas (13%), Florida (12%), California (9%), Georgia136

(7%), and North Carolina (4%). Similarly, the loans are well diversified among auto man-137

ufacturers, with the top five concentrations of Nissan (13%), Chevrolet (10%), Ford (7%),138

Toyota (7%), and Hyundai (7%). Thus, our sample is not overly representative to one state-139

level economic locale or auto manufacturer. For additional details on the makeup of the140

loans, see the associated prospectuses (Ally, 2017; CarMax, 2017; Santander, 2017a,b).141

Table C1 provides a summary of borrower counts by bond and performance. The total142

pool of 58,118 loans is weighted towards deep subprime and subprime borrowers, which are143

each 37% of the total and together 74%. Similarly, DRIVE and SDART supply around 85%144

of the total loans in our sample. The smallest risk band is super-prime, which totals 2,179145

loans for 4% of the total of 58,118. Our asymptotic results scale by sample size, so the146

confidence intervals adjust appropriately.147

In terms of loan performance, we can observe some clear trends in Table C1. First,148

more than half of all deep subprime risk band loans defaulted,2 and this percentage declines149

by risk band until super-prime, in which only 4% of loans defaulted during the observation150

2We use a strict definition of default in that three consecutive missed payments is a default. This was
defined within our code (see Section C.3) to ensure a consistent default definition.
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Figure C1: Borrower Credit Profile and APR by Bond, Risk Band.
Borrower credit profiles (1st row) and charged APR (2nd row) of the 58,118 filtered consumer automobile
loans used in the analysis of Sections 3 and 4 by ABS bonds CarMax Auto Owner Trust 2017-2 (CarMax,
2017) (CARMX, 6,835), Ally Auto Receivables Trust 2017-3 (Ally, 2017) (AART, 2,171), Santander Drive
Auto Receivables Trust 2017-2 (Santander, 2017b) (SDART, 20,192), and Drive Auto Receivables Trust 2017-
1 (Santander, 2017a) (DRIVE, 28,920). Distribution of credit scores (3rd row) and interest rates (4th row),
by APR-based risk band classification: super-prime (0-5%), prime (5-10%), near-prime (10-15%), subprime
(15-20%), and deep subprime (20%+) for the same set of 58,118 loans.

window. We also see that performance is fairly consistent by risk band, even among different151

bonds. For example, super-prime default percentages are within a tight range (3-6%) across152

each bond. The same may be said for deep subprime defaults. We see some wider ranges153

in the default percentages of the subprime (33-40%), prime (8-19%), and near-prime (17-154

24%) risk bands by bond, but they remain close enough to suggest there is not a worrisome155

difference between the credit scoring models employed by each different issuer. Overall,156

the percentage of defaulted loans declines as the credit quality of the risk band increases.157

This is further evidence that our APR-based risk band definition has yielded appropriate158

classification results.159
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Table C1: Borrower Counts by Risk Band, Bond, and Loan Outcome.
This table reports the summary statistics and loan outcomes of the 58,118 filtered consumer automobile
loans summarised in Figure C1. Table specific abbreviations are DRIVE (DRV), SDART (SDT), CARMX
(CMX) and AART (AAT). Percentages may not total to 100% due to rounding.

deep subprime subprime near-prime prime super-prime Total

Total 21,630 (37%) 21,332 (37%) 6,677 (11%) 6,300 (11%) 2,179 (4%) 58,118 (100%)

DRIVE 14,079 (65%) 12,884 (60%) 1,443 (22%) 220 (3%) 294 (13%) 28,920 (50%)
SDART 7,551 (35%) 8,327 (39%) 2,782 (42%) 861 (14%) 671 (31%) 20,192 (35%)
CARMX 0 (0%) 120 (1%) 2,128 (32%) 3,752 (60%) 835 (38%) 6,835 (12%)
AART 0 (0%) 1 (0%) 324 (5%) 1,467 (23%) 379 (17%) 2,171 (4%)

Total 21,630 (100%) 21,332 (100%) 6,677 (100%) 6,300 (100%) 2,179 (100%) 58,118 (100%)

Defaulted 11,210 (52%) 7,900 (37%) 1,422 (21%) 624 (10%) 92 (4%) 21,248 (37%)
Censored 3,547 (16%) 4,599 (22%) 1,997 (30%) 2,556 (41%) 948 (44%) 13,647 (23%)
Repaid 6,873 (32%) 8,833 (41%) 3,258 (49%) 3,120 (50%) 1,139 (52%) 23,223 (40%)

Total 21,630 (100%) 21,332 (100%) 6,677 (100%) 6,300 (100%) 2,179 (100%) 58,118 (100%)

D
R
V

Defaulted 7,518 (53%) 5,115 (40%) 351 (24%) 42 (19%) 14 (5%) 13,040 (45%)
Censored 2,214 (16%) 2,641 (20%) 324 (22%) 60 (27%) 119 (40%) 5,358 (19%)
Repaid 4,347 (31%) 5,128 (40%) 768 (53%) 118 (54%) 161 (55%) 10,522 (36%)

Total 14,079 (100%) 12,884 (100%) 1,443 (100%) 220 (100%) 294 (100%) 28,920 (100%)

S
D
T

Defaulted 3,692 (49%) 2,740 (33%) 590 (21%) 105 (12%) 29 (4%) 7,156 (35%)
Censored 1,333 (18%) 1,915 (23%) 715 (26%) 255 (30%) 299 (45%) 4,517 (22%)
Repaid 2,526 (33%) 3,672 (44%) 1,477 (53%) 501 (58%) 343 (51%) 8,519 (42%)

Total 7,551 (100%) 8,327 (100%) 2,782 (100%) 861 (100%) 671 (100%) 20,192 (100%)

C
M

X

Defaulted 0 45 (38%) 427 (20%) 296 (8%) 25 (3%) 793 (12%)
Censored 0 43 (36%) 854 (40%) 1,736 (46%) 392 (47%) 3,025 (44%)
Repaid 0 32 (27%) 847 (40%) 1,720 (46%) 418 (50%) 3,017 (44%)

Total 0 120 (100%) 2,128 (100%) 3,752 (100%) 835 (100%) 6,835 (100%)

A
A
T

Defaulted 0 0 (0%) 54 (17%) 181 (12%) 24 (6%) 259 (12%)
Censored 0 0 (0%) 104 (32%) 505 (34%) 138 (36%) 747 (34%)

Repaid 0 1 (100%) 166 (51%) 781 (53%) 217 (57%) 1,165 (54%)

Total 0 1 (100%) 324 (100%) 1,467 (100%) 379 (100%) 2,171 (100%)

C.3 Determination of Loan Outcome160

The detail of the loan-level data is extensive, but it remains up to the data analyst to use the161

provided fields to determine the outcome of an individual loan (see Securities and Exchange162

Commission (2016) for detail on available field names). To do so, we aggregate each month163

of active trust data into a single source file. This allows us to review each bond’s monthly164

outstanding principal balance, monthly payment received from the borrower, and the portion165

of each monthly payment applied to principal.166

Our algorithm to determine a loan outcome proceeds as follows. For each remaining167

bond after the filtering of Section C.1, we extract three vectors, each of which was the same168

length as the number of months a trust was active and paying. The first vector represents169
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the ordered monthly balance, the second is the ordered monthly payments, and the third is170

the ordered monthly amount of payment applied to principal. We then consider a loan to171

be repaid if the sum total principal received was greater than the outstanding loan balance172

as of the first month the trust was actively paying. In this case, the timing of a repayment173

is set to be the first month with a zero outstanding principal balance. Note that we do174

not differentiate between a prepayment or naturally scheduled loan amortization; i.e., all175

repayments have been treated as a “non-default”. If the sum total principal received is less176

than the first month’s outstanding loan balance, we then consider a loan outcome to be either177

right-censored or defaulted. To make this determination, we search the monthly payments178

received vector for three consecutive zeros (i.e., three straight months of missed payments).179

If we find three consecutive missed payments, we assume the loan to be defaulted with a180

time-of-default set to be the month in which the first of three zeros is observed. If we do not181

find three consecutive months of missed payments, the loan is assumed to be a right-censored182

observation and assigned an event time as of the last month the trust was actively paying.183

For the pseudo-code of this algorithm, see Figure C2.184

C.4 Estimating Recovery Upon Default185

Consumer auto loans are secured with the collateral of the attached automobile. In the event186

of a defaulted loan, the lender has legal standing to repossess the vehicle to make up the187

outstanding balance of the loan. In most cases, particularly for deep subprime and subprime188

borrowers, the estimated value of a repossessed automobile in the event of default is an189

important component in the initial pricing of a loan. In this section, therefore, we briefly190

discuss our process to estimate a recovery assumption by loan age, which is ultimately191

defined as a percentage of the initial loan balance. Our estimates are used in the analysis192

of Section 4.1, but we acknowledge the empirical results may also be of interest to readers193

more generally. We thus present our estimated recovery curve for the 2017 issuance (see194

Section C.2) in Figure C3.195

The results of Figure C3 utilise the detailed reporting of the loan level data of Securities196

and Exchange Commission (2016) to perform the estimation for both the filtered sample of197

58,118 loans issued in 2017 and summarised in Section C.2 and the filtered sample of 65,802198

loans issued in 2019 and summarised in Section D.1. Specifically, we calculate a sum total199

of the recoveredAmount field for all loans that ended in default. The recoveredAmount200

field includes any additional loan payments made by the borrower after defaulting, legal201

settlements, and repossession proceeds (Securities and Exchange Commission, 2016). We202

then divide the total recoveredAmount by the originalLoanAmount for each defaulted loan.203
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1: B ← bond data ▷ bond data is a row of the loan performance data
2: bal vec← each month’s sequential outstanding principal balance
3: pmt vec← each month’s sequential actual payment
4: prc vec← each month’s sequential payment applied to principal
5: init bal← current balance as of the first trust month
6: paid princ← sum(prc vec) ▷ plus $10 pad to avoid odd tie behaviour
7: if paid princ >= init bal then
8: D = 0
9: R = 1
10: C = 0
11: X ← location of first zero in bal vec ▷ loan repaid
12: else
13: z ← starting time of three consecutive zero payments in pmt vec

14: if z empty then
15: D = 0
16: R = 0
17: C = 1
18: X ← length of pmt vec ▷ loan censored
19: else
20: D = 1
21: R = 0
22: C = 0
23: X ← z ▷ loan defaults
24: end if
25: end if

Figure C2: Determination of Loan Outcome.
We first extract three vectors, each of which is the same length as the number of months the trust was active
and paying. The first vector (bal vec) represents the ordered monthly balance, the second (pmt vec) is the
ordered monthly payments, and the third (prc vec) is the ordered monthly amount of payment applied to
principal. We consider a loan to be repaid if the sum total principal received is greater than the outstanding
loan balance as of the first month the trust was actively paying. In this case, the timing of a repayment is
set to be the first month with a zero outstanding principal balance. If the sum total principal received is less
than the first month’s outstanding loan balance, we consider a loan outcome to be either right-censored or
defaulted. To make this determination, we search the monthly payments received vector for three consecutive
zeros (i.e., three straight months of missed payments). If we find three consecutive missed payments, we
assume the loan to be defaulted with a time-of-default set to be the month in which the first of three zeros
is observed. If we do not find three consecutive months of missed payments, the loan is assumed to be a
right-censored observation and assigned an event time as of the last month the trust was actively paying.

Finally, we take an average of these recovery percentages by age of default in months. The204

point estimates may be found in Figure C3. Next, for convenient use within the lender205

profitability analysis of Section 4.1, we nonparametrically smooth the point estimates using206

the loess() function in R (R Core Team, 2022). See the dashed line in Figure C3. This207

nonparametric loess curve is then fitted to a gamma-kernel via ordinary minimization of208

a sum-of-squared differences, which allows for extrapolation beyond the recoverable sample209
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Figure C3: Estimation of the Recovery Upon Default Assumption.
The point estimates are formed using the asset-level data of Securities and Exchange Commission (2016)
for the 58,118 filtered loans summarised in Section C.2. Specifically, they are the monthly average of the
sum total of the recoveredAmount field, which includes any additional loan payments made by the borrower
after defaulting, legal settlements, and repossession proceeds (Securities and Exchange Commission, 2016),
divided by the originalLoanAmount field for each loan that ended in default. Smoothing techniques are
also presented. The shape of the recovery curve is similar for the sample of 65,802 loans issued in 2019.

space. See the solid line in Figure C3.210

The shape of the recovery curve warrants some commentary. Loans that default shortly211

after origination generally have a low recovery amount as a percentage of the initial loan212

balance, between 10-20%. This is likely because a loan that defaults so quickly after orig-213

ination may be due to fraud in the initial loan application, extreme circumstances for the214

borrower (i.e., rapid decline in physical health), or severe damage to the vehicle. In the215

case of damage to the vehicle, it is possible the borrower has also lapsed on auto insurance216

or removed collision insurance. Overall, it can be difficult to recover a meaningful amount217

in these circumstances. The recovery percentage then peaks at month 12 at just over 42%218

before declining towards zero as the loan age approaches termination (72–73 months). Since219

all vehicles in our sample are used, the decline in recoveries reflects the typical depreciating220

value of the automobile over time (e.g., Storchmann, 2004).221
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We close this section by noting the economic welfare of an automobile repossession has222

attracted the attention of researchers. Generally, the results are mixed. On the one hand,223

Pollard et al. (2021) discuss a vicious cycle of subprime auto lending where the same car224

may be bought, sold, and repossessed 20-30 times. This suggests repossessions may nega-225

tively impact economic welfare. A earlier result by Cohen (1998) finds that manufacturers226

prefer to offer prospective borrowers interest discounts over equivalent cash rebates because227

a legal technicality finds such a discount is financially beneficial to the lender in the event228

of repossession. In this case, the legal circumstances of a repossession may influence market229

behaviour. Along the same lines and an argument for the potential economic benefits of230

repossession, Assunção et al. (2013) find that a 2004 credit reform in Brazil, which sim-231

plified the sale of repossessed cars, lead to an expansion of credit for riskier, self-employed232

borrowers. In other words, a reform designed to make recouping money from a repossessed233

automobile easier for lenders improved the ability of riskier borrowers to access credit. It is234

noteworthy, however, that the reform also lead to increased incidences of delinquencies and235

default.236

D Robustness Analysis237

We first examine the sensitivity of the credit risk convergence results to the economic impact238

of COVID-19. Next, we examine the sensitivity of the convergence results to collateral type239

(i.e., new autos versus used) and the business model of the lender.240

D.1 Impact of COVID-19241

As alluded to in Section 3, we have attributed the large increase around loan age 40 for242

the default CSH rate estimate observable in Figure 1 to the Spring 2020 economic shutdown243

resulting from the initial rapid spread of the Coronavirus disease. Because the point of credit244

risk convergence occurs after month 40 for some pairs of risk bands in Table 1 (e.g., deep245

subprime and prime credit risk convergence occurs by loan age 50), there is a concern that the246

point estimate of default risk converging for disparate risk bands is due to the filtering effect247

of the shock of the economic shutdown rather than due to some inherent property of loan248

risk behaviour. In other words, only the strongest credits could survive such a shock, and249

credit risk convergence may occur later or not at all otherwise. While we feel the economic250

shutdown has played some role, we believe it is not adequate on its own to explain the credit251

risk convergence we observed in our sample. We argue as follows.252

First, if we return again to Table 1, we can see that pairs of risk bands converge ear-253
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lier than loan age 40 (e.g., deep subprime and subprime, near-prime and prime, near-prime254

and super-prime, and prime and super-prime). Thus, we have examples of risk bands that255

converge in conditional monthly default risk prior to the onset of the Spring 2020 economic256

shutdown. Second, if credit risk convergence is completely driven by the Spring 2020 eco-257

nomic shutdown, we would expect to see it occur much earlier in a sample of bonds issued258

closer to Spring 2020 when subject to the same loan selection process and risk band defini-259

tions of Section C.1. Hence, we obtained loan level data from the same four consumer auto260

loan ABS issuers but from bonds issued closer to Spring 2020: SDART 2019-3 (Santander,261

2019b), DRIVE 2019-4 (Santander, 2019a), CARMX 2019-4 (CarMax, 2019), and AART262

2019-3 (Ally, 2019).3 These bonds began paying in late Summer 2019, whereas the bonds263

introduced in Section C began paying in Spring 2017.264

Figure D1 is a repeat of Figure 1; it presents the estimated CSH rates for default plus265

asymptotic 95% confidence intervals for the 2019 sample. As expected, we see the large spike266

in the CSH rate for defaults in subprime loans around 10 months, which, when adjusted for267

left-truncation, corresponds to the Spring 2020 economic shutdown. We also display the268

estimated credit risk convergence matrix in Table D1 for direct comparison to Table 1.269

In reviewing the matrix, we see evidence of earlier convergence. Hence, the shock of the270

economic shutdown of Spring 2020 has likely played some role. It is not the whole story,271

however. For example, the subprime risk band in the 2019 issuance does not converge272

with the super-prime risk until loan age 42. In the 2017 issuance, the subprime risk band273

converges with the super-prime risk band at loan age 48. This suggests that loan age or loan274

seasoning also plays a role. Similarly, while convergence between risk bands occurs earlier275

for the 2019 sample, it takes more months after the shutdown shock for most disparate risk276

bands to converge than after the same shock in the 2017 sample. For example, the subprime277

and prime risk bands converge by loan 25 in the 2019 sample, which is 15 months after the278

economic shutdown shock. For the 2017 sample, however, the subprime risk band converges279

with the prime risk band at loan age 42, which is only 2 months after the economic shutdown.280

This further suggests that the converge results of Table 1 are not solely attributable to the281

economic event of COVID. For completeness, we plot the full five-by-five matrix of CSH282

rate estimates for default in Figure D2 for the sample of 65,802 loans issued in 2019. It is a283

complete extension of the subprime versus prime plot in Figure D1. That is, Figure D1 is a284

zoomed-in view of the subprime-prime cell (row 4, column 2) in Figure D2.285

3The filtered 2019 sample mirrors the distribution of the 2017 filtered sample summarised in Table C1.
For example, there are 31,221 DRIVE 2019-4 loans, 19,962 SDART 2019-3 loans, 11,724 CARMX 2019-4
loans, and 2,895 AART 2019-3 loans, for a total of 65,802. By risk band, there are 24,107 (37%) deep
subprime loans, 20,874 (32%) subprime loans, 9,930 (15%) near-prime loans, 8,625 (13%) prime loans, and
2,266 (3%) super-prime loans.
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Figure D1: Credit Risk Convergence: COVID Sensitivity.
A plot of λ̂01

τ,n (defaults) defined in (5) by loan age for the subprime and prime risk bands within the sample
of 65,802 loans issued in 2019, plus 95% confidence intervals using Lemma 1. We may use the hypothesis
test described in (7) by searching for the minimum age that the confidence intervals overlap between two
disparate risk bands. Because the 2019 bonds were issued closer to Spring 2020, the large upward spike in
λ̂01
τ,n occurs much earlier for the subprime risk band, closer to loan age 10 (compare with Figure 1). We see

some evidence of earlier credit risk convergence around loan age 25 in comparison to Figure 1.

We also remark that in the last twenty years it is difficult to find a span of 72 con-286

secutive months in which there was not a large scale economic shock (e.g., September 11,287

2001; 2007-2009 global financial crisis; 2009-2014 European sovereign debt crisis, COVID-19,288

etc.). Hence, credit risk convergence may be perpetually present, even if it may be partially289

explained by the filtering effects of an economic crisis.290

D.2 Additional Sensitivity Analysis291

With some rudimentary data sorting, the techniques of Section 2 may be used for sensitivity292

testing. To illustrate, we now consider an additional robustness analysis. We instead sort the293

data for new cars at the point of sale. This will give us exposure to a potentially different294

borrower profile and depreciating collateral value pattern. It will also greatly reduce our295

exposure to the CARMX bond. Reduced exposure to CARMX is of interest because the296
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Table D1: Credit Risk Convergence: 2019 Transition Matrix.
This table reports a summary matrix of the estimated month of credit risk convergence for the sample of
65,802 72-73 month consumer automobile loans issued in 2019 (see Section D.1). For conservatism, the
month of credit risk convergence is defined as the earlier of (1) the first of two consecutive months after

ten months that the asymptotic confidence intervals for λ̂01
τ,n overlap or (2) once λ̂01

τ,n is consistently zero
for both risk bands. Visually, it is helpful to compare Figure D1 with the subprime-prime cell below. Full
comparisons may be made with Figure D2.

deep subprime subprime near-prime prime super-prime

deep subprime 10 31 51 58 58
subprime 10 23 25 42
near-prime 10 15 15

prime 10 10
super-prime 10

parent company, CarMax, has an entirely different business model and therefore financing297

incentive than either Santander or Ally, the origination banks of the DRIVE, SDART, and298

AART ABS bonds. Because of this, it is possible that CARMX loans behave differently299

than loans originated by banks.300

We again return to the original collective pool of over 275,000 consumer auto loans of301

the 2017 issuance of the four bonds introduced in Section C: CARMX, AART, DRIVE,302

and SDART. We then perform the identical risk band APR-based sorting and loan filtering303

of Section C.1, except rather than used cars we restrict our sample to new cars. This304

leaves a total sample of 16,412 loans, with bond exposures of DRIVE (7,692), SDART305

(7,369), ALLY (1,342) and CMAX (9). As expected, restricting the sample to new cars306

has eliminated almost all loans from CMAX, whose parent company, CarMax, specialises307

in used auto sales. Thus, the current sample of 16,412 loans consists of loans originated by308

traditional banks, Santander and Ally. In terms of risk band, we maintain dispersed exposure309

with deep subprime (3,892), subprime (8,242), near-prime (2,132), prime (1,407), and super-310

prime (739). Finally, all loans consist of a new vehicle at the point of sale, and so we are311

now considering an entirely different collateral depreciation pattern and even potentially312

borrower profile. We present an update of both Figure 1 and Figure D1 in Figure D3.313

Immediately, we see that the overall pattern of Figure D3 closely mirrors that of Figure 1.314

The subprime loans have a default CSH rate estimate that is consistently higher than prime315

loans in the early months of a loan’s age. We also see the large increase in the CSH rate for316

subprime loans around loan age 40, which correspond to the timing of the economic shutdown317

due to COVID-19 in Spring of 2020. As with the used cars-at-the-point-of-sale loans, there318
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Figure D2: Credit Risk Convergence: All Risk Bands (2019).

A plot of λ̂01
τ,n (defaults) defined in (5) by loan age for all five risk bands within the sample of 65,802 loans

(Section D.1), plus 95% confidence intervals using Lemma 1. It is a repeat of Figure 6 for the 2019 issuance
as a sensitivity check that the economic shock of COVID-19 is not the sole reason for the estimated timing
of credit risk convergence between disparate risk bands.

appears to be minimal impact from COVID-19 for prime loans. The two CSH rates for319

the subprime and prime risk bands eventually converge, however, which we see at the lower320

right corner of Figure D3. The asymptotic confidence intervals begin to consistently overlap321

beginning shortly after loan age 40, which corresponds to row two, column four of the top322

matrix of Table 1. Thus, our credit risk convergence point estimates appear to be robust in323
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Figure D3: Credit Risk Convergence: Collateral Sensitivity.
A plot of λ̂01

τ,n (defaults) defined in (5) by loan age for the subprime and prime risk bands within the
sample of 16,412 loans issued in 2017 with new cars at the point of sale, plus 95% confidence intervals
using Lemma 1. We may use the hypothesis test described in (7) by searching for the minimum age that the
confidence intervals overlap between two disparate risk bands. Because of the smaller sample, the asymptotic
confidence interval for the CSH rate of prime loans is wider. The overall pattern is very similar to Figure 1,
however, and so the point estimates of credit risk convergence appear to be robust to collateral type at the
point of sale (i.e., new or used). The sample of 16,412 new car loans also has minimal exposure to CARMX.
Thus, the CSH estimates further appear robust to different business incentives of the loan originator.

consumer auto loans to the collateral type at the point of sale (i.e., new or used). Because324

the sample of 16,412 new car loans has such minimal exposure to CARMX, we also see325

that our credit risk convergence point estimates appear to be robust to potentially different326

business incentives of the parent company to the loan originator (i.e., used car sales versus327

traditional banking).328

As a final note on collateral type, a close inspection of Figure D3 in comparison to329

Figure 1 reveals wider asymptotic confidence intervals for the CSH rate for default in prime330

loans. This is driven by the smaller sample size, and it is exacerbated for super-prime loans331

written on new cars (i.e., there are very few defaults for super-prime loans written on new332

cars in our sample of 739). Hence, we have avoided reporting the credit risk convergence333

point estimate matrix of Table 1 for the sample of 16,412 new car loans to avoid potentially334
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Figure D4: Credit Risk Convergence: All Risk Bands, Point Estimates.
A plot of λ̂01

τ,n (defaults) defined in (5) by loan age for all risk bands within the sample of 16,412 loans issued
in 2017 with new cars at the point of sale. As expected, the CSH rates are the highest for deep subprime
loans and then trend downwards until super-prime loans at the onset of loan lifetimes. As the loans mature
and stay current, however, we see that all CSH rates eventually converge towards zero at the bottom right.
This is an alternative visualization of loan seasoning, to be compared with Figure A1.

erroneously conclusions due to faulty asymptotic statistics stemming from a small default335

sample. Instead, we report the point CSH rate estimates for default for all five risk bands336

in Figure D4. In this case, a simple line plot speaks volumes. In the young ages of a337

loan, we see that the CSH rates for default is the highest for deep subprime loans, and it338

progresses sequentially downward by risk band until super-prime loans, of which there are339

very few defaults. This pattern is expected. As the loans age, however, we see all CSH340

rates for default for each risk band converge together in the bottom right of Figure D4341

near loan age 50. Given consumer auto loans on new car sales are also collateralised with342

rapidly depreciating assets, these results similarly cannot be explained by traditional LTV343

optionality arguments found in mortgages (e.g., Campbell and Cocco, 2015).344
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E Large Sample Simulation Study345

We present a simulation study in support of Theorem 2.1 and Lemma 1. Let the true346

distribution for the lifetime random variable X and bivariate distribution of (X,ZX) be as347

in Table E1. The column p(x) denotes the probability of event type 1 given an event at time348

X. This allows us to populate the joint distribution for Pr(X = x, ZX = i) for i = 1, 2. The349

cause-specific hazard rates then follow from (3), and we also report the all-cause hazard rate350

in the final column. Notice that, for each x,351

p(x) =
λ01(x)

λ01(x) + λ02(x)
.

For the truncation random variable, we assume Y is discrete uniform with sample space352

Y ∈ {1, 2, 3, 4, 5}. This results in α = 0.864. For the purposes of the simulation, we further353

assume τ = 5. We use the simulation procedure of Beyersmann et al. (2009) but modified354

for random truncation. Specifically,355

1. Simulate the truncation time, Y .356

2. Set the censoring time to be Y + τ .357

3. Simulate the event time, X.358

4. Simulate a Bernoulli event with probability p(x) to determine if the eventX was caused359

by type 1 with probability p(x) or type 2 with probability 1− p(x).360

We simulated n = 10,000 lifetimes using the above algorithm. We then tossed any361

observations that were truncated (i.e., Yj > Xj, for j = 1, . . . , n). This left a sample362

of competing risk events subject to censoring, which would be the same incomplete data363

conditions as a trust of securitised loans. We then used the results of Section 2 to estimate364

f̂ 0i
∗,τ,n(x), Ûτ,n(x), and λ̂

0i
τ,n(x) for i = 1, 2 and x ∈ {1, . . . , 10} over r = 1,000 replicates.365

To validate the asymptotic results of Theorem 2.1, we compare the empirical covariance366

matrix against the derived asymptotic covariance matrix, Σ0i, by examining estimates of367

the confidence intervals using Lemma 1. Figure E1 presents the results for the cause-specific368

hazard rate for cause 01 and 02, respectively. The empirical estimates and 95% confidence369

intervals are indistinguishable from the true quantities using Theorem 2.1 and estimated370

quantities using Theorem 2.1 but replacing all quantities with their respective estimates371

from Section 2. This agreement further confirms Theorem 2.1.372
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Table E1: Simulation Study Lifetime of Interest Probabilities.
The true probabilities of the lifetime random variable, X, for the simulation study results of Figure E1. The
probabilities p(x) and Pr(X = x) for x ∈ {1, . . . , 10} are selected at onset, and the remaining probabilities
in this table may be derived from these quantities. Not summarised here is the truncation random variable,
Y , which was assumed to be discrete uniform over the integers {1, . . . , 5}.

p(x) X Pr(X = x) Pr(X = x, Zx = 1) Pr(X = x, Zx = 2) λ01(x) λ02(x) λ(x)

0.66 1 0.04 0.026 0.014 0.026 0.014 0.04
0.20 2 0.06 0.012 0.048 0.013 0.050 0.06
0.45 3 0.10 0.045 0.055 0.050 0.061 0.11
0.87 4 0.14 0.122 0.018 0.152 0.023 0.18
0.20 5 0.09 0.018 0.072 0.027 0.109 0.14
0.81 6 0.06 0.049 0.011 0.085 0.020 0.11
0.05 7 0.14 0.007 0.133 0.014 0.261 0.27
0.78 8 0.18 0.140 0.040 0.379 0.107 0.49
0.25 9 0.07 0.018 0.053 0.092 0.276 0.37
0.42 10 0.12 0.050 0.070 0.420 0.580 1.00

F Lifetime Risk-Adjusted Return373

We present an expansion of the actuarial methods in Section 4.1 to consider the full remaining374

lifetime of a loan rather than assuming a prepayment in the next month. Denote the risk-375

adjusted rate of return for a loan in risk band a as ρa. Given reliable estimates of borrower376

default and prepayment probabilities, such as those in Section 2, we may estimate ρa for a377

given loan in risk band a. In particular, we may estimate ρa for each month a loan is still378

active and paying to find a conditional risk-adjusted rate of return over a loan’s full remaining379

lifetime. Contrast this with Section 4.1, in which we calculate a one-month risk-adjusted380

return. Pleasingly, ρa equals the loan contract effective rate of return in the event the future381

loan payments will proceed as scheduled with no uncertainty, which we state formally in382

Theorem F.1.383

Theorem F.1 (Risk-Adjusted Rate of Return, No Payment Uncertainty). Suppose a loan is384

originated with an initial balance, B, a monthly rate of interest, ra, and a term of ψ months.385

Let ρa|x denote the risk-adjusted rate of return given the loan has survived to month x. If386

the probability that all payments will follow the amortization schedule exactly is unity (i.e.,387

no payment uncertainty), then ρa|x = ra for all x ∈ {1, . . . , ψ}.388

Proof. For a loan with initial balance, B, monthly interest rate, ra, and initial term of ξ, the389

monthly payment, P , is390

P = B

[
1− (1 + ra)

−ξ

ra

]−1

.
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Figure E1: Simulation Study Results.
A comparison of true λ0i

τ (x) (lam true) and estimated λ̂0i
τ,n(x) (lam est), including confidence intervals, for

the distribution in Table E1 and i = 1, 2. The “true” values are from Theorem 2.1 and Lemma 1. The
“estimate” values use the formulas from Theorem 2.1 and Lemma 1 but replace the true values with the
estimates from Section 2 calculated from the simulated data. The “empirical” values are empirical confidence
interval and mean calculations directly from the simulated data. All three quantities are indistinguishable
for n = 10,000 and 1,000 replicates, which indicates the asymptotic properties hold in this instance.

Assume x ∈ {1, . . . , ξ}. The balance at month x, Bx is391

Bx = B(1 + ra)
x − P

[
(1 + ra)

x − 1

ra

]
= B(1 + ra)

x −B
[
1− (1 + ra)

−ξ

ra

]−1[
(1 + ra)

x − 1

ra

]
. (2)

Thus, ρa|x is the rate such that the expected present value of the future monthly payments392

equals Bx. The payment stream is constant, however, and so393

Bx = P

[
1

(1 + ρa|x)
+ · · ·+ 1

(1 + ρa|x)ξ−x

]
= B

[
1− (1 + ra)

−ξ

ra

]−1[1− (1 + ρa|x)
−(ξ−x)

ρa|x

]
.
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Use (2) and solve for ρa|x to complete the proof.394

We now formalise the estimation of ρa|x, as defined in Theorem F.1. For convenience395

of notation, we will drop a to denote the arbitrary risk band and assume the proceeding396

calculations will be performed entirely within one risk band. Assume we consider a loan397

with a ψ-month schedule. Denote the current age of a loan by x, 1 ≤ x ≤ ψ.4 Let the398

cause-specific hazard rate for default at time x be denoted by λ01(x) and the cause-specific399

hazard rate for repayment at time x be denoted by λ02(x). Assuming no other causes for a400

loan termination, the all-cause hazard rate is then λ(x) = λ01(x) + λ02(x). Further, recall401

(2) and observe for i = 1, 2, x ≤ j ≤ ψ,402

Pr(X = j, Zx = i) =
Pr(X = j, Zx = i)

Pr(X ≥ x)
Pr(X ≥ x)

= Pr(X = j, Zx = i | X ≥ x) Pr(X ≥ x)

= λ0i(j)

j−1∏
k=x

{1− λ(k)},

again with the convention
∏x−1

k=x{1 − λ(k)} = 1. For convenience, denote p0ix (j) = Pr(X =403

j, Zj = i | X ≥ x) for i = 1, 2, x ≤ j ≤ ψ. Hence,404

p0ix (j) =

λ0i(x), j = x

λ0i(j)
∏j−1

k=x{1− λ(k)}, j > x,
i = 1, 2.

One may verify
∑ψ

j=x

∑2
i=1 p

0i
x (j) = 1 for every x.5405

We estimate ρx as follows. Let the scheduled amortization loan balance of a consumer406

auto loan at month x, 1 ≤ x ≤ ψ be denoted by Bx, where Bψ = 0. Denote the scheduled407

monthly payment by P . If we denote the recovery of a defaulted consumer auto loan at408

month x, 1 ≤ x ≤ ψ, by Rx, then the default matrix at loan age x ≤ ψ − 1 for the possible409

4Depending on the impact of left-truncation and right-censoring, the recoverable range of X may not be
the entire original loan termination schedule (see Section 2 for details). In such an instance, assumptions
about the probability distribution may be necessary. Assuming a geometric right-tail (i.e., a constant hazard
rate that follows the last recoverable value) is common in survival analysis (Klugman et al., 2012, Section
12.1). We will proceed as though the full distribution is recoverable and allow readers to adjust as needed.

5It may be of help to review the numeric example of Table E1 in Online Appendix E.
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future default paths is410

DEF(ψ−x+1)×(ψ−x+1) =



Rx 0 0 . . . 0 0

P Rx+1 0 . . . 0 0

P P Rx+2 . . . 0 0
...

...
...

. . .
...

...

P P P . . . Rψ−1 0

P P P . . . P Rψ


.

Note that row 1 of DEF would be the cash flows assuming a default at loan age x, which411

occurs with probability p01x (x). Similarly, row 2 of DEF would be the cash flows assuming a412

default at loan age x+1, which occurs with estimated probability p01x (x+1), and so on and413

so forth. In the same way, we can define the prepayment matrix at loan age x ≤ ψ − 1 as414

PRE(ψ−x+1)×(ψ−x+1) =



Bx + P 0 0 . . . 0 0

P Bx+1 + P 0 . . . 0 0

P P Bx+2 + P . . . 0 0
...

...
...

. . .
...

...

P P P . . . Bψ−1 + P 0

P P P . . . P P


.

As with defaults, row 1 of PRE would be the cash flows assuming a prepayment at loan age415

x, which occurs with estimated probability p02x (x). Similarly, row 2 of PRE would be the416

cash flows assuming a prepayment at loan age x+1, which occurs with estimated probability417

p02x (x+ 1), and so on and so forth. Therefore, if we denote the (ψ − x+ 1)× 1 dimensional418

discount vector assuming the unknown monthly rate of ρx as419

(
νx

)⊤
=

(
(1 + ρx)

−1 (1 + ρx)
−2 . . . (1 + ρx)

−(ψ−x+1)
)⊤

,

and the (ψ − x+ 1)× 1 dimensional cause-specific probability vector as420

(
p0i
x

)⊤
=

(
p0ix (x) p0ix (x+ 1) . . . p0ix (ψ)

)⊤
,

then the expected present value (EPV) of a loan at age x ≤ ψ − 1 is421

EPVx =
(
p01
x

)⊤
DEFxνx +

(
p02
x

)⊤
PRExνx.
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Therefore, ρx is the interest rate such that Bx = EPVx; that is,422

{ρx : Bx = EPVx}. (3)

In words, ρx represents the expected return realised by lending Bx and taking into account423

the original monthly payments P and default and prepayment risk over the remaining lifetime424

of the loan. We have ρx ≤ r for a given contract, with equality only in the circumstances of425

Theorem F.1. Finally, we of course do note know the true distribution of X. We do have426

the estimators in (5), however, and Theorem 2.1. Thus, we may estimate ρx by replacing427

the cause-specific hazard rates λ0i with the estimate in (5). For completeness, we close this428

section with the following lemma.429

Lemma 1 (ρ̂n,x Asymptotic Properties). Replace the cause-specific hazard rates in (3) with430

the estimators from (5). Define the estimated risk-adjusted rate of return over the remaining431

lifetime given a loan has survived to month x as ρ̂n,x. Then,432

ρ̂n,x
P−→ ρx, as n→∞.

Proof. The result follows by Theorem 2.1, part (i) and the Continuous Mapping Theorem433

(Mukhopadhyay, 2000, Theorem 5.2.5, pg. 249).434
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