WESTERN LABORATORIES

P.O. Box 1020 • 211 Highway 95 • Parma, ID 83660 • 800-658-3858 westernl@westernlaboratories.com

SMALL CONCENTRATIONS

ppm = parts per million ppm = parts per million = pounds/million pounds $ppm \div 10,000 = percent$ $ppm = percent \times 10,000$ ppm = milligrams/liter $ppm \ge 0.00136 = tons/AcFt of water$ $ppm \ge 0.0584 = grains/gallon$ ppm = 17.12 x grains/gallon $ppm \ge 8.345 = pounds/million gallons$ ppm = 640 x soluble salt reading ppm x 1.7 = pounds/Ac furrow sliceppm x 3.0 = pounds/AcFtppm $Ca \div 200 = 1 \text{ meg } Ca$ ppm Na \div 230 = 1 meg Na ppm K \div 390 = 1 meg K $ppm Mg \div 120 = 1 meq Mg$

WEIGHTS AND VOLUMES

1 acre-furrow slice = approximately 1,700,000 pounds 1 square acre = 43.560 Ft^2 1 acre foot of water = about 2,722,500 pounds 1 acre foot of water = 325,851 gallons 1 acre inch of water = 27,154 gallons

CONVERSIONS

To convert from ppm to pounds:

 $NO_3 \times 3.0 = lbs N / AcFt$ ppm P x $2.3 = lbs P_2O_5$ ppm P x $6.9 = lbs P_2O_5/AcFt$ ppm K x $1.2 = lbs K_2O$ ppm K x $3.6 = lbs K_2O/AcFt$ ppm S x $3 = lbs SO_4$ ppm S x $10.5 = lbs SO_4/AcFt$

 $ppm SO_4 \div 3 = ppm S$ lbs SO₄ \div 3 = lbs S

1 acre foot of soil = approximately 3,200,000 pounds

pH 5.5 to 5.9 moderately acid soil pH 6.0 to 6.5 slightly acid soil

pH below 5.5

neutral soil pH 6.6 to 7.2 pH 7.3 to 7.7 slightly basic soil

on the report measures the active soil alkalinity or acidity.

SOIL pH – Hydrogen Ion Concentration

pH 7.8 to 8.4 moderately basic soil high in free lime

The soil is measured on a 1:2 soil to water solution. The pH indicated

strongly acid soil

strongly basic soil high in total salts pH above 8.5

SOLUBLE SALTS – Electrical Conductivity

Scale of Conductivity in mmhos/cm

0 2	2 4	4 8	8	16
Salt effects	Yields of	Yields of	Only salt	Only a few
mostly	sensitive	many crops	tolerant	very
negligible	crops	restricted		tolerant
	may be		satisfactory	crops yield
	restricted			satisfactory

ORGANIC MATTER – Walkley-Black Tritation Method

Organic matter is the storehouse of nutrients, increases soil tilth and friability, and contributes to the soil water holding capacity of the soil.

<u>% Organic Matter</u>	Evaluations
0 to 0.9	very low
1.0 to 1.5	low
1.6 to 2.5	medium
2.6 to 4.9	high
above 5.0	very high

Organic Matter Release of Nitrogen/Acre/Year

% OM x Factor = pounds Nitrogen/Ac/Yr

Factors:	60	S.E. Washington – N.E. Oregon
	55	Winnemucca, Nevada
	50	E. Oregon – S.W. Idaho
	40	Magic Valley, Idaho
	35	E. Idaho – N. Utah
	30	W. Wyoming

Useful Conversions and Tables

NITRATE-NITROGEN, Buffered Extraction Method

The measurement of NO₃-N determines residual nitrogen. The following range reflects average soil levels and does not suggest nitrogen requirements for particular crops.

<u>NO₃ – N, ppm</u>	Evaluation
0 - 5	very low
6 – 10	low
11 - 25	medium
26 - 40	high
41+	very high

PHOSPHORUS-P Sodium Bicarbonate Method

<u>P, ppm</u>	Evaluation
1 - 4	very low
5 - 11	low
12 - 25	medium
26 - 45	high
45+	very high

CALCIUM - Ca

<u>Ca, ppm</u>	Evaluation	Mg, ppm	Evaluation
0 - 900	very low	0 - 150	very low
901 - 1500	low	151 - 350	low
1501 - 4000	medium	351 - 600	medium
4001 - 5000	high	601 - 1200	high
5000 +	very high	1200 +	very high

SODIUM – Na

<u>Mg, ppm</u>	Evaluation	CaCO ₃ , 1N HC1 Method	
0 - 30	very low	<u>% Lime</u>	Evaluation
31 - 60	low	0 – .25	very low
61 – 175	medium	.25 – .5	low
176 - 450	high	.6 – 2.9	medium
450 +	very high	3.0 - 8.0	high
		8.1 +	very high

Element

SO₄₋S (sulfate water sol) Zn (zinc by DTPA-TEA) Mn (manganese by DTPA-TEA) Cu (copper by DTPA-TEA) Fe (iron by DTPA-TEA) B (boron by hot water sol)

Element

SO₄ (sulfate water sol) Zn (zinc by DTPA-TEA) Mn (manganese by DTPA-TEA) Cu (copper by DTPA-TEA) Fe (iron by DTPA-TEA) B (boron by hot water sol)

Low to Deficient

less than 0.8 ppm

less than 2.0 ppm

less than 0.3 ppm

less than 5.0 ppm

less than 0.5 ppm

less than 10 ppm

Adequate 10 to 30 ppm

.9 to 4.0 ppm 3 to 7 ppm .7 to 4.0 ppm 5 to 10 ppm .5 to 2.0 ppm

Excessive to Toxic

_ 15 + ppm 150 + ppm20 + ppm_ 3 + ppm

Approximate Relation of Cation Exchange Capacity to Soil Texture

<u>CEC</u>	<u>Soil Texture</u>
0 - 8	sand / loamy sand
8 - 12	loamy sand / sandy loam
12 - 16	sandy loam
16 - 20	silt loam / loam
20 - 24	loam / silty clay loam
24 - 30	clay loam
30 +	clay

Sulfur Required to Neutralize the Free Lime

		Lbs S Required to Neutralize the
<u>% Lime</u>	<u>Lbs Free Lime / Ac Ft</u>	Free Lime
0.5	17,500	5,933
1.0	35,000	11,667
1.5	52,500	17,500
2.0	70,000	23.333
2.5	87,500	29,167
3.0	105,000	35,000
3.5	122,500	40,833
4.0	140,000	46,667
4.5	157,500	52,500
5.0	175,000	58,333
6.0	210,000	70,000
8.0	280,000	93,333
10.0	350,000	116,667
15.0	525,000	175,000
20.0	700,000	233,333

POTASSIUM-K Ammonium Acetate Method				
K, ppm Evaluation				
0 - 100	very low			
101 – 200 low				
201 – 450 medium				
451 – 750 high				
750+ very high				

MAGNESIUM - Mg

FREE LIME

Approximate Pounds of S (Based on 99% S) Needed to Lower the Soil pH of One Acre Foot of Soil

	Pounds of Sulfur / Acre		
<u>Change in pH</u>	Sand	Loam	Clay
8.5 to 6.5	3,500	4,375	5,250
8.0 to 6.5	2,450	2,625	3,500
7.5 to 6.5	875	1,400	1,750
7.0 to 6.5	175	275	525

Calculations for Salt Problem Soils

Ca-ppm \div 200 = meq Ca, Na-ppm \div 230 = meq Na, Mg-ppm - 120 = Meq Mg, K-ppm \div 390 = meq K

To calculate the percent sodium of the Cation Exchange Capacity:

 $\frac{\text{meq Na}}{\text{CEC}} \quad X \ 100 = \% \text{ Na of the CEC}$

Base Saturation:

Meqs Ca + Mg + K + Na X 100 = % BS CEC (measured not sum of CEC)

1 meq of Ca/100g = 200 ppm or 400 lbs/AFS or 700 lbs CA/AcFt 1 meq of Mg/100g = 120 ppm or 240 lbs Mg/AFS or 420 lbs Mg/AcFt 1 meq of K/100g = 390 ppm or 780 lbs K/AFS or 1365 lbs K/AcFt 1 meq of Na/100g = 230 ppm or 460 lbs/AFS or 805 lbs Na/AcFt

Crop Tolerance for Percent Na of the CEC

0 to 5%	5 to 10%	10 to 15%	15 + %
Beans	Wheat	Crested Wheat	Barley
Strawberries	Oats	Fescue	Salt Grass
Carrot	Spearmint	Perennial Rye	
Radish	Alfalfa	Sugar Beets	
Onions	Turnip	Tall Wheat	
Lettuce	Sweet Corn	Birdsfoot Trefoil	
Fruit Trees	Field Corn		
Potatoes	Pasture		
Hops	Cotton		
Orchard Grass			
Cabbage			
Most Clovers			
Celery			
Tomatoes			
Peppermint			
Peas			

% Na of the CEC Based on Different Sodium Concentrations and Cation Exchange Capacities CEC in meg/100g of soil

Soil Sodium	8	10	12	14	16	18	20	22
in ppm-Na	% Sodium of the CEC							
100	5.4	4.3	3.6	3.1	2.7	2.4	2.2	2.0
200	10.9	8.7	7.3	6.2	5.4	4.8	4.4	4.0
300	16.3	13.0	10.8	93	8.1	7.2	6.5	5.9
400	21.8	17.4	14.5	12.4	10.9	9.7	8.7	7.9
500	27.1	21.7	18.1	15.5	13.6	12.1	10.9	9.9
600	32.6	6.1	21.8	18.6	16.3	14.5	13.1	11.9
700	38.0	30.4	25.3	21.7	19.0	16.9	15,2	13,8
800	43.5	34.8	29.0	24.9	21.8	19.3	17.4	15.8
900	48.9	39.1	32.6	28.0	24.5	21.7	19.6	17.8
1000	54.4	43.5	36.3	31.1	27.2	24.2	21.8	19.8
1500	81.5	65.2	54.3	46.6	40.8	36.2	32.6	29.6
2000	108.8	87.0	72.4	62.1	54.4	48.3	43.5	39.5
2500	135.9	108.7	90.6	77.6	67.9	60.4	54.4	49.4
3000	163.0	130.4	108.7	93.1	81.5	72.4	65.2	59.3
3500	190.3	152.2	126.8	108.7	95.1	84.6	76.1	69.2
4000	217.4	173.9	144.9	124.2	108.7	96.6	87.0	79.0

Saline soil – pH below 8.5, sodium less than 15%, soluble salts less than 4. Sodic soil – pH greater than 8.5, sodium greater than 15%, soluble salts less than 4. Saline–Sodic soil – pH less than 8.5, sodium greater than 15%, soluble salts greater than 4.

Converting Foliar Micronutrient Materials From Percent to Pounds per Gallon

Liquid % Metallic X weight/gallon = pounds metal/gallon Dry % Metallic X 1 pound = pounds metal/pound

> John P. Taberna, Soil Scientist Western Laboratories Useful Conversions and Tables -1974