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Historically, liquefaction has caused a number of earthquake-

related risks. When granular soils get saturated, liquefaction 

may occur during an earthquake, which can have devastating 

effects. Therefore, it is essential, especially in the context of 

civil and structural project planning, to have the capacity to 

precisely predict soil liquefaction potential. Therefore, the 

stacked ensemble-learning model with Bayesian 

optimization (BO-stacking) is introduced to make predictions 

of soil liquefaction more accurate. It was constructed 

utilizing primary algorithms like decision trees, support 

vector machines, and k-nearest neighbors, as well as 

secondary algorithms like the random forest algorithm. A 

Bayesian optimization method is also used to improve the 

accuracy of the predictions of soil liquefaction by adjusting 

the hyperparameters of these four classification algorithms. 

Information gain technique also was used for input selection. 

The results show that BO-stacking outperformed single 

prediction models. The testing accuracy and ACU of this 

model was 0.913 and 0.992, respectively. This study 

indicates that BO-stacking is a feasible alternative to 

established techniques for predicting soil liquefaction. In 

addition, the results of this study indicate that the BO and 

stacking approaches are effective in training the prediction 

model when used in conjunction. 
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1. Introduction 

The term "liquefaction" describes the change in state from solid to liquid that may happen in 

granular soils as pore water pressure increases [1,2]. Excessive granular soil liquefaction as a 

result of seismic loadings is a major problem for geotechnical engineers. The unpredictability of 

the resulting lateral spreading of soil mass poses a significant hazard to the region's civil 

engineering structures, which is why preventing such events is so important [1–3]. When the Ms 

8.0 Wenchuan earthquake struck China in 2008, for example, it caused widespread liquefaction 

and the subsequent destruction of surface buildings and subsurface infrastructure [1,2,4]. As a 

result, civil engineering projects cannot be planned without first assessing the soil's liquefaction 

potential [5–8]. 

Liquefaction, in the context of environmental science, refers to a phenomenon where saturated 

soil or other unconsolidated materials lose their strength and behave like a liquid under certain 

conditions [9]. It is commonly associated with seismic events such as earthquakes, but it can also 

occur due to other factors like intense vibration or changes in groundwater levels [9]. 

Liquefaction can lead to significant geological hazards. When liquefaction occurs during an 

earthquake, it can cause the ground to lose its stability, resulting in landslides, slope failures, and 

the collapse of structures [10]. In addition, liquefaction is an important consideration in seismic 

risk assessments. By studying the geological and geotechnical properties of an area, including 

soil liquefaction potential, scientists and engineers can estimate the potential damage caused by 

an earthquake. Moreover, liquefaction can have environmental impacts beyond immediate 

geological hazards [11]. For example, in coastal regions, liquefaction can cause the release of 

trapped gases, such as methane, which can contribute to greenhouse gas emissions and climate 

change. 

Various techniques for measuring the potential liquefaction of soil have been suggested in the 

literature (e.g., [12–14]). A significant proportion of the techniques, such as the cone penetration 

tests (CPTs), the shear wave velocity technique (SWV), the standard penetration tests (SPTs), the 

self-boring pressure meters (SBPTs), and the flat dilatometer tests (DMTs), are often dependent 

upon the splitting of non-liquefaction sectors from the liquefaction sections. This is ascertained 

by taking into consideration the in-situ findings in locations where experiment information can 

be found [2,15–17]. As both the soil and the earthquakes are very hard to predict, it is hard to 

come up with a single empirical formula to use in linear regression. Consequently, many 

researchers have focused on developing analytical models that are easier to implement and more 

accurate in analyzing soil liquefaction compared to traditional empirical equations. 

In estimating liquefaction potential, artificial neural network (ANN)-based models have been 

used most often [18–21]. Although ANNs have been shown to be more effective than statistical 

approaches [22,23], they have significant drawbacks such as slow convergence speed, 

overfitting, and a tendency to converge to local minima, a lack of generalizability, and so on 

[24,25]. To address these limitations, researchers have explored alternative machine learning 

(ML) techniques and hybrid approaches for soil liquefaction prediction. 
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Muduli and Das [26] devised the multi-gene genetic programming (MGGP) strategy to assess the 

soil's liquefaction potential using post-liquefaction CPT and SPT data. As a novel method of 

liquefaction measurement, it merits widespread dissemination and support. A group method of 

data handling model was built using neuro-fuzzy techniques by Javdanian, et al. [27] which was 

enhanced by the application of particle swarm optimization. This approach has been 

demonstrated to be valid and trustworthy in this setting. Additionally, Hoang and Bui [28] used a 

combination of least squares support vector machines and kernel Fisher discriminant analysis to 

make predictions about soil liquefaction. Their findings demonstrated the feasibility and 

dependability of the suggested model in this context. 

Recent studies have explored ensemble learning techniques and hybrid models to leverage the 

strengths of multiple algorithms and improve prediction accuracy [29–33]. Kurnaz and Kaya 

[34] proposed the ensemble group approach to data handling to forecast soil liquefaction. Their 

findings contrasted well with those of the traditional group approach to data handling, suggesting 

that their model is superior at forecasting soil liquefaction. The fuzzy support vector machine 

described by Rahbarzare and Azadi [35] was recently improved using particle swarm 

optimization and a genetic approach. They demonstrated that particle swarm optimization and 

genetic algorithms are useful tools for improving fuzzy support vector machine quality. Some 

researchers [36,37], used Bayesian models to simulate the liquefaction potential. In addition, 

machine learning (ML) techniques have been used in many other domains for forecasting and 

optimization purposes and the outcomes suggest they are helpful tools with good [38–54]. 

Soil liquefaction predictions have often been made using support vector machines (SVM) [55], 

k-nearest neighbors (KNN) [56], and decision tree (DT) [57] models. In the domain of soil 

liquefaction prediction, single ML models are not sufficient due to several reasons [58]. Firstly, 

soil liquefaction is a complex phenomenon influenced by various factors such as soil properties, 

seismic loadings, and site-specific conditions. It is challenging to capture the intricate 

relationships and nonlinearities between these factors using a single model. Different ML models 

have their own strengths and weaknesses, and no single model can effectively capture all the 

complexities of soil liquefaction. In addition, the hybrid-ML techniques can decrease the 

computational costs and improve the accuracy as compared to the use of single ML techniques 

[59]. Therefore, using a combination of multiple models can help to incorporate diverse 

perspectives and improve prediction accuracy. It is important to mention that hybrid ML models 

have been successfully used and proposed in engineering [60–66]. 

Secondly, ML models often require optimization of hyperparameters to achieve the best 

performance. Optimization methods such as genetic algorithms, differential evolution, and grid 

search have been used to tune the hyperparameters of individual models Genetic algorithms 

(GA), differential evolution (DE), grey wolves' optimization (GWO), kernel Fisher discriminant 

analysis (KFDA), and grid search are only some of the optimization methods that have been used 

with these approaches [28,56,67–70]. However, the optimization of hyperparameters alone may 

not yield the highest level of accuracy, as the search space can be vast and complex [71,72]. 

Combining multiple models and employing well-known optimization techniques, such as 



36 L. Tsang et al./ Journal of Soft Computing in Civil Engineering 9-2 (2025) 33-56 

Bayesian optimization algorithm, can enhance the prediction accuracy by effectively exploring 

the hyperparameter space and finding the optimal configuration for the ensemble of models. 

Furthermore, soil liquefaction is a critical geotechnical problem with significant implications for 

civil and geotechnical engineering. The consequences of inaccurate predictions can be severe, 

leading to the failure of buildings and infrastructure. By relying solely on a single model, there is 

a higher risk of making overly optimistic assumptions or not considering all the contributing 

factors adequately [73]. Using a stacked ensemble learning algorithm, which combines the 

predictions of multiple models, can help mitigate these risks by leveraging the strengths of each 

individual model and reducing errors caused by model bias or limitations. 

The contributions of this study to the literature and practice are significant. Firstly, this research 

addresses the issue of soil liquefaction, which is a major concern for geotechnical engineers due 

to its potential impact on civil engineering structures. By proposing the use of the stacked 

ensemble learning algorithm with Bayesian optimization (BO-Stacking), this study introduces a 

novel approach to predict soil liquefaction potential. The combination of single ML models and 

well-known optimization techniques, such as the Bayesian optimization algorithm [38,43,74], is 

a unique contribution of this work. It aims to improve the accuracy of predictions by considering 

multiple models and optimizing their hyperparameters. This research also highlights the 

limitations of traditional models and techniques commonly used in soil liquefaction prediction, 

such as SVM, KNN, and DT, and discusses the drawbacks associated with them. By introducing 

a new methodology that overcomes these limitations, this study provides a valuable alternative 

for researchers and practitioners in the field. Additionally, the use of ensemble learning and 

optimization techniques adds to the originality and novelty of this work, as it expands the 

existing knowledge and offers a more comprehensive approach to soil liquefaction prediction. 

The detailed discussion of the methodology and the presentation of outcomes and discussions 

further enhance the relevance and applicability of this research in the field of geotechnical 

engineering. The remaining sections of the paper are structured as follows: Liquidity in soil is 

discussed in detail in Section 1.1. The BO-stacking methodology and datasets used in this study 

are described in more detail in Section 2. Section 3 details the outcomes and the discussion that 

followed. This research is summarized in Section 4. 

2. Methods 

2.1. Dataset and its characteristics 

China had a catastrophic natural disaster on July 28, 1976, when the Great Tangshan Earthquake 

happened. The number of fatalities places this earthquake at the top of the list of the twentieth 

century's most devastating disasters. The earthquake's origin was the industrial city of Tangshan 

in Hebei, which is home to almost a million people. The initial number of dead estimated was 

655,000, but it has now been lowered to between 240 and 255,000, with 164,000 individuals 

dealing with severe injuries [1]. 
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For the construction of the models discussed in this study, a database from literature [1] is 

utilized. The focus of this database is the Tangshan Earthquake [75]. The datasets used in this 

study were collected through post-earthquake field investigations and laboratory tests conducted 

by researchers and engineers in the affected areas. These investigations involved examining the 

soil conditions, measuring the groundwater levels, and assessing the severity of liquefaction at 

various sites. Soil samples were collected from different locations and depths for laboratory 

analysis, which included determining soil properties such as grain size distribution, plasticity 

index, and relative density. The collected data was then compiled into a comprehensive database, 

which has been used in several previous studies on soil liquefaction [1,10,19,76]. 

To ensure data quality and consistency, the collected datasets were carefully processed and 

validated. This involved removing samples with insufficient or erroneous information and 

verifying the accuracy of the measured parameters. The processed dataset was then used as input 

for the development of the prediction models in this study. 

Some samples were excluded from the final analysis due to insufficient or erroneous 

information. Only the liquefaction possibility was factored into the output of the model. Table 1 

lists the variables used in this investigation. The same parameters have been used in the previous 

studies and they have been selected based on their impacts on liquefaction potential [1,10,19,76]. 

In each instance, "1" implies that liquefaction has happened, while "0" denotes that it has not. 

The letter 𝜏𝑎𝑣 indicates the total cyclic shear stress induced by the earthquake. During the 

modeling process, 79 unique samples were used. A ratio of 70:30 was used to divide the data into 

training and test datasets. This work used 5-fold cross-validation to train the BO-stacking model. 

Test data was then used to evaluate the generated model. The distribution of inputs and target 

variable before the data split is shown in Figure 1. 

Table 1 

Variables used in this study. 

Variable Symbol Unit Min Max 

Earthquake magnitude M - 7.8 7.8 

Effective vertical stress 𝜎𝑣0
′  KPa 20.6 120.4 

Total vertical stress 𝜎𝑣 KPa 16.7 244.2 

Mean grain size 𝐷50 mm 0.06 0.48 

Water table 𝑑𝑤 m 0.21 3.6 

Peak acceleration at the ground surface 𝑎𝑚𝑎𝑥  g 0.1 1.1 

Depth 𝑑𝑠 m 0.9 13.1 

Measured CPT tip resistance 𝑞𝑐 MPa 0.98 18.57 

Cyclic stress ratio 
𝜏𝑎𝑣

𝜎𝑣0
′  - 0.08 0.42 

Liquefaction* - - 0 1 
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Fig. 1. Relationships between variables in this study. 

2.3 Computational resources 

The training and evaluation of the BO-stacking model were executed on a high-performance 

computing system tailored to accommodate the model's complexity, dataset size, and the demand 

for efficient hyperparameter optimization. This system boasted specifications including an Intel 

Core i7-11700K CPU running at 3.60 GHz with 8 cores, coupled with 32 GB of DDR4 RAM. 

Graphics processing was enhanced by an NVIDIA GeForce RTX 3080 GPU featuring 10 GB of 

GDDR6X memory. Complementing these components, the system was equipped with a 1 TB 

SSD for storage and a Gigabit Ethernet network interface. Given the computational intensity of 

Bayesian optimization for tuning hyperparameters, which necessitated training and evaluating 

multiple models with varied configurations, we harnessed parallel processing and distributed 

computing methodologies to expedite the optimization process. Employing appropriate libraries 

or frameworks, we parallelized model training and evaluation across numerous cores or nodes, 

significantly diminishing computation time. 

2.4 Scalability considerations 

In anticipation of scalability challenges contingent upon dataset size and complexity, we adopted 

several preemptive measures. These included feature selection techniques like mutual 
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information to identify salient features, thereby reducing dimensionality and computational load. 

Additionally, we conducted data preprocessing steps, such as normalization and categorical 

variable encoding, to optimize training efficiency. Exploring model compression and pruning 

techniques further enabled us to diminish the size and complexity of both base learners and the 

meta-learner without substantial performance compromise. Our computational infrastructure was 

deliberately designed to scale, accommodating larger datasets or more intricate models by 

integrating additional resources like nodes or GPUs as needed. These considerations and 

strategies collectively ensured the BO-stacking model's efficient training and evaluation, even 

amidst burgeoning dataset complexity and size, while acknowledging that specific computational 

needs and scalability nuances may vary based on dataset characteristics and performance 

objectives. 

2.2. Learning using ensembles and optimization techniques 

2.2.1. Stacking ensemble learning model 

Many different types of ML may be combined into one using the stacking ensemble learning 

approach. A "meta-classifier" or "meta-regression" is a model that combines the results of many 

classifiers or regressions. In other words, many base learners (first-level learners) are trained, and 

their outcomes are utilized as the input of the second-level learners in the following step. 

Ultimately, meta-learners acquire the final forecast findings. 

The rationale behind choosing a stacking ensemble learning approach is to leverage the strengths 

of multiple individual models and combine their predictions to improve overall performance. By 

using a diverse set of base learners, such as k-nearest neighbors (KNN), support vector machine 

(SVM), and decision tree (DT) algorithms, the stacking ensemble model can capture different 

aspects of the relationships between the input features and the target variable. Each base learner 

has its own unique assumptions, biases, and capabilities, and by combining their outputs, the 

ensemble model can compensate for the weaknesses of individual models and enhance the 

robustness and accuracy of the predictions. 

Random forest (RF) was selected as the secondary learner in the stacking ensemble model due to 

its ability to effectively handle the outputs of the base learners and provide a final prediction. RF 

is an ensemble learning method that constructs multiple decision trees and aggregates their 

predictions through voting or averaging. It has several advantages, such as its ability to handle 

high-dimensional data, reduce overfitting, and capture complex non-linear relationships. By 

using RF as the meta-learner, the stacking ensemble model can learn from the diverse set of base 

learners and make more accurate and reliable predictions. 

As seen in Figure 2, the two-layer stacking ensemble learning approach is primarily employed in 

this work to investigate soil liquefaction. The base learners are the k-nearest neighbors (KNN), 

the support vector machine (SVM), and the decision tree (DT) algorithms, and the second-level 

learner is the random forest (RF) algorithm. Once the stacking ensemble-learning model was 

made, it was not possible to utilize all of the training datasets for testing. This would prevent the 

occurrence of overfitting; the impact was positive on the trained data but unfavorable on the test 

datasets, which were used to generate the final forecast. Over-fitting can be reduced to some 
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extent by using k-fold cross-validation to check how well the model predicts [43,54,77–79], 

especially how well the trained model works on data it has never seen before. Consequently, the 

k-fold cross-validation approach may output the findings of every sample subset to tackle the 

overfitting issue. In this investigation, a 5-fold was used. 

 
Fig. 2. Process of stacking ensemble learning. 

2.2.2. Bayesian optimization 

In ML, parameter modification is a tiresome but necessary process. As there are several hyper 

parameters in each model, these factors together impact the effectiveness of these algorithms. 

Therefore, manually adjusting parameters could not optimize the algorithm's performance. In this 

work, however, Bayesian optimization (BO), a mathematical technique, was used to intelligently 

modify hyper parameters. The least value of the objective function is estimated using the BO 

technique, which is based on the notion that a replacement function (probability model) is 

derived from the results of previous objective function evaluations [80,81]. Consequently, it may 

be used efficiently when the computation is difficult and the number of iterations required is 

substantial [82]. Unlike grid search [83] and random search [84], the BO utilizes the Bayesian 

theorem to determine the posterior distribution of the objective function and then selects the 

hyper parameter configuration for the subsequent sample based on the distribution. The goal of 

optimization is to learn the form of the objective function and then choose the parameters that 

maximize the global outcome. In addition to its widespread application in cutting-edge AI, the 

BO algorithm has been praised for its superiority over other optimization techniques such as the 

particle swarm optimization algorithm, the genetic algorithm, and others [85,86]. Optimization 

criteria are determined using the Bayesian theorem and the Gaussian process. To develop a 

surrogate for the aim and measure its fuzziness, a Bayesian ML strategy is combined with 

Gaussian process regression. From this substitution, an acquiring function can be derived to 

obtain the sample location. 

2.2.3. BO-stacking 

This research proposes the BO-stacking ensemble learning model. It applied the BO method to 

three single models, namely the DT [87], SVM [88], and KNN [89] algorithms, and then stacked 

the three optimized models using the RF algorithm [90] to create a new ML model. Figure 3 

illustrates the implementation method. 

The key innovation in our methodology is the introduction of the BO-Stacking model for 

predicting soil liquefaction potential. This model combines stacked ensemble learning with 

Bayesian optimization to enhance prediction accuracy. By integrating primary algorithms such as 

decision trees, support vector machines, and k-nearest neighbors, along with the secondary 
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algorithm of random forest, our model incorporates a diverse set of techniques commonly used 

in ML. This ensures the versatility and applicability of our approach across various scenarios and 

datasets. The incorporation of Bayesian optimization further refines the model by fine-tuning the 

hyperparameters of the classification algorithms, optimizing their performance for soil 

liquefaction prediction. Additionally, we utilize the information gain technique for input 

selection, enhancing the effectiveness of the model. This methodology innovation represents a 

significant contribution to the field as it offers a novel and effective approach for accurately 

predicting soil liquefaction, thereby aiding in the planning and mitigation of earthquake-related 

risks in civil and structural projects. 

2.3. Performance evaluation 

This research used a number of well-established performance criteria for classification to 

evaluate the effectiveness of the models in predicting soil liquefaction. The specific performance 

metrics chosen were: 

 Classification Accuracy (CA): CA measures the proportion of correctly classified 

instances (both liquefied and non-liquefied) out of the total instances. It provides an overall 

assessment of the model's predictive accuracy. CA was chosen because it is a 

straightforward and widely used metric that gives a general understanding of the model's 

performance. 

 Area Under the Receiver Operating Characteristic Curve (AUC): AUC is a metric that 

evaluates the model's ability to discriminate between liquefied and non-liquefied instances. 

It plots the true positive rate against the false positive rate at various classification 

thresholds. AUC was selected because it is a robust metric that is insensitive to class 

imbalance and provides a comprehensive assessment of the model's discriminatory power. 

 F1 Score: The F1 score is the harmonic mean of precision and recall. It balances the 

model's ability to correctly identify liquefied instances (precision) and its ability to find all 

liquefied instances (recall). The F1 score was chosen because it provides a single measure 

that combines both precision and recall, making it a good indicator of the model's overall 

performance, especially when the classes are imbalanced. 

 Precision: Precision measures the proportion of correctly predicted liquefied instances out 

of all instances predicted as liquefied. It indicates the model's ability to avoid false 

positives. Precision was selected because it is important to minimize false alarms in the 

context of soil liquefaction prediction, as false positives can lead to unnecessary 

precautions and higher costs. 

 Recall: Recall, also known as sensitivity, measures the proportion of correctly predicted 

liquefied instances out of all actual liquefied instances. It indicates the model's ability to 

identify all liquefied instances. Recall was chosen because it is crucial to identify as many 

liquefied instances as possible to ensure appropriate mitigation measures are taken to 

prevent damage and ensure safety. 

These performance metrics were selected to provide a comprehensive evaluation of the models' 

effectiveness in predicting soil liquefaction. The combination of these metrics allows for a 
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thorough assessment of the models' predictive accuracy, discriminatory power, and ability to 

balance precision and recall. 

Performance criterion values vary between 0 and 1. The model becomes more accurate as the 

values increase. In addition, a simple ranking mechanism is used to evaluate the performance of 

the models in a methodical manner. A model is superior if its cumulative ranking is greater. 

3. Results and discussions 

3.1. Input selection 

Fundamental to geotechnical engineering is the forecasting of soil liquefaction under particular 

circumstances. By accurately forecasting soil liquefaction and taking into consideration all of its 

contributing factors, the high cost and risk of developing civil engineering projects may be 

avoided. Several input factors, including 𝑀, 𝑑𝑤, 𝑑𝑠, 𝜎𝑣, 𝜎𝑣0
′ , 𝑎𝑚𝑎𝑥 , 𝑞𝑐,

𝜏𝑎𝑣

𝜎𝑣0
′ , 𝑎𝑛𝑑 𝐷50, are 

recognized to influence the forecasting of soil liquefaction. However, the relevance of every 

input variable is uncertain and requires additional investigation. 

In this part, the mutual information test technique [91] was employed to study the relevance of 

the input parameters on soil liquefaction in order to examine and evaluate the sensitivity of 

various contributing factors to soil liquefaction. Whether linear or nonlinear, the link between an 

input variable and a target variable may be captured using the filtering technique of mutual 

information (MI). It displays the strength of the dependency between variables. Information gain 

may be used to compute the magnitude of the MI between variables: 

𝐺𝑎𝑖𝑛 (𝐴, 𝐵) = 𝐸𝑛𝑡(𝐴) − ∑
|𝐴𝑞|

|𝐴|
𝐸𝑛𝑡(𝐴𝑞)𝑞

𝑞−1  (1) 

where q denotes the total number of values for B, Aq is the set of A when b equals bq, and Ent(A) 

symbolizes the information entropy. The better the relationship between A and B, the greater the 

value of Gain(A, B). 

To implement the mutual information test technique for input selection, the following steps were 

undertaken: 

 The mutual information between each input parameter and the target variable (soil 

liquefaction) was calculated using equation (1). 

 The input parameters were then ranked based on their mutual information scores, with 

higher scores indicating a stronger relationship with the target variable. 

 A threshold value for the mutual information score was determined based on the elbow 

method, which identifies the point of diminishing returns in the ranked scores. 

 Input parameters with mutual information scores above the threshold were considered 

relevant and selected for inclusion in the prediction models. 

The criteria used to determine the relevance of input parameters were based on their mutual 

information scores and their relative importance in predicting soil liquefaction. Input parameters 
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with higher mutual information scores were considered more relevant, as they exhibited a 

stronger relationship with the target variable. The elbow method provided an objective approach 

to determine the cutoff point for selecting relevant input parameters, ensuring that only the most 

informative variables were included in the models. 

The significance of the input parameter that forecasts soil liquefaction was then evaluated based 

on the variable's score in the MI analysis. The MI selected the five most important variables, 

including, 𝑑𝑤, 𝜎𝑣0
′ , 𝑎𝑚𝑎𝑥, 𝑞𝑐, 𝑎𝑛𝑑

𝜏𝑎𝑣

𝜎𝑣0
′  for predicting the soil liquefaction. With these inputs, single 

ML and stacking models will be made to predict soil liquefaction. 

3.2. Optimization of models' parameters 

The baseline models were the DT, SVM, and KNN algorithms, while the secondary predictive 

model was the RF. The implementation processes of these four approaches are detailed in several 

sources [55,92–94]. Data and models' hyper-parameters are perturbed in order to enhance the 

classification accuracy of the stacking ensemble model. Concerning datasets, the 5-fold cross-

validation procedure is implemented for sample alteration. A Bayesian optimization method is 

employed to dynamically find the ideal solution by learning the samples, so as to maximize the 

prediction impact of the model, since each algorithm utilized in this research typically comprises 

one or more significant hyper-parameters. 

For each of the individual models, the following hyperparameters were optimized using 

Bayesian optimization: 

1. Decision Tree (DT): 

o Minimum number of instances in leaves: This parameter determines the minimum number 

of samples required to be at a leaf node. It was optimized to control the depth and 

complexity of the tree. 

o Maximum number of splits: This parameter sets the maximum number of split points in the 

decision tree. It was optimized to find the balance between model complexity and 

generalization performance. 

2. Support Vector Machine (SVM): 

o C (Regularization parameter): The C parameter determines the trade-off between achieving 

a low training error and a low testing error. It was optimized to control the model's 

complexity and its ability to generalize well to unseen data. 

o Kernel function: The choice of kernel function defines the mapping of input data into a 

higher-dimensional feature space. The Radial Basis Function (RBF) kernel was selected as 

the optimal kernel function during the Bayesian optimization process. 

3. K-Nearest Neighbors (KNN): 

o Number of neighbors: This parameter specifies the number of nearest neighbors to 

consider when making predictions. It was optimized to find the optimal value that 

maximizes the model's performance. 

o Distance metric: The distance metric determines how the similarity between samples is 

calculated. The Mahalanobis distance was found to be the optimal metric during the 

optimization process. 
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o Distance weight: This parameter controls the influence of neighboring points on the 

prediction. The uniform weight, where all neighbors are given equal importance, was 

selected as the optimal setting. 

Table 2 lists the hyper-parameters and their optimized values for the four models used in this 

analysis. By employing Bayesian optimization to fine-tune these hyperparameters, the 

performance of each individual model was maximized, contributing to the overall accuracy of 

the stacking ensemble model in predicting soil liquefaction. 

Table 2 

Hyper-parameters optimized to predict soil liquefaction. 

Model Optimal hyper-parameters 

SVM C = 500; Kernel function = RBF 

KNN No. of neighbors = 5; distance metric = Mahalanobis; Distance weight = uniform 

DT Min No. of instances in leaves: 4; Max no. of splits = 5 

RF No. of trees = 511; min number of splits = 5 

 

3.3. Prediction results 

56 data sets were used for training and 23 were used for testing in this analysis. In order to 

forecast soil liquefaction, each of the three individual models was adopted individually. 

Following training with these four algorithms, the predictions are made using both the default 

parameters and the Bayesian optimized parameters. During this time, the stacking ensemble 

learning technique is being employed in order to merge these three regression models, each of 

which was improved using the Bayesian approach. After the training was done, the RF was also 

used as a second predictive model to make predictions. Figure 3 shows how the Stacking 

ensemble learning model, which uses Bayesian optimization, works step by step. Figure 4 

presents, for each individual model and stacking model, the real value, the forecast value after 

Bayesian optimization. This Figure allows for a more nuanced comparison of the models' 

performance by showing the breakdown of predicted percentages for each category (0 and 1) and 

comparing them to the Real Liquefaction percentages. For the KNN model, we can see that it 

predicts 73.91% for category 1, which is higher than the Real Liquefaction percentage of 

60.87%, while it predicts only 26.09% for category 0, which is lower than the actual 39.13%. 

This indicates that the KNN model tends to overestimate category 1 and underestimate category 

0. The SVM and DT models show similar patterns, with their predicted percentages deviating 

from the Real Liquefaction percentages in both categories. The stacking model, however, 

demonstrates the closest alignment between its predicted percentages and the Real Liquefaction 

percentages for both categories 0 and 1, suggesting that it has a more balanced and accurate 

performance across the two categories. Concerning how accurate the models are, several 

performance criteria were used, and the results are shown in Table 3. 
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Fig. 3. Flowchart for predicting soil liquefaction. 

Figure 5 presents a visual representation of the ranking system used to evaluate the performance 

of the models developed in this research. The heatmap shows the rankings of each model 

(Stacking, SVM, DT, and KNN) across various performance criteria (AUC, CA, F1, Precision, 

Recall) in both the training and testing phases. The color scale on the right indicates the ranking 

values, with darker shades representing higher rankings and lighter shades representing lower 

rankings. 

The models built for this research were objectively and systematically evaluated using a simple 

ranking system. For each phase of the models’ development and for each criterion, the best 

model receives the ranking four (because four models are developed) and the worst model 

receive ranking one. If two or more models show a similar performance a same ranking are 

assigned to them. The formula of the calculation of the accumulated ranking for each model is 

shown in equation 2. 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 = ∑ 𝛼𝑖
5
𝑖=1 + ∑ 𝛽𝑗

5
𝑗=1  (2) 

where 𝛼𝑖 is the performance criterion in the training phase, and 𝛽𝑗 is the performance criterion in 

the testing phase. i/j: 1: AUC, 2: CA, 3: F1, 4: precision, and 5: recall. 

As seen in Figure 5, the Stacking model consistently receives the highest ranking (4) across all 

performance criteria in both the training and testing phases, indicating its superior performance. 

The SVM model ranks second, with mostly rankings of 3, followed by the DT model with 

rankings ranging from 1 to 4. The KNN model generally receives the lowest rankings, suggesting 

its relatively weaker performance compared to the other models. 

The results of the analysis in Table 3 and Figure 5 show that, in most cases, the stacking model 

had better performance than other models. The best model among the single models was the 

SVM (accumulated raking = 24), followed by the DT (accumulated raking = 22). The worst 
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model, on the other hand, was the KNN model (accumulated raking = 20). The suggested BO-

Stacking ensemble-learning model offers superior learning and generalization capabilities, as 

well as superior prediction accuracy, compared to the combined single model. Consequently, the 

BO-Stacking ensemble-learning model may serve as a benchmark for the development of an 

intelligent decision-control system for soil liquefaction. It is also superior to other approaches for 

measuring soil liquefaction. 

 
Fig. 4. Sneaky plots of the real and predicted soil liquefaction categories. 

Table 3 

Performance of the models developed in this study. 

Model 
TRAIN TEST 

AUC CA F1 Precision Recall AUC CA F1 Precision Recall 

KNN 0.857 0.839 0.821 0.844 0.839 0.921 0.783 0.771 0.792 0.783 

DT 0.805 0.786 0.781 0.778 0.786 0.984 0.912 0.913 0.913 0.912 

SVM 0.85 0.857 0.854 0.853 0.857 0.865 0.87 0.868 0.87 0.87 

Stacking 0.95 0.875 0.87 0.872 0.875 0.992 0.913 0.914 0.929 0.913 

Logistics 

regression 
0.901 0.839 0.837 0.836 0.839 0.961 0.913 0.883 0.9 0.884 
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Fig. 5. Models’ ranking. 

Furthermore, a comparison was conducted between the performance of the BO-Stacking model 

and logistic regression (Figure 6). In comparing the findings of the BO-Stacking model and the 

logistic regression model for soil liquefaction forecasting, several key differences emerge. The 

BO-Stacking model consistently outperforms logistic regression across multiple evaluation 

metrics. The AUC values demonstrate the BO-Stacking model's superiority, with scores of 0.95 

on the training set and an impressive 0.992 on the testing set, compared to logistic regression's 

lower scores of 0.901 and 0.961, respectively. Classification accuracy on the testing set is similar 

for both models at 0.913, but the BO-Stacking model achieves higher accuracy (0.875) on the 

training set compared to logistic regression (0.839). The F1-score, precision, and recall also favor 

the BO-Stacking model, indicating its stronger performance in capturing patterns and identifying 

positive instances. Overall, the findings demonstrate that the BO-Stacking model is more 

effective in accurately predicting soil liquefaction. 

Our methodology, the BO-Stacking model, demonstrates its universality by offering a robust 

approach to accurately predicting soil liquefaction potential. By leveraging primary algorithms 

such as decision trees, support vector machines, and k-nearest neighbors, along with the 

secondary algorithm of random forest, our model integrates diverse techniques commonly used 

in the field of ML. This broadens the applicability of our approach across different scenarios and 

datasets. Moreover, the incorporation of Bayesian optimization enables the fine-tuning of 

hyperparameters for improved prediction accuracy. The use of the information gain technique for 

input selection further enhances the model's effectiveness. The results of our study showcase the 

superior performance of the BO-Stacking model, surpassing that of single prediction models. 
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With a testing accuracy of 0.913 and an AUC of 0.992, our model offers a viable and universal 

alternative for accurately predicting soil liquefaction. This study not only contributes to the 

existing literature but also provides practical implications for civil and structural project 

planning, ensuring better mitigation of earthquake-related risks. 

 
Fig. 6. Comparison between BO-Stacking model and logistic regression model. 

These ML models used for this research offer a number of benefits over other methods, 

including: Typically, the KNN is employed for nonlinear regression, which is immune to outliers 

and accurate [95]. The DT is the fastest. In a short period of time, it may provide realistic and 

useful data-related outcomes [96]. When it comes to learning with little data, the SVM excels 

due to its high generalizability and its capacity to retain information [97]. Bayesian optimization 

uses the Gaussian process as its basis. In order to optimize the hyper-parameters, Bayesian 

optimization takes previous knowledge into account and offers the benefits of fewer iterations 

and a higher processing speed [98]. Therefore, the stacking ensemble-learning model adopts 

these strategies as its basis model and optimization strategy. 

The results of this research are somewhat lower than those of a few prior soil liquefaction 

investigations that used distinct data sets. For instance, [55] and [28] obtained accuracy values of 

92.2% and 93.1%, respectively, to forecast soil liquefaction using grey wolf optimization 

(GWO)-SVM and kernel Fisher discriminant analysis (KFDA) with least square support vector 

0.75 0.8 0.85 0.9 0.95 1 1.05

AUC

CA

F1

Precision

Recall

AUC CA F1 Precision Recall

Logistc regression 0.961 0.913 0.883 0.9 0.884

Logistc regression 0.901 0.839 0.837 0.836 0.839

BO-Stacking 0.992 0.913 0.914 0.929 0.913

BO-Stacking 0.95 0.875 0.87 0.872 0.875

Logistc regression Logistc regression BO-Stacking BO-Stacking
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machine (LSSVM) techniques. However, this outcome might be attributable to the number, kind, 

and quantity of inputs and outputs employed in these investigations. In other words, the accuracy 

of the constructed BO-stacking prediction model is satisfactory. This research advises that the 

BO-stacking model be employed and further developed to predict soil liquefaction in the future, 

particularly when single models do not provide the appropriate degree of precision. 

4. Limitations and Future Works 

While the BO-Stacking model has demonstrated superior performance in predicting soil 

liquefaction, it is essential to acknowledge the limitations of this study and discuss potential 

avenues for future research. One limitation of the current study is the reliance on a specific 

dataset with a limited range of soil conditions and geological settings. While the model has 

shown promising performance on the available data, its robustness to variations in dataset size, 

characteristics, and geological regions or earthquake scenarios remains an important 

consideration. The model's performance may vary when applied to datasets with significantly 

different soil characteristics, tectonic settings, or more extreme conditions than those represented 

in the training data. Furthermore, the size of the dataset can potentially impact the model's ability 

to capture the full range of variability and patterns present in different regions or scenarios. 

Therefore, future studies should focus on rigorously evaluating the BO-stacking model's 

robustness and transferability by validating its performance using diverse datasets representing a 

wider range of soil liquefaction scenarios, geological regions, and earthquake characteristics. 

This can involve techniques such as cross-validation, transfer learning, domain adaptation, and 

ensemble methods to enhance the model's generalization capabilities and ensure reliable 

performance across varying conditions. 

Another limitation is the number of input features used in the model. Although the information 

gain method was employed to select the most relevant features, incorporating additional relevant 

features could potentially enhance the model's predictive capabilities. Future research should 

explore the inclusion of more data samples and features in the experimental database to further 

improve the accuracy of the BO-Stacking model. 

Another avenue for future research is to explore the integration of additional machine learning 

techniques or algorithms into the BO-stacking model framework. While the current 

implementation combines decision trees, support vector machines, k-nearest neighbors, and 

random forests, the model's predictive capabilities could potentially be further enhanced by 

incorporating other state-of-the-art machine learning algorithms. Techniques such as deep 

learning, gradient boosting, or ensemble methods like stacking and blending could be 

investigated and integrated into the BO-stacking model. By leveraging the strengths and diverse 

approaches of multiple machine learning algorithms, the model may be able to capture more 

complex patterns and relationships within the data, leading to improved accuracy in predicting 

soil liquefaction potential. However, careful consideration must be given to the computational 

complexity and resource requirements of integrating additional algorithms, as well as potential 

issues such as overfitting or increased model complexity. Nonetheless, exploring the 

combination of the BO-stacking model with other advanced machine learning techniques 



50 L. Tsang et al./ Journal of Soft Computing in Civil Engineering 9-2 (2025) 33-56 

presents an intriguing opportunity to push the boundaries of predictive performance in this 

domain. 

Moreover, while the BO-Stacking model has shown promising results, it is crucial to emphasize 

that it should only be employed under similar conditions and with a reasonable range of data. 

Extrapolating the model's performance beyond the scope of the studied conditions may lead to 

uncertainties and inaccuracies. Future research should focus on defining the boundaries and 

limitations of the model's applicability to ensure its reliable use in practice. 

5. Conclusions 

Using the characteristics of existing soil liquefaction datasets, this research developed a stacked 

ensemble-learning model with Bayesian optimization to forecast soil liquefaction. This study's 

models were created utilizing six inputs and a single output, soil liquefaction. Prior to the 

development of these models, a method of information gain was used for input inclusion. The 

nine potential inputs were reduced to five that were finally used. Furthermore, the BO-Stacking 

model's advantages are determined by comparing the single learner to the stacked ensemble-

learning model and the BO method. Here are the key findings of our study: (1) We leverage the 

automated parameter searching capability of the BO method to enhance the hyperparameters of 

the ML model, effectively mitigating the challenges of overfitting or underfitting. (2) By 

applying the optimized model, the stacking ensemble approach is employed, resulting in further 

improvements in the accuracy of the model. Moreover, in the test datasets, the accuracy of 

forecasting soil liquefaction is 0.913, demonstrating that this technique can reliably forecast soil 

liquefaction to decrease earthquake-related risks. 

The practical application of the results of our research is highly relevant in the field of civil and 

structural project planning. The accurate prediction of soil liquefaction potential plays a crucial 

role in mitigating the risks associated with liquefaction during earthquakes. By introducing the 

BO-Stacking model, we provide a powerful tool for practitioners to improve their forecasting 

capabilities. The model's superior performance demonstrates its reliability in predicting soil 

liquefaction. Incorporating this model into practice enables more informed decision-making and 

the development of appropriate strategies to design and construct resilient infrastructure in areas 

prone to liquefaction. Ultimately, our research contributes to safer civil and structural projects by 

equipping professionals with a practical solution for assessing and addressing the potential risks 

of soil liquefaction. 

The BO-stacking model might be used in future studies to forecast soil liquefaction. The need for 

more data and studies on soil liquefaction in more severe circumstances should be underlined. 

The hybrid model provided here should only be employed under similar conditions and with a 

reasonable range of data. To increase the accuracy of the BO-stacking model, it is suggested that 

additional data samples and features be added to the experimental database in the future. 

Funding 

This research received no external funding. 



 L. Tsang et al./ Journal of Soft Computing in Civil Engineering 9-2 (2025) 33-56 51 

Conflicts of interest 

The authors declare no conflict of interest. 

References 

[1] Xue X, Yang X. Application of the adaptive neuro-fuzzy inference system for prediction of soil 

liquefaction 2013:901–17. https://doi.org/10.1007/s11069-013-0615-0. 

[2] Xue X, Yang X. Seismic liquefaction potential assessed by support vector machines approaches. 

Bull Eng Geol Environ 2016;75:153–62. https://doi.org/10.1007/s10064-015-0741-x. 

[3] Sami M, de Patrick B. Minimum principle and related numerical scheme for simulating initial flow 

and subsequent propagation of liquefied ground. Int J Numer Anal Methods Geomech 

2005;29:1065–86. 

[4] Huang Y, Yu M. Review of soil liquefaction characteristics during major earthquakes of the 

twenty-first century. Nat Hazards 2013;65:2375–84. https://doi.org/10.1007/s11069-012-0433-9. 

[5] Zhang W, Goh ATC, Zhang Y, Chen Y, Xiao Y. Assessment of soil liquefaction based on capacity 

energy concept and multivariate adaptive regression splines. Eng Geol 2015;188:29–37. 

https://doi.org/10.1016/j.enggeo.2015.01.009. 

[6] Yang Y, Chen L, Sun R, Chen Y, Wang W. A depth-consistent SPT-based empirical equation for 

evaluating sand liquefaction. Eng Geol 2017;221:41–9. 

https://doi.org/10.1016/j.enggeo.2017.02.032. 

[7] Kayabasi A, Gokceoglu C. Liquefaction potential assessment of a region using different techniques 

(Tepebasi, Eskişehir, Turkey). Eng Geol 2018;246:139–61. 

https://doi.org/10.1016/j.enggeo.2018.09.029. 

[8] Chen J, O-tani H, Takeyama T, Oishi S, Hori M. Toward a numerical-simulation-based 

liquefaction hazard assessment for urban regions using high-performance computing. Eng Geol 

2019;258:105153. https://doi.org/10.1016/j.enggeo.2019.105153. 

[9] Pei X, Zhang X, Guo B, Wang G, Zhang F. Experimental case study of seismically induced loess 

liquefaction and landslide. Eng Geol 2017;223:23–30. 

https://doi.org/10.1016/j.enggeo.2017.03.016. 

[10] Zhou J, Huang S, Zhou T, Armaghani DJ, Qiu Y. Employing a genetic algorithm and grey wolf 

optimizer for optimizing RF models to evaluate soil liquefaction potential. Artif Intell Rev 

2022;55:5673–705. https://doi.org/10.1007/s10462-022-10140-5. 

[11] Ertek MK, Demir G. Evaluation of liquefaction potential and post-liquefaction settlements in a 

coastal region in Atakum. Arab J Geosci 2017;10:1–16. 

[12] Huang Y, Jiang X. Field-observed phenomena of seismic liquefaction and subsidence during the 

2008 Wenchuan earthquake in China. Nat Hazards 2010;54:839–50. 

https://doi.org/10.1007/s11069-010-9509-6. 

[13] Juang CH, Yuan H, Lee D-H, Lin P-S. Simplified Cone Penetration Test-based Method for 

Evaluating Liquefaction Resistance of Soils. J Geotech Geoenvironmental Eng 2003;129:66–80. 

https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(66). 

[14] Jangir HK, Satavalekar R. Evaluating Adaptive Neuro-Fuzzy Inference System (ANFIS) To Assess 

Liquefaction Potential And Settlements Using CPT Test Data. J Soft Comput Civ Eng 2022;6:119–

39. https://doi.org/10.22115/scce.2022.345237.1456. 

[15] Pal M. Support vector machines-based modelling of seismic liquefaction potential. Int J Numer 

Anal Methods Geomech 2006;30:983–96. https://doi.org/10.1002/nag.509. 



52 L. Tsang et al./ Journal of Soft Computing in Civil Engineering 9-2 (2025) 33-56 

[16] Sheikh A, Akbari M, Shafabakhsh G. Laboratory Study of the Effect of Zeolite and Cement 

Compound on the Unconfined Compressive Strength of a Stabilized Base Layer of Road Pavement. 

Materials (Basel) 2022;15:7981. https://doi.org/10.3390/ma15227981. 

[17] Afrazi M, Yazdani M. Determination of the Effect of Soil Particle Size Distribution on the Shear 

Behavior of Sand. J Adv Eng Comput 2021;5:125. https://doi.org/10.25073/jaec.202152.331. 

[18] Samui P, Sitharam TG. Machine learning modelling for predicting soil liquefaction susceptibility. 

Nat Hazards Earth Syst Sci 2011;11:1–9. https://doi.org/10.5194/nhess-11-1-2011. 

[19] Erzin Y, Ecemis N. The use of neural networks for CPT-based liquefaction screening. Bull Eng 

Geol Environ 2015;74:103–16. https://doi.org/10.1007/s10064-014-0606-8. 

[20] Duan W, Congress SSC, Cai G, Liu S, Dong X, Chen R, et al. A hybrid GMDH neural network and 

logistic regression framework for state parameter–based liquefaction evaluation. Can Geotech J 

2021;58:1801–11. https://doi.org/10.1139/cgj-2020-0686. 

[21] Naderpour H, Akbari M, Mirrashid M, Kontoni D-PN. Compressive Capacity Prediction of Stirrup-

Confined Concrete Columns Using Neuro-Fuzzy System. Buildings 2022;12:1386. 

https://doi.org/10.3390/buildings12091386. 

[22] Momeni E, Armaghani DJ, Hajihassani M, Amin MFM. Prediction of uniaxial compressive 

strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. 

Measurement 2015;60:50–63. 

[23] Armaghani DJ, Mohamad ET, Narayanasamy MS, Narita N, Yagiz S. Development of hybrid 

intelligent models for predicting TBM penetration rate in hard rock condition. Tunn Undergr Sp 

Technol 2017;63:29–43. https://doi.org/10.1016/j.tust.2016.12.009. 

[24] Cüce H, Cagcag Yolcu O, Aydın Temel F. Combination of ANNs and heuristic algorithms in 

modelling and optimizing of Fenton processes for industrial wastewater treatment. Int J Environ 

Sci Technol 2023;20:6065–78. 

[25] Dehghani R, Torabi Poudeh H. Application of novel hybrid artificial intelligence algorithms to 

groundwater simulation. Int J Environ Sci Technol 2022;19:4351–68. 

[26] Sahoo R, Das SK. Evaluation of Liquefaction Potential of Soil Based on Standard Penetration Test 

Using Multivariate Adaptive Regression Splines & Multi-Gene Genetic Programming. Indian 

Geotech. Conf. IGC2016, Madras, Chennai, India, 2016. 

[27] Javdanian H, Heidari A, Kamgar R. Energy-Based Estimation of Soil Liquefaction Potential Using 

GMDH Algorithm. Iran J Sci Technol Trans Civ Eng 2017;41:283–95. 

https://doi.org/10.1007/s40996-017-0061-4. 

[28] Hoang N-D, Bui DT. Predicting earthquake-induced soil liquefaction based on a hybridization of 

kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset 

study. Bull Eng Geol Environ 2018;77:191–204. https://doi.org/10.1007/s10064-016-0924-0. 

[29] Fattahi H, Hasanipanah M. An indirect measurement of rock tensile strength through optimized 

relevance vector regression models, a case study. Environ Earth Sci 2021;80:748. 

https://doi.org/10.1007/s12665-021-10049-2. 

[30] Fattahi H, Ghaedi H, Malekmahmoodi F. Prediction of rock drillability using gray wolf 

optimization and teaching–learning-based optimization techniques. Soft Comput 2024;28:461–76. 

https://doi.org/10.1007/s00500-023-08233-6. 

[31] Fattahi H, Zandy Ilghani N. Hybrid wavelet transform with artificial neural network for forecasting 

of shear wave velocity from wireline log data: a case study. Environ Earth Sci 2021;80. 

https://doi.org/10.1007/s12665-020-09320-9. 

[32] Fattahi H, Ghaedi H, Malekmahmoodi F, Armaghani DJ. Optimizing pile bearing capacity 

prediction: Insights from dynamic testing and smart algorithms in geotechnical engineering. Meas J 

Int Meas Confed 2024;230. https://doi.org/10.1016/j.measurement.2024.114563. 



 L. Tsang et al./ Journal of Soft Computing in Civil Engineering 9-2 (2025) 33-56 53 

[33] Zhang R, Li Y, Gui Y, Armaghani DJ, Yari M. A stacked deep multi-kernel learning framework for 

blast induced flyrock prediction. Int J Rock Mech Min Sci 2024;177:105741. 

https://doi.org/10.1016/j.ijrmms.2024.105741. 

[34] Kurnaz TF, Kaya Y. A novel ensemble model based on GMDH-type neural network for the 

prediction of CPT-based soil liquefaction. Environ Earth Sci 2019. https://doi.org/10.1007/s12665-

019-8344-7. 

[35] Rahbarzare A, Azadi M. Improving prediction of soil liquefaction using hybrid optimization 

algorithms and a fuzzy support vector machine. Bull Eng Geol Environ 2019;78:4977–87. 

https://doi.org/10.1007/s10064-018-01445-3. 

[36] Schmidt J, Moss R. Bayesian hierarchical and measurement uncertainty model building for 

liquefaction triggering assessment. Comput Geotech 2021;132:103963. 

https://doi.org/10.1016/j.compgeo.2020.103963. 

[37] Zhao Z, Congress SSC, Cai G, Duan W. Bayesian probabilistic characterization of consolidation 

behavior of clays using CPTU data. Acta Geotech 2022;17:931–48. https://doi.org/10.1007/s11440-

021-01277-8. 

[38] Asteris PG, Mamou A, Hajihassani M, Hasanipanah M, Koopialipoor M, Le TT, et al. Soft 

computing based closed form equations correlating L and N-type Schmidt hammer rebound 

numbers of rocks. Transp Geotech 2021. https://doi.org/10.1016/j.trgeo.2021.100588. 

[39] Pham BT, Nguyen MD, Nguyen-Thoi T, Ho LS, Koopialipoor M, Kim Quoc N, et al. A novel 

approach for classification of soils based on laboratory tests using Adaboost, Tree and ANN 

modeling. Transp Geotech 2021;27:100508. https://doi.org/10.1016/j.trgeo.2020.100508. 

[40] Nouri Y, Shahabian F, Shariatmadar H, Entezami A. Structural Damage Detection in the Wooden 

Bridge Using the Fourier Decomposition, Time Series Modeling and Machine Learning Methods. J 

Soft Comput Civ Eng 2024;8:83–101. https://doi.org/10.22115/SCCE.2023.401971.1669. 

[41] Ahmadi M, Naderpour H, Kheyroddin A. A Proposed Model for Axial Strength Estimation of Non-

compact and Slender Square CFT Columns. Iran J Sci Technol Trans Civ Eng 2019;43:131–47. 

https://doi.org/10.1007/s40996-018-0153-9. 

[42] Chen L, Fakharian P, Rezazadeh Eidgahee D, Haji M, Mohammad Alizadeh Arab A, Nouri Y. 

Axial compressive strength predictive models for recycled aggregate concrete filled circular steel 

tube columns using ANN, GEP, and MLR. J Build Eng 2023;77:107439. 

https://doi.org/10.1016/j.jobe.2023.107439. 

[43] Ghanizadeh AR, Ghanizadeh A, Asteris PG, Fakharian P, Armaghani DJ. Developing bearing 

capacity model for geogrid-reinforced stone columns improved soft clay utilizing MARS-EBS 

hybrid method. Transp Geotech 2023;38:100906. https://doi.org/10.1016/j.trgeo.2022.100906. 

[44] Mirrashid M, Naderpour H. Innovative Computational Intelligence-Based Model for Vulnerability 

Assessment of RC Frames Subject to Seismic Sequence. J Struct Eng 2021;147. 

https://doi.org/10.1061/(ASCE)ST.1943-541X.0002921. 

[45] Raeisi A, Sharbatdar MK, Naderpour H, Fakharian P. Flexural Capacity Prediction of RC Beams 

Strengthened in Terms of NSM System Using Soft Computing. J Soft Comput Civ Eng 2024;8:1–

26. https://doi.org/10.22115/scce.2024.429316.1761. 

[46] Nouri Y, Ghanbari MA, Fakharian P. An integrated optimization and ANOVA approach for 

reinforcing concrete beams with glass fiber polymer. Decis Anal J 2024;11:100479. 

https://doi.org/10.1016/j.dajour.2024.100479. 

[47] Yang HQ, Li Z, Jie TQ, Zhang ZQ. Effects of joints on the cutting behavior of disc cutter running 

on the jointed rock mass. Tunn Undergr Sp Technol 2018;81:112–20. 

https://doi.org/10.1016/j.tust.2018.07.023. 



54 L. Tsang et al./ Journal of Soft Computing in Civil Engineering 9-2 (2025) 33-56 

[48] Liu B, Yang H, Karekal S. Effect of Water Content on Argillization of Mudstone During the 

Tunnelling process. Rock Mech Rock Eng 2020;53:799–813. https://doi.org/10.1007/s00603-019-

01947-w. 

[49] Yang HQ, Xing SG, Wang Q, Li Z. Model test on the entrainment phenomenon and energy 

conversion mechanism of flow-like landslides. Eng Geol 2018;239:119–25. 

https://doi.org/10.1016/j.enggeo.2018.03.023. 

[50] Yang H, Wang Z, Song K. A new hybrid grey wolf optimizer-feature weighted-multiple kernel-

support vector regression technique to predict TBM performance. Eng Comput 2022;38:2469–85. 

https://doi.org/10.1007/s00366-020-01217-2. 

[51] Fakharian P, Rezazadeh Eidgahee D, Akbari M, Jahangir H, Ali Taeb A. Compressive strength 

prediction of hollow concrete masonry blocks using artificial intelligence algorithms. Structures 

2023;47:1790–802. https://doi.org/10.1016/j.istruc.2022.12.007. 

[52] Rezazadeh Eidgahee D, Jahangir H, Solatifar N, Fakharian P, Rezaeemanesh M. Data-driven 

estimation models of asphalt mixtures dynamic modulus using ANN, GP and combinatorial 

GMDH approaches. Neural Comput Appl 2022;34:17289–314. https://doi.org/10.1007/s00521-

022-07382-3. 

[53] Ghanizadeh AR, Delaram A, Fakharian P, Armaghani DJ. Developing Predictive Models of 

Collapse Settlement and Coefficient of Stress Release of Sandy-Gravel Soil via Evolutionary 

Polynomial Regression. Appl Sci 2022;12:9986. https://doi.org/10.3390/app12199986. 

[54] Long T, He B, Ghorbani A, Khatami SMH. Tree-Based Techniques for Predicting the Compression 

Index of Clayey Soils. J Soft Comput Civ Eng 2023;7:52–67. 

https://doi.org/10.22115/scce.2023.377601.1579. 

[55] Zhang Y, Qiu J, Zhang Y, Xie Y. The adoption of a support vector machine optimized by GWO to 

the prediction of soil liquefaction. Environ Earth Sci 2021;80:360. https://doi.org/10.1007/s12665-

021-09648-w. 

[56] Ozsagir M, Erden C, Bol E, Sert S, Özocak A. Machine learning approaches for prediction of fine-

grained soils liquefaction. Comput Geotech 2022;152:105014. 

https://doi.org/10.1016/j.compgeo.2022.105014. 

[57] Yang Y, Wei Y. Study on Classification Method of Soil Liquefaction Potential Based on Decision 

Tree. Appl Sci 2023;13. https://doi.org/10.3390/app13074459. 

[58] Jas K, Dodagoudar GR. Liquefaction Potential Assessment of Soils Using Machine Learning 

Techniques: A State-of-the-Art Review from 1994–2021. Int J Geomech 2023;23. 

https://doi.org/10.1061/ijgnai.gmeng-7788. 

[59] Xue X, Xiao M. Application of genetic algorithm-based support vector machines for prediction of 

soil liquefaction. Environ Earth Sci 2016;75:874. https://doi.org/10.1007/s12665-016-5673-7. 

[60] Ghasemi SH, Bahrami H, Akbari M. Classification of Seismic Vulnerability Based on Machine 

Learning Techniques for RC Frames. J Soft Comput Civ Eng 2020;4:13–21. 

https://doi.org/10.22115/scce.2020.223322.1186. 

[61] Adnan RM, Meshram SG, Mostafa RR, Islam ARMT, Abba SI, Andorful F, et al. Application of 

Advanced Optimized Soft Computing Models for Atmospheric Variable Forecasting. Mathematics 

2023;11:1213. 

[62] Ikram RMA, Mostafa RR, Chen Z, Parmar KS, Kisi O, Zounemat-Kermani M. Water temperature 

prediction using improved deep learning methods through reptile search algorithm and weighted 

mean of vectors optimizer. J Mar Sci Eng 2023;11:259. 

[63] Huang J, Zhang J, Li X, Qiao Y, Zhang R, Kumar GS. Investigating the effects of ensemble and 

weight optimization approaches on neural networks’ performance to estimate the dynamic modulus 

of asphalt concrete. Road Mater Pavement Des 2022:1–21. 



 L. Tsang et al./ Journal of Soft Computing in Civil Engineering 9-2 (2025) 33-56 55 

[64] Huang J, Zhou M, Zhang J, Ren J, Vatin NI, Sabri MMS. Development of a new stacking model to 

evaluate the strength parameters of concrete samples in laboratory. Iran J Sci Technol Trans Civ 

Eng 2022;46:4355–70. 

[65] Barkhordari MS, Armaghani DJ, Fakharian P. Ensemble machine learning models for prediction of 

flyrock due to quarry blasting. Int J Environ Sci Technol 2022;19:8661–76. 

https://doi.org/10.1007/s13762-022-04096-w. 

[66] Yang H, Chen C, Ni J, Karekal S. A hyperspectral evaluation approach for quantifying salt-induced 

weathering of sandstone. Sci Total Environ 2023;885:163886. 

[67] Cai M, Hocine O, Mohammed AS, Chen X, Amar MN, Hasanipanah M. Integrating the LSSVM 

and RBFNN models with three optimization algorithms to predict the soil liquefaction potential. 

Eng Comput 2022;38:3611–23. https://doi.org/10.1007/s00366-021-01392-w. 

[68] Ikram RMA, Dai H-L, Al-Bahrani M, Mamlooki M. Prediction of the FRP Reinforced Concrete 

Beam shear capacity by using ELM-CRFOA. Measurement 2022:112230 

https://doi.org/10.1016/j.measurement.2022. 

[69] Huang J, Zhou M, Zhang J, Ren J, Vatin NI, Sabri MMS. The use of GA and PSO in evaluating the 

shear strength of steel fiber reinforced concrete beams. KSCE J Civ Eng 2022;26:3918–31. 

[70] Huang J, Xue J. Optimization of svr functions for flyrock evaluation in mine blasting operations. 

Environ Earth Sci 2022;81:434. 

[71] Ikram RMA, Mostafa RR, Chen Z, Islam ARMT, Kisi O, Kuriqi A, et al. Advanced hybrid 

metaheuristic machine learning models application for reference crop evapotranspiration 

prediction. Agronomy 2022;13:98. 

[72] Ikram RMA, Hazarika BB, Gupta D, Heddam S, Kisi O. Streamflow prediction in mountainous 

region using new machine learning and data preprocessing methods: a case study. Neural Comput 

Appl 2023;35:9053–70. 

[73] Fareghian M, Afrazi M, Fakhimi A. Soil reinforcement by waste tire textile fibers: small-scale 

experimental tests. J Mater Civ Eng 2023;35:4022402. 

[74] Riazi E, Yazdani M, Afrazi M. Numerical study of slip distribution at pre-existing crack in rock 

mass using extended finite element method (XFEM). Iran J Sci Technol Trans Civ Eng 2023:1–15. 

[75] Shibata T, Teparaksa W. Evaluation of Liquefaction Potentials of Soils Using Cone Penetration 

Tests. Soils Found 1988;28:49–60. https://doi.org/10.3208/sandf1972.28.2_49. 

[76] Rezania M, Javadi AA, Giustolisi O. Evaluation of liquefaction potential based on CPT results 

using evolutionary polynomial regression. Comput Geotech 2010;37:82–92. 

https://doi.org/10.1016/j.compgeo.2009.07.006. 

[77] Saha S, Arabameri A, Saha A, Blaschke T, Ngo PTT, Nhu VH, et al. Prediction of landslide 

susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted 

regression tree-based on cross-validation method. Sci Total Environ 2021;764:142928. 

https://doi.org/10.1016/j.scitotenv.2020.142928. 

[78] Adnan RM, Mostafa RR, Dai H-L, Heddam S, Kuriqi A, Kisi O. Pan evaporation estimation by 

relevance vector machine tuned with new metaheuristic algorithms using limited climatic data. Eng 

Appl Comput Fluid Mech 2023;17:2192258. 

[79] Eng SK, He B, Monjezi M, Bhatawdekar RM. An Artificial Intelligence Approach for Tunnel 

Construction Performance. J Soft Comput Civ Eng 2023;7:138–54. 

https://doi.org/10.22115/scce.2023.352867.1492. 

[80] Furfaro R, Barocco R, Linares R, Topputo F, Reddy V, Simo J, et al. Modeling irregular small 

bodies gravity field via extreme learning machines and Bayesian optimization. Adv Sp Res 

2021;67:617–38. https://doi.org/10.1016/j.asr.2020.06.021. 



56 L. Tsang et al./ Journal of Soft Computing in Civil Engineering 9-2 (2025) 33-56 

[81] J. PK, Penubothula S, Kamanchi C, Bhatnagar S. Novel First Order Bayesian Optimization with an 

Application to Reinforcement Learning. Appl Intell 2021;51:1565–79. 

https://doi.org/10.1007/s10489-020-01896-w. 

[82] Joy TT, Rana S, Gupta S, Venkatesh S. Fast hyperparameter tuning using Bayesian optimization 

with directional derivatives. Knowledge-Based Syst 2020;205:106247. 

https://doi.org/10.1016/j.knosys.2020.106247. 

[83] Bhat PC, Prosper HB, Sekmen S, Stewart C. Optimizing event selection with the random grid 

search. Comput Phys Commun 2018;228:245–57. https://doi.org/10.1016/j.cpc.2018.02.018. 

[84] Panteleev A V., Lobanov A V. Mini-Batch Adaptive Random Search Method for the Parametric 

Identification of Dynamic Systems. Autom Remote Control 2020;81:2026–45. 

https://doi.org/10.1134/S0005117920110065. 

[85] Greenhill S, Rana S, Gupta S, Vellanki P, Venkatesh S. Bayesian Optimization for Adaptive 

Experimental Design: A Review. IEEE Access 2020;8:13937–48. 

https://doi.org/10.1109/ACCESS.2020.2966228. 

[86] Kobliha M, Schwarz J, Očenášek J. Bayesian optimization algorithms for dynamic problems. In 

Proceedings of the Workshops on Applications of Evolutionary Computation 2006:800–4. 

[87] Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification And Regression Trees. Routledge; 

2017. https://doi.org/10.1201/9781315139470. 

[88] Vapnik V. The Nature of Support Vector Machine; Heidelberg: Berlin 1999. 

[89] Altman NS. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am Stat 

1992;46:175–85. https://doi.org/10.1080/00031305.1992.10475879. 

[90] Breiman L. Random Forests. Mach Learn 2001;45:5–32. 

https://doi.org/10.1023/A:1010933404324. 

[91] Verron S, Tiplica T, Kobi A. Fault detection and identification with a new feature selection based 

on mutual information. J Process Control 2008;18:479–90. 

https://doi.org/10.1016/j.jprocont.2007.08.003. 

[92] Zhang X, He B, Sabri MMS, Al-Bahrani M, Ulrikh DV. Soil Liquefaction Prediction Based on 

Bayesian Optimization and Support Vector Machines. Sustainability 2022;14:11944. 

https://doi.org/10.3390/su141911944. 

[93] Ahmad M, Tang X-W, Qiu J-N, Ahmad F. Evaluating Seismic Soil Liquefaction Potential Using 

Bayesian Belief Network and C4.5 Decision Tree Approaches. Appl Sci 2019;9:4226. 

https://doi.org/10.3390/app9204226. 

[94] Bhardwaj RB, Chaurasia SR. Use of ANN, C4. 5 and Random Forest Algorithm in the Evaluation 

of Seismic Soil Liquefaction. J Soft Comput Civ Eng 2022;6:92–106. 

https://doi.org/10.22115/SCCE.2022.314762.1380. 

[95] Song Y, Liang J, Lu J, Zhao X. An efficient instance selection algorithm for k nearest neighbor 

regression. Neurocomputing 2017;251:26–34. https://doi.org/10.1016/j.neucom.2017.04.018. 

[96] Pekel E. Estimation of soil moisture using decision tree regression. Theor Appl Climatol 

2020;139:1111–9. https://doi.org/10.1007/s00704-019-03048-8. 

[97] Jain DK, Dubey SB, Choubey RK, Sinhal A, Arjaria SK, Jain A, et al. An approach for 

hyperspectral image classification by optimizing SVM using self organizing map. J Comput Sci 

2018;25:252–9. https://doi.org/10.1016/j.jocs.2017.07.016. 

[98] Rosalie M, Kieffer E, Brust MR, Danoy G, Bouvry P. Bayesian optimisation to select Rössler 

system parameters used in Chaotic Ant Colony Optimisation for Coverage. J Comput Sci 

2020;41:101047. https://doi.org/10.1016/j.jocs.2019.101047. 


	Prediction of Soil Liquefaction Using a Multi-Algorithm Technique: Stacking Ensemble Techniques and Bayesian Optimization
	1. Introduction
	2. Methods
	2.1. Dataset and its characteristics
	2.2. Learning using ensembles and optimization techniques
	2.2.1. Stacking ensemble learning model
	2.2.2. Bayesian optimization
	2.2.3. BO-stacking

	2.3. Performance evaluation

	3. Results and discussions
	3.1. Input selection
	3.2. Optimization of models' parameters
	3.3. Prediction results

	5. Conclusions
	Funding
	Conflicts of interest
	References

